CHAPTER 2: MORPHISMS POLYNOMIAL MAPS Let $X \subseteq |A^n$, $Y \subseteq |A^m$ aff. alg. vars. Defn. $f: X \rightarrow Y$ is a morphism if it is the restriction of a polynomial map. That is, J fi,..., fm e k[xi,...,Xn] s.t. $f(x) = (f_1(x), \dots, f_m(x)) \forall x \in X$. Fact. Morphisms are continuous in the Zariski topology. Pf. $f^{-1}(Z(h_1,...,h_r)) = Z(h_1 \circ f,...,h_r \circ f).$ Def. A morphism is an isomorphism if it has an inverse. Example. An affine change of coords on A is a morphism: $A^n \rightarrow A^n$ $\chi \mapsto (L_{n}(x), ..., L_{n}(x))$ $L_{i}(x) = \lambda_{i} X_{i} + \dots + \lambda_{i} X_{n} + M_{i}$ This is invertible iff (Xij) is.

Example.
$$|A^2 \rightarrow |A^1|$$

 $(x,y) \rightarrow x$
is a morphism. It is not an isomorphism
since it is not invertible.
Example. $X = Z(y-x^2) \subseteq |A^2|$
 $|A^1 \rightarrow X|$
 $t \mapsto (t,t^2)$
is an isomorphism, with inverse
 $(t,t^2) \mapsto t$
Example. $X = Z(y^2-x^3) \subseteq |A^2|$
 $f: |A^1 \rightarrow X|$
 $t \mapsto (t^2, t^3)$
is bijective, but not an isomorphism.
One candidate inverse is $(x,y) \mapsto Y/x$.
How do we know this is not a polynomial?
We need a new tool for this!
The projection $|A^2 \rightarrow |A|$ shows that morphisms do not
always map varieties to varieties. The hyperbola
 $X = Z(xy-1) = \xi(t,t^{-1}): t \neq 0$; is a closed set
and the image is $|A^1 \setminus x_0$; which is not closed.

THE COORDINATE RING

Let $X \subseteq A^n$ be an aff. alg. var., $f \in k[x_1, ..., x_n]$ \longrightarrow restriction f[x]

The coordinate ring of X is

$$k[X] = \{f|X : f \in k[x_1,...,x_n]\}$$

 $= \{polynomial fins on X\}$

$$k[X]$$
 is a ring, in fact a k-algebra. In fact:
 $k[X] \cong \frac{k[X_1, \dots, X_n]}{I(X)}$.

Example. Let X = Z(XY-1). Then 'x lies in k[X]since it is equivalent to the polynomial Y.

Note.
$$k[A^n] = k[x_1, ..., x_n]$$

 $k[p] \cong k$ (see the above proof that
 $(x_1 - \alpha_1, ..., x_n - \alpha_n)$ is maximal)
 $k[p_1, ..., p_r] \cong k^r$

see also Stockexchange #486668

$$X = Z(x^{2}+y^{2}-Z^{2}) \subseteq A^{3} \text{ cone } k=\mathbb{C}$$

$$x^{2}+y^{2}-Z^{2} \text{ irreducible (if not, it would be a product of 2 linear, homogeneous factors...)}$$

$$\Rightarrow (x^{2}+y^{2}-Z^{2}) \text{ prime, hence radical}$$

$$\Rightarrow I(X) = (x^{2}+y^{2}-Z^{2}) \text{ (SN)}$$

$$\Rightarrow \mathbb{C}[X] = \mathbb{C}[X,Y,Z]/(x^{2}+y^{2}-Z^{2})$$

Can Say: $\mathbb{C}[x,y,z]$ equipped with the relation $\chi^2 + y^2 - z^2 = 0.$ So: $\chi^3 + 2\chi y^2 - 2\chi z^2 + \chi$ $= 2\chi(\chi^2 + y^2 - z^2) + \chi - \chi^3$ $= \chi - \chi^3$

Example.
$$X = Z(y - x^2)$$

Every $f \in k[X]$ can be written as a poly.
in x (just replace all y's with x^2).

Prop. X irred
$$\iff$$
 k[X] an integral domain.
The O-divisors
Pf. R/J an int. dom. \iff J prime.
Fact. k[X] is the (fin. gen.) k-alg generated by
the coordinate functions $X \rightarrow k$, $x \mapsto x_i$.

Example.
$$X = Z(y-x^2, Z-x^3)$$
 "twisted cubic"
Claim: $I(X) = (y-x^2, Z-x^3)$ "think of f as poly in y,
divide by the linear poly
 $y-x^2$ to get g, etc.
PF: Let $f \in I(X)$. Use div alg wrt y, then Z
 $\longrightarrow f(x,y,z) = (y-x^2)g(x,y,z) + (Z-x^3)h(x,z) + r(x)$
Then $\forall t \in k$, $(t,t^2,t^3) \in X$, so $r(t)=0$ $\forall t$
 $\implies r=0$, whence the claim.
In $k[X] : y = x^2$, $Z = x^3 \longrightarrow k[X] \cong k[x]$,
an integral domain. $\implies X$ irred.

Another proof:
$$A' \rightarrow X \quad t \mapsto (t, t^2, t^3)$$

is a surjective morphism $\Longrightarrow X$ irred.

DICTIONARY

As with all of
$$A^n$$
, there is a dictionary:
subvarieties \iff radical ideals
 $Y \subseteq \chi$ $J \subseteq k[X]$
irred subvarieties \iff prime ideals
pts \iff max ideals

Pf. Homework! 3rd ison. thm!

PULLBACK

A morphism
$$f: X \to Y$$
 induces a pullback
 $f_*: k[Y] \to k[X]$
 $g+I(Y) \mapsto g_0f + I(X)$

This is well def. Since the composition of polynomials is a polynomial, and because if $g \in I(Y)$ then $g \circ f$ lies in I(X).

Note:
$$f_*$$
 is a k-algebra homom.
 $(fg)_* = g_* f_*$
 f an isomorphism $\implies f_*$ is

Example. $A' \longrightarrow Z(y-x^2) \subseteq A^2$ $t \longmapsto (t,t^2)$ (already said this was \cong) Pullback: $C[x,y]/(y-x^2) \longrightarrow C[t]$ $x \longmapsto t$ $y \longmapsto t^2$ Surjective with trivial kernel, hence \cong .

Example:
$$\mathbb{A}' \longrightarrow \mathbb{Z}(\mathbb{Y}^2 - \mathbb{X}^3) \subseteq \mathbb{A}^2$$

 $t \longmapsto (t^2, t^3)$
Pullback:
 $\mathbb{C}[\mathbb{X}, \mathbb{N}]/(\mathbb{Y}^2 - \mathbb{X}^3) \longrightarrow \mathbb{C}[\mathbb{E}]$
 $x \longmapsto t^2$
 $y \longmapsto t^3$
Not an \cong since t not in the image.
So the map $\mathbb{A}' \longrightarrow \mathbb{X}$ is not \cong .
Example: $|S| \mathbb{X} = \mathbb{Z}(\mathbb{X} - \mathbb{Y})$ isomorphic to \mathbb{A}' ?
No.
Have: $\mathbb{K}(\mathbb{A}') = \mathbb{K}[\mathbb{X}]$
 $\mathbb{K}(\mathbb{X}) = \mathbb{K}[\mathbb{X}, \mathbb{X}^{-1}]$ Laurent polynomials
Want to show these are not isomorphic.
Suppose $\overline{\Phi} : \mathbb{K}[\mathbb{X}, \mathbb{X}^{-1}] \longrightarrow \mathbb{K}[\mathbb{X}]$ is an isomorphism.
 $\Longrightarrow \overline{\Phi}(1) = 1$
 $\Longrightarrow \overline{\Phi}(\mathbb{X}), \overline{\Phi}(\mathbb{X}^{-1})$ units in $\mathbb{K}[\mathbb{X}]$
 \Longrightarrow they are scalars
 $\Longrightarrow \mathrm{Im} \ \overline{\Phi} \subseteq \mathrm{scalars}.$ Contraduction.

More GEOMETRY VS. ALGEBRA

An algebra is reduced if it has no nilpotent etts:
$$r^n = 0$$
.
 $K = alg. closed$.

The (i) Every
$$k[X]$$
 is a fin. gen. red. k-alg.
(ii) Every finitely gen. reduced k-algebra is isom.
to some $k[X]$.
(iii) If $f: X \rightarrow Y$ is a morphism, then
 $f_* : k[Y] \rightarrow k[X]$
is a homomorphism.
(iv) If $\tau: R \rightarrow S$ is a homom. of reduced fin. gen.
 k -algebras, then there is a morphism
 $f: X \rightarrow Y$ with $f_* = \tau$. This f is unique
 up to isomorphism.

Note. In 1950's Grothendieck removed 3 hypotheses: Fin gen, red, alg closed. The corresponding geometric objects are affine schemes. Pf. (i) k[X] is gen. by. images of the Xi. I(X) radical \Rightarrow reduced.

(ii) Let R be a fin. gen. red. k-alg.
Choose a "presentation." If the gens are
$$y_{1,...,y_m}$$
,
then $R \cong k[y_{1,...,y_m}]/_J$ relations
(J is kernel of $k[y_{1,...,y_m}] \longrightarrow R$)
R reduced $\Longrightarrow J$ radical
Let $Y = Z(J)$. SN $\Longrightarrow k[Y] \cong R$.

(iii) We already know this.

(iv) Fix
$$\tau: \mathbb{R} \to S$$
. As above:
 $\tau: k[Y_{1},...,Y_{m}]_{J} \to k[X_{1},...,X_{n}]_{I}$
Again, I & J radical.
 $\Rightarrow \mathbb{R}, S$ are coord rings of $Z(t) \& Z(I)$.
Want polynomial $f: \mathbb{A}^{n} \to \mathbb{A}^{m}$
s.t. $Z(I) \mapsto Z(J)$
& $f_{*} = \tau$

Let
$$\tilde{\sigma} : k[y_{1}, ..., y_{m}] \longrightarrow S$$

 $f \longmapsto \sigma([f])$
This is a k-alg. homom. (it's the composition of 2 such)

Let
$$f_i = rep. of \overline{\sigma}(y_i)$$

i.e. $\overline{\sigma}(y_i) = f_i + J$
Define $f: A^n \rightarrow A^m$
 $\chi \mapsto (f_i(\chi), ..., f_n(\chi))$

Claim 1. $f(Z(I)) \subseteq Z(J)$ Pf. $\forall x \in Z(I) \text{ want } f(x) \in Z(J)$

$$g_{\circ}f + I = g(f_{1},...,f_{n}) + I$$
These terms make sense.
$$f = g(\tilde{\tau}(x_{1}),...,\tilde{\tau}(x_{n})) + I$$
They are independent of
$$f = \tilde{\sigma}(g(x_{1},...,x_{n})) + I$$
choice of rep of $\tilde{\sigma}(x_{i})$.
$$f = \tilde{\sigma}(g) + I$$

$$= 0 + I$$

Claim 2. $f_* = T$

Pf. Let
$$g \in k[Y_1, ..., Y_m]$$

 $f_*(g+J) = g \circ f + I$
 $= \mathcal{F}(g) + I \quad (as above)$
 $= \mathcal{T}(g+J)$

We really should have done this claim first. The previous claim is the special case $f_*(0) = T(0)$

Claim 3.
$$f$$
 is unique: If $f,g: X \rightarrow Y$ have
 $f_* = g_*$ then $f = g$.

Pf. Write
$$I(Y) = \frac{k[Y_1, \dots, Y_m]}{J}$$
.
Have $f^*(Y_i + J) = g^*(Y_i + J)$
 $\longrightarrow Y_i \circ f + I = Y_i \circ g + I$
Say $f = (f_1, \dots, f_m) \quad g = (g_1, \dots, g_m)$
 $\longrightarrow f_i + I = g_i + I$
 $\longrightarrow f + I = g + I$
i.e. $f|X = g|X$

There is a loose end: we didn't show that the X&Y we constructed are unique.

Prop.
$$X \subseteq A^{n}$$
, $Y \subseteq A^{m}$ aff. alg. var's.
 $f: X \longrightarrow Y$ a morphism.
Then f is an isomorphism $\iff f^{*}$ is,

Pf. → done already.
←
$$f^*$$
 an iso
→ $\exists \ \tau : k[X] \rightarrow k[Y]$
s.t. $f^* \cdot \tau = id \ \& \ \tau \cdot f^* = id$.
Any such τ is g^* for some $g:Y \rightarrow X$
(We gave the argument above. It's just
that instead of starting with random R
 $\& S$ we start with $k[X] \& k[Y]$).
Now: $f^* g^* = (gf)^* = id$
→ $gf = id$ (Claim 3).

