Schemes are the main objects of study in algebraic geometry. The main developments are due to Grothendieck in the 1960's.

The (very) basic idea is this: instead of starting with a space X and obtaining a ring $\mathcal{O}_X(X)$, we start with an arbitrary ring R and create a space $\text{Spec}(R)$.

The ring R might have nilpotent elements. We can use these to record higher order intersections. Consider the intersection $Z(y-x^2) \cap Z(y)$. Normally we eliminate y to obtain $Z(x^2) \subseteq \mathbb{A}^1$ then take radical to get $Z(x)$. With schemes, we leave it as $Z(x^2)$, yielding a nilