CHAPTER 2: MORPHISMS POLYNOMIAL MAPS Let $X \subseteq \mathbb{A}^n$, $Y \subseteq \mathbb{A}^m$ aff. alg. vars. Deta. $f: X \rightarrow Y$ is a morphism if it is the restriction of a polynomial map. That is, \exists f.,.., $f_m \in k[x_1,...,x_n]$ S.t. $f(x) = (f_1(x),..., f_m(x)) \forall x \in X$. Fact. Morphisms are continuous in the Zariski topology. $PS.$ $\int^1 (Z(h_1,...,h_r)) = Z(h_1 \cdot f,...,h_r \cdot f).$ Def. A morphism is an isomorphism if it has an inverse. Example. An affine change of coords on A is a morphism: $\mathbb{A}^n \rightarrow \mathbb{A}^n$ $x \mapsto (L(x),...,L_n(x))$ $L_i(x) = \lambda i_1 X_1 + \cdots + \lambda i_n X_n + M_i$ This is invertible iff (x_i) is.

Example.
$$
R \rightarrow R'
$$

\n(x,y) \rightarrow x

\nis a morphism. It is not an isomorphism since it is not invertible.

\nExample. $X = \mathbb{Z}(y-x^2) \subseteq R^2$

\n $R \rightarrow X$

\n $t \mapsto (t,t^2)$

\nis an isomorphism, with inverse

\n $(t,t^2) \mapsto t$

\nExample. $X = \mathbb{Z}(y^2 - x^3) \subseteq R^2$

\n $f: A' \rightarrow X$

\n $f: A' \rightarrow X$

\n $t \mapsto (t^2, t^3)$

\nis bijective, but not an isomorphism.

\nOne candidate inverse is $(x,y) \mapsto y/x$.

\nNow do we know this is not a polynomial?

\nWe need a new tool for this!

\nThe projection $R^2 \rightarrow R^2$ shows that morphisms do not always map variables to variables. The hyperbola $X = \mathbb{Z}(xy-1) = \{(t, t^*) : t \neq 0\}$ is a closed set and the image is $R \setminus \{0\}$, which is not closed.

THE COORDINATE RING

Let $X \subseteq \mathbb{A}^n$ be an aff. alg. var., $f \in k[x_1,...,x_n]$ \rightarrow restriction $f|x$

The coordinate ring of X is
\n
$$
k[X] = \{f|_X : f \in k[x_1,...,x_n]\}
$$

\n $= \{polynomial fins on X\}$

k[
$$
X
$$
] is a ring, in fact a k-algebra. In fact:
 $k[X] \cong k[x_{1,...,}x_{n}]/I(x)$.

Example Let $X = Z(xy-1)$. Then $k(x)$ since it is equivalent to the polynomial y .

Note.
$$
k[M^n] = k[x_1, ..., x_n]
$$

\n $k[p] = k$ (see the above proof that
\n $(x_1 - a_1, ..., x_n - a_n)$ is maximal)
\n $k[p_1, ..., p_r] = k^r$

See also Stockexchange #486668

$$
X = Z(x^{2}+y^{2}-z^{2}) \subseteq A^{3} \text{ cone } k = C
$$

\n
$$
x^{2}+y^{2}-z^{2} \text{ irreducible (if not, it would be a product of 2 (linear, homogeneous factors...)}
$$

\n
$$
\Rightarrow (x^{2}+y^{2}-z^{2}) \text{ prime, hence radical}
$$

\n
$$
\Rightarrow L(X) = (x^{2}+y^{2}-z^{2}) \text{ (SM)}
$$

\n
$$
\Rightarrow C[X] = C[X,Y,z]/(x^{2}+y^{2}-z^{2})
$$

Can say: C[x,y,z] equipped with the relation $x^2+y^2-z^2=0$. $So: \chi^3 + 2xy^2 - 2xz^2 + x$ = $2x(x^2+y^2-z^2)+x-x^3$ = $x-x^3$

Example.
$$
X = Z(y-x^2)
$$

Every $f \in k[X]$ can be written as a poly.
in x (just replace all y's with x^2).

Prop.	X irred	k [X] an integral domain.
20.24	10.0 - divisors	
30.24	10.0 - divisors	
40.24	10.0 - divisors	
50.24	10.0 - divisors	
60.24	10.0 - divisors	
70.24	10.0 - divisors	
80.24	10.0 - divisors	
90.24	10.0 - divisors	
10.0 - divisors		
10.0 - divisors </td		

Example.
$$
X = Z(y-x^2, Z-x^3)
$$
 "twisted cubic"
\nClaim: $\mathcal{I}(X) = (y-x^2, z-x^3)$ (divide by the linear poly-
\nP5: Let $f \in \mathcal{I}(X)$. Use div alg with y , then Z
\n \rightarrow $f(x,y,z) = (y-x^2)g(x,y,z) + (z-x^3)h(x,z)+r(x)$
\nThen \forall $t \in k$, $(t,t^2,t^3) \in X$, so $r(t)=0$ \forall
\n \rightarrow $r = 0$, where the claim.

\nIn $k[X]$: $y=x^2$, $z=x^3 \rightarrow k[X] \cong k[x]$, an integral domain. \Rightarrow X fired.

Another proof:
$$
A' \rightarrow X
$$
 $t \mapsto (t, t^2, t^3)$
is a surjective morphism $\Rightarrow X$ irred.

DICTIONARY

As with all of
$$
\mathbb{A}^{n}
$$
, there is a dictionary:
subvarieties \Leftrightarrow radical ideals
 $Y \subseteq X$ $J \subseteq k[X]$
irred subvarieties \Leftrightarrow prime ideals
pts \Leftrightarrow max ideals

Pf. Homework! 3^{rd} isom. thm!

PULLBACK

A morphism
$$
f: X \rightarrow Y
$$
 induces a pullback
\n $f_*: k[Y] \rightarrow k[X]$
\n $g + T(Y) \rightarrow g \circ f + T(x)$

This is well def Since the composition of polynomials is a polynomial, and because if $g \in I(Y)$ then $g \circ f$ lies in $\mathbb{I}(x)$.

Note: .
$$
f_*
$$
 is a k-algebra homom.
. $(fg)_* = g_* f_*$
. f an isomorphism $\Rightarrow f_*$ is

 $Expample.$ $\mathbb{A} \rightarrow \mathbb{Z}(4-x^2) \subseteq \mathbb{A}^2$ $t\mapsto (t,t^2)$ (already said this was \approx) Pullback $\mathbb{C}[\mathsf{X},\mathsf{Y}]/(\mathsf{Y}-\mathsf{X}^2) \longrightarrow \mathbb{C}[t]$ $x \mapsto t$ ا
ن $\rightarrow t$ surjective with trivial kernel, hence \cong .

Example:
$$
M \rightarrow Z(4^{2} \cdot x^{3}) \subseteq M^{2}
$$

\n $t \longmapsto (t^{3}, t^{3})$

\nTullback:

\n
$$
CLx \wedge 3/(4^{2} \cdot x^{3}) \longrightarrow CLE3
$$
\n
$$
\times \longmapsto t^{2}
$$
\n
$$
\vee \longmapsto t^{3}
$$
\nNot an \cong since t not in the image.

\nS, the map $M \rightarrow X$ is not \cong .

\nExample: $|s \times Z(ZY^{-1})|$ isomorphic to M^{1} ?

\nNo.

\nMove: $k(M^{1}) = kLx$?

\nNow: $k(X) = k[x, x^{-1}]$ Laurent polynomials

\nWhat to show these are not isomorphic.

\nSuppose $\Phi : k[x, x^{-1}] \rightarrow k[x]$ is an isomorphism.

\n
$$
\Rightarrow \Phi(1) = 1
$$
\n
$$
\Rightarrow \Phi(x) \Phi(x^{-1}) = 1
$$
\n
$$
\Rightarrow \Phi(x) \Phi(x) \Rightarrow \Phi(x) \Phi(x) \Rightarrow \Phi(x) \Rightarrow
$$

MORE GEOMETRY VS. ALGEBRA

An algebra is reduced if it has no nilpotent elts:
$$
r^n = 0
$$
.
 $k = alg$. closed.

Thm	(i) Every k[X] is a fin. gen. red. k-alge. (ii) Every finitely gen. reduced k-algebra is isom.
(ii) Every finitely gen. reduced k-algebra is isom.	
(iii) If $f: X \rightarrow Y$ is a morphism, then	
$f * k[Y] \rightarrow k[X]$	
(iv) If $\sigma: R \rightarrow S$ is a homom of reduced fin. gen.	
k -algebras, then there is a morphism	
$f : X \rightarrow Y$ with $f_* = \sigma$. This f is unique	
up to isomorphism.	

In other words the categories of aff alg var's fin gen red k alg's are anti isomorphic

Note. In 1950's Grothendieck removed 3 hypotheses: fin gen, red, alg closed. The corresponding geometric objects are affine schemes

 $PF.$ (i) k [X] is gen. by. images of the x_i . $I(x)$ radical \Rightarrow reduced.

(ii) Let R be a fin. gen. red. k-alg.
Choose a "presentation". If the qens are
$$
y_1,...,y_m
$$
,
then $R \cong k[y_1,...,y_m] / T$ relations
 $(J$ is kened of k[y_1,...,y_m] $\rightarrow R$)
R reduced $\Rightarrow J$ radical
Let $Y = Z(J)$. $SN \Rightarrow k[Y] \cong R$.

(iii) We already know this.

(iv) Fix
$$
\tau: R \rightarrow S
$$
. As above:
\n $\tau: k[Y_{1},...,Y_{m}]\rightarrow k[X_{1},...,X_{n}]\rightarrow$
\nAgain, $\tau \& T$ radical.
\n $\Rightarrow R, S$ are cond nings of $Z(t) \& Z(t)$.
\n
\nWant polynomial $f: M \rightarrow M^{m}$
\n $s.t. Z(I) \rightarrow Z(J)$

 $f * = 0$

Let
$$
\tilde{\sigma}:k[\mu_{1},\ldots,\mu_{m}] \longrightarrow S
$$

\n $\uparrow \longmapsto \sigma([f])$
\nThis is a k-alg. homom. (it's the composition of 2 such)

Let
$$
f_i = rep. \text{ of } \tilde{\tau}(y_i)
$$

\ni.e. $\tilde{\tau}(y_i) = f_i + J$
\nDefine $f: M^n \rightarrow M^m$
\n $x \mapsto (f_i(x),..., f_n(x))$

 $Claim I. f(Z(I)) \subseteq Z(J)$ $Pf. \forall x \in Z(I)$ want $f(x) \in Z(I)$ i.e. $g \circ f(x) = O \ \forall g \in J, x \in Z(\mathbb{T})$ i.e. $g \circ f \circ I$

$$
g \cdot f + I = g(f_1,...,f_n) + I
$$

\nThese terms make sense. $\int = g(\tilde{\sigma}(x_1),...,\tilde{\sigma}(x_n)) + I$
\nThey are independent of $= \tilde{\sigma}(g(x_1,...,x_n)) + I$
\nchoice of rep of $\tilde{\sigma}(x_i)$. $= \tilde{\sigma}(g) + I$

 $Claim 2.$ $f_* = \sigma$

$$
\begin{aligned}\n\text{Pf.} \quad & \text{Let } g \in k[\mathbf{y}_1, \dots, \mathbf{y}_m] \\
& \quad f_* (g + \mathbf{J}) = g \cdot f + \mathbf{I} \\
& = \tilde{\sigma}(g) + \mathbf{I} \quad \text{(as above)} \\
& = \sigma(g + \mathbf{J}) \quad \checkmark\n\end{aligned}
$$

We really should have done this claim first. The previous claim is the special case $f_*(o)$ = $\tau(o)$

Claim 3. F is unique: If
$$
f.g: X \rightarrow Y
$$
 have
 $f_* = g_*$ then $f = g$.

$$
Pf. Write \tI(Y) = \frac{k[y_{1},...,y_{m}]}{1} / J.
$$
\n
$$
Have f^{*}(y_{i}+J) = g^{*}(y_{i}+J)
$$
\n
$$
\rightarrow y_{i} \circ f + I = y_{i} \circ g + I
$$
\n
$$
Sau f = (f_{1},...,f_{m}) g = (g_{1},...,g_{m})
$$
\n
$$
\rightarrow f_{i} + I = g_{i} + I
$$
\n
$$
\rightarrow f + I = g + I
$$
\n
$$
i.e. f|X = g|X
$$

There is a loose end: we didn't show that the X & Y we constructed are unique.