Cor. X, Y aff. alg. vars.
Then
$$X \cong Y \iff k[X] \cong k[Y]$$

Pf. \bigoplus done.
 \bigoplus Any $k[X] \longrightarrow k[Y]$ gives $Y \longrightarrow X$ as above
Apply the Prop.

DICTIONARY (= FUNCTOR)

Geometry alg. subset irred. alg. subset point poly. map

Algebra

aff. alg. var. fingen red. K-alg R rad. ideal in R prime ideal in R max ideal in R K-alg homom.

For a more organized exposition of this last theorem, see Moraru.

DIMENSION

Problem. What is dim
$$A^n$$
?
Obviously, dim $A^n \ge n$. Will (almost) prove:
Then. dim X = transc. deg k $k(X)$ $k[X] = poly. fins.$
on X.
Def. For a comm. ring A, $x \in A$
 $S_{5X3} = \{X^n(1-ax) : n \in \mathbb{N}, a \in A\}$
[This is a multiplicative set. Check this!]
The boundary A_{5X3} of A at x is
the ring of fractions $S_{5X3} A$.
Fact 1. $S = mult.$ subset of a ring A
 $\{Prime ideals\} \ otin S^{-1}A \ otin S^{-1}A \ otin S^{-1}P = (S^{-1}A)P$
inverse image $\leftarrow q$

Pf. Milne 1.14

Fact 2.
$$A = ring$$
. $\forall x \in A$, max ideal $m \in A$
 $m \cap S_{\{x\}} \neq \phi$.
Pf. If $x \in m$ then $x = x^{*}(1 - ox) \in S_{\{x\}}$
If $x \notin m$ then x is invertible mod m
 $\implies \exists a s.t. 1 - ox \in m$

Fact 3. A=ring, m
$$\subset A$$
 max. ideal, $p \subseteq m$ prime.
 $\forall x \in m \setminus p$, $p \cap S_{\{x\}} = \phi$.
 Pf . Suppose not: $x^{n}(1-ax) \in p$.
 $\Rightarrow 1-ax \in p \Rightarrow 1-ax \in m \Rightarrow 1 \in m \square$

Prop.
$$A = ring$$
, $n \in \mathbb{N}$.
 $knull dim A \leq n \iff \forall x \in A$, $knull dim A_{\{x\}} \leq n-1$

Prop.
$$A = integral domain$$
.
 $F(A) = field of fractions$
 $K \subseteq A$ subfield.
Then tr. deg_k $F(A) \ge krull dim A$

Pf. WLOG k alg. closed.
If tr. deg =
$$\infty$$
, nothing to prove.
Say tr. deg_k F(A) = n. Induction.
Let x \in A.
 \cdot If x \notin k, then x transc. over k
 \Rightarrow tr. deg_{kw} F(A) = n-1
Since F(A) = F(A_{5x3}), have: tr deg_{kw} F(A_{5x3}) = n-1
Since $k(x) \leq A_{5x3}$, induction gives
kull dim $A_{5x3} \leq n-1$.
Previous Prop \Rightarrow dim $A \leq n$.
 \cdot If x $\in k$, then $0 = 1 - x^{1}x \in S_{5x3} \Rightarrow A_{5x3} = 0$.
Again dim $A_{5x3} \leq n-1$

Cor. krull dim
$$k[x_1,...,x_n] = n$$
.
Pf. $(x_1,...,x_n) \supset (x_1,...,x_{n-1}) \supset \cdots \supset (x_1) \supset 0$
 (\leq) Prev. Prop.

HYPERSURFACES

Prop. A hypersurface in
$$\mathbb{A}^n$$
 has dim n-1.
PF. Let \mathbb{H} be a hypersurface
 $WLOG \mathbb{H}$ irred.
 $\Rightarrow \mathbb{H} = \mathbb{Z}[f] \quad f \quad \text{irred}.$
Let $k[x_1,...,x_n] = k[X_1,...,X_n]/(f) \quad x_i = X_i + (f)$
and $k[x_1,...,x_n] = k[X_1,...,X_n]/(f) \quad x_i = X_i + (f)$
and $k[x_1,...,x_n] \quad \text{the field of fractions.}$
 $f \neq 0 \Rightarrow$ some X_i , say X_n , appears in it.
 \Rightarrow no nonzero poly in $X_{1,...,X_{n-1}}$ lies in (f) .
 $\Rightarrow x_{1,...,x_{n-1}}$ alg indep.
But X_n is alg. over $X_{1,...,X_{n-1}}$ (think of f as
a poly in X_n ω' coeffs in $k[x_{1,...,X_{n-1}}] \leq k(x_{1,...,x_n})$
 $\Rightarrow \{x_{1,...,x_{n-1}\}$ is a transe. basis for $k(x_{1,...,x_n})$
over k . Apply the theorem. \Box

Example. Say
$$f(x,y)$$
, $g(x,y)$ nonconstant, no common
factors.
Then $\dim Z(f) = 1$ by (2)
Also: $\dim Z(f,g) < \dim Z(f)$
 $\implies Z(f,g) = finite set of points.$
How many? Stay tuned (Bézout).

Prop. The closed sets of codim 1 in A" are exactly the hypersurfaces.

PF. Say
$$W = aff. alg. var of codim 1.$$

 $W_{1,...,W_{s}}$ the irred components.
 $I(W) = \bigcap I(W_{i}), \text{ so if } I(W_{i}) = Z(f_{i})$
then $I(W) = Z(f_{1}...f_{r}).$
Thus, WLOG W irred.
 $I(W)$ is prime, nonzero.
Let f be an irred. poly in $I(W).$
 $\longrightarrow (f)$ prime.
If $(f) \neq I(W)$ then
 $I(W) > f > (G)$ distinct primes.
 $\implies A^{n} > Z(f) > W$
 $\implies codim W > 1.$

Classification of Irred. Aff. Alg. Vars in A²

dim 2:
$$A^n$$
 \iff (0)
dim 1: hypersurfaces \iff (f) f irred.
 $V = V(f)$, where f is any
irreducible in $T(V)$.
dim 0: pt. \iff (x₁-a₁, x₂-a₂)

Noether Normalization
Say a k-alg. B is finite over a kalg A
if there are bi,..., bn st. A-span of the bi is B
e.g. k[X] is finitely gen. over k but not finite over k.
Say be B is integral over A if
bⁿ + and bⁿ + ... + ao = 0.
Fact. b integral over A
$$\iff$$
 A[b] finite over A
Thm. A = fin gen. k-alg. $\exists x_1,..., x_d \in A$ alg indep.
over k st. A is finite over k[Xi,..., Xd]
Pf (assuming k infinite)
Let A = k[Xi,...,Xn] (really, a quotient of this)
Induct on n.
If $\{x_i\}$ alg indep, nothing to prove
Otherwise, you show A is finite over a subring
B = k[Yi,...,Yn-1] see the next lemma!
By induction B is finite over a subring
C = k[Zi,...,Zd] with the Zi alg indep.
And A finite over C.

Pf. Assumptions
$$\Rightarrow$$
 I nonzero $f(X_{1},...,X_{n-1},T)$
s.t. $f(X_{1},...,X_{n}) = 0$.
 $X_{1},...,X_{n-1}$ alg indep \Rightarrow T appears in f .
 \Rightarrow think of f as a poly in T :
 $f(X_{1},...,X_{n-1},T) = a_{m}T^{m} + \dots + a_{0}$
 $a_{i} \in k[X_{1},...,X_{n-1}]$
example. $f = X_{1}T^{2} + T + X_{2}$
To a change of variables $X_{1} \rightarrow X_{1} + T$
 $\Rightarrow g = (X_{1}+T)T^{2} + T + X_{2}$
 $= T^{3} + X_{1}T^{2} + T + X_{2}$
Now, $g(X_{1}-X_{n}, X_{2},...,X_{n}) = O$
 $\Rightarrow X_{n}$ integral over $k[X_{1}-X_{n}, X_{2},...,X_{n-1}]$.

See Milne Lemma 2.43