Prop.	$X \subseteq A^n$, $Y \subseteq A^m$ aff. alg. var's.
$f: X \rightarrow Y$ a morphism.	
Then f is an isomorphism $\Leftrightarrow f^*$ is	

 \sim Λ

If
$$
\theta
$$
 done already.

\n
$$
\theta = f^* \text{ an iso}
$$
\n
$$
\Rightarrow 3 \text{ or } k[x] \rightarrow k[x]
$$
\nst. $f^* \cdot \text{or} = \text{id} \times \text{or} \cdot f^* = \text{id}$.

\nAny such σ is g^* for some $g: Y \rightarrow X$

\n(We gave the argument above. It's just that instead of starting with random R

\n
$$
\alpha \leq \text{we start with } k[x] \times k[x]
$$
\nNow: $f^* g^* = (gf)^* = \text{id}$

\n
$$
\Rightarrow gf = \text{id} \text{ (Claim 3)}.
$$

Cor. X,Y aff. alg. vars.
\nThen
$$
X \cong Y \Leftrightarrow k[X] \cong k[Y]
$$

\n $\frac{PF}{P} \Leftrightarrow$ done.
\nAny $k[X] \rightarrow k[Y]$ gives $Y \rightarrow X$ as above
\nApply the Prop.

DICTIONARY (= FUNCTOR)

Geometry Algebra

aff. alg. var. Fingen red. K-alg R
alg. subset rad. ideal in R alg. subset rad. ideal in R
irred. alg. subset prime ideal in subset prime ideal in R
point max ideal in R point max ideal in R
Poly. map K-alg homom. k -alg homom.

For ^a more organized exposition of this last theorem, see Moraru.

DIMENSION

$$
X = aff
$$
. $alg. var$.
Def $dim X = supermum of lengths of chains $X \ge X_1 \ge ... \ge X_d$ of distinct
irred. aff. alg. var's.
Fact. $dim X = max dim X_i$ where $\{Xi\}$ are the
irred. components.
Fact. If $X \subseteq Y$ then dim $X \le dim Y$.
So: dim $X = 0 \Leftrightarrow X = pt$.
By the above dictionary:
dim $X = knul$ dim of k[X].
Some names: 0-dim pt as a
1-dim curve
2-dim surface
in-dim n-fold$

Problem. What is dim
$$
\mathbb{A}^n
$$
?
\nObviously, dim $\mathbb{A}^n \ge n$. Will (almost) prove:
\n \overline{I}_1I_1m . dim $X =$ transc. deg_k $k(X) \le k[X] =$ poly. Ins.
\n \overline{I}_2I_2 . For a comm. ring A , $x \in A$
\n $S_{rx} = \{x^n(1-\alpha x) : n \in \mathbb{N}, a \in A\}$
\n $\begin{bmatrix} \overline{I}_1I_1 \vdots \overline{I}_nI_n \vdots \overline{I}_nI_n \end{bmatrix} = \begin{bmatrix} \overline{I}_1I_1 & \overline{I}_1I_2 & \overline{I}_1I_3 & \overline{I}_1I_4 \\ \overline{I}_1I_1 & \overline{I}_1I_2 & \overline{I}_1I_3 & \overline{I}_1I_5 & \overline{I}_1I_6 \\ \overline{I}_1I_1 & \overline{I}_1I_2 & \overline{I}_1I_3 & \overline{I}_1I_7 & \overline{I}_1I_7 \\ \overline{I}_1I_2 & \overline{I}_2I_3 & \overline{I}_2I_4 & \overline{I}_1I_7 \\ \overline{I}_2I_3 & \overline{I}_2I_4 & \overline{I}_2I_7 & \overline{I}_2I_7 \\ \overline{I}_2I_3 & \overline{I}_2I_7 & \overline{I}_2I_7 & \overline{I}_2I_8 \\ \overline{I}_2I_3 & \overline{I}_2I_7 & \overline{I}_2I_7 & \overline{I}_2I_7 \\ \overline{I}_2I_3 & \overline{I}_2I_7 & \$

Pf Milne 1.14

Fact 2. A = ring.	$\forall x \in A$, max ideal m $\subseteq A$
PF. If x \in m then x = x' (1 - 0x) \in S_{xx}	
If x \notin m then x is invertible mod m	
\Rightarrow J a s.t. 1-ax \in m	

Fact 3. $A = \min \phi$, $m \subset A$ max. ideal, $p \subseteq m$ prime.	
Y	$\times e$ mlp, $p \cap S_{\{x\}} = \phi$.
24. Suppose not: $x^n(1-\alpha x) \in p$.	
3. Suppose not: $x^n(1-\alpha x) \in p$.	
3. $1-\alpha x \in p \implies 1-\alpha x \in m \implies 1 \in m$	

Recall Krull dim max lengthof ^a chainof primeideals

Prop.
$$
A = ring, n \in \mathbb{N}
$$
.
Null dim $A \le n \iff \forall x \in A$, knull dim $A_{\{x\}} \le n-1$

PI factlifer defense II DEY Fact ² A chainof prime ideals beginning with ^a maxi deal gets shortened in Asx Fact3 Such ^a chain gets shortened by at most 1

Prop. A = integral domain

\n
$$
F(A) = field of fractions
$$
\n
$$
k \leq A \text{ subfield.}
$$
\nThen, the deg_k $F(A) \geq k$ full dim A

\n- \n
$$
WLOG
$$
 k alg. closed. If $tr \, deg = \infty$, nothing to prove. $S_{\alpha\beta}$ tr deg_k $F(A) = n$. Induction. Let $x \in A$.\n
\n- \n $F \times \notin k$, then x transc. over k \Rightarrow tr deg_{k(x)} $F(A) = n - 1$.\n
\n- \n $Sine = F(A) = f(A_{xx}),$ have: tr deg_{k(x)} $F(A_{xx}) = n - 1$. Since $k(x) \leq A_{\{x\}}$, induction gives $k(x) \leq m - 1$.\n
\n- \n $F(x) = m - 1$.\n
\n- \n $F(x) = k(x) \leq \frac{1}{2}x$, induction gives $k(x) = \frac{1}{2}x^2$, and $k \leq n - 1$.\n
\n- \n $F(x \in k, \text{ then } O = 1 - x^1 \times e \leq x^2 \Rightarrow A_{\{x\}} = O$. Again, $dim A_{\{x\}} \leq n - 1$.\n
\n

$Cor.$	$krull dim$	$k[x_{1,...,}x_{n}] = n$	
$pr.$	(\ge)	$(x_{1,...,}x_{n}) \supset (x_{1,...,}x_{n-1}) \supset \cdots \supset (x_{1}) \supset \bigcirc$	
(\le)	$Prev.$	$Prop.$	\square

$$
\underline{C}_{\alpha r} \quad \dim \mathbb{A}^n = n.
$$

HYPERSURFACES

Pop.	A hypersurface in A	has dim n-1.
PF.	Let H be a hypersurface	
$WLOG H$ irred.		
$\Rightarrow H = Z(f)$	f irred.	
Let $k[x_1,...,x_n] = k[x_1,...,x_n]/(f)$	$x_i = X_i + (f)$	
and $k(x_1,...,x_n)$	the field of fractions	
$f \neq 0 \Rightarrow$ some X_i , say X_n , appears in it.		
\Rightarrow no nonzero poly in $X_1,...,X_{n-1}$ lies in (f).		
\Rightarrow $X_1,...,X_{n-1}$ alg indep.		
But X_n is alg. over $X_1,...,X_{n-1}$ (think of f as a poly. in X_n u/ coeffs in k[x _{1,...,X_{n-1}] \leq k(x_1,...,x_n))\n}		
\Rightarrow { $x_{1,...,x_{n-1}}$ } is a trans. basis for $k(x_1,...,x_n)$ over k. Apply the theorem.		

Example. Say
$$
f(x,y)
$$
, $g(x,y)$ nonconstant, no common factors.

\nThen $dim \mathcal{Z}(f) = 1$ by (2)

\nAlso: $dim \mathcal{Z}(f,g) < dim \mathcal{Z}(f)$

\n \Rightarrow $Z(f,g) =$ finite set of points.

\nHow many? Stay tuned (Bézout).

Prop. The closed sets of codim 1 in Aⁿ are exactly
the hypersurfaces.

19.	Say W = aff. alg. var of codim 1.
W _{1, ...,} W _s the irred components.	
$\mathbb{I}(W) = \cap \mathbb{I}(W_i)$, so if $\mathbb{I}(W_i) = \mathbb{Z}(f_i)$	
then $\mathbb{I}(W) = \mathbb{Z}(f_i \cdot f_r)$.	
Thus, WLOG W irred.	
$\mathbb{I}(W)$ is prime, nonzero.	
Let f be an irred. poly in $\mathbb{I}(W)$.	
or (f) prime.	
$\mathbb{I}(W) \Rightarrow f \Rightarrow (0)$ distinct primes.	
\Rightarrow $\mathbb{A}^n \supseteq \mathbb{Z}(f) \supseteq W$	
\Rightarrow codim W > 1.	

Classification of Irred. Aff. Alg. Vars in A²

dim 2 :
$$
\mathbb{A}^n
$$
 \iff (0)
dim 1 : hypersurfaces \iff (f) \vdash irred.
 $V = V(f)$, where f is any
irreducible in $\mathbb{I}(V)$.
dim 0 : pt. \iff (x₁-a₁, x₂-a₂)

NOETHER NORMALIZATION Say ^a k alg B is finite over ^a Kalg A if there are bi ^b ⁿ St A span ofthe bi is B ^e ^g Kao is finitelygen over k but not finite over K Say be ^B is integral over A if b ^t an b ^t ^t Ao 0 Fast b integral over A Acb finite over A Thin A fin gen k alg ^F ^x Xd ^cA alg indef over K ^s ^t A is finite over Kha Xd If assuming K infinite Let A kCx XD really ^a quotientofthis Induct on ⁿ If Xi3 alg indef nothingto prove Otherwise you show A is finite over ^a subring ^B kCy ya see the next Iemma By induction B is finite over ^a subring ^C kCz ²^d with the Zi alg indef And A finite over C

Lemma. Let
$$
A = k[x_1,...,x_n]
$$
 a fin. gen. k -alg.
Say $x_1,...,x_{n-1}$ alg indep, x_n not.
Then $\exists c_1,...,c_{n-1}$ s.t. A is finite over $k[x_1-c_1x_{n_1},...,x_{n-1}-c_{n-1}x_n]$.

P.4. Assumptions
$$
\Rightarrow
$$
 3 non-zero $f(X_{1},...,X_{n-1},T)$
\nst. $f(X_{1},...,X_{n}) = 0$.
\n $X_{1},...,X_{n-1}$ alg indep \Rightarrow T appears in 5.
\n \rightarrow think of f as a poly in T:
\n $f(X_{1},...,X_{n-1},T) = a_{n}T^{m} + ... + a_{0}$
\n $a_{i} \in k[X_{1},...,X_{n-1}]$
\nexample. $\int = X_{1}T^{2} + T + X_{2}$
\nDo a charge of variables $X_{1} \rightarrow X_{1} + T$
\n $\rightarrow g = (X_{1}+T)T^{2}+T+X_{2}$
\n $= T^{3}+X_{1}T^{2}+T+X_{2}$
\nNow, $g(X_{1}-X_{n},X_{2},...,X_{n}) = 0$
\n $\Rightarrow X_{n}$ integral over $k[X_{1}-X_{n},X_{2},...,X_{n-1}]$
\n $\Rightarrow A$ finite over $k[X_{1}-X_{n},X_{2},...,X_{n-1}]$

See Milne Lemma 2.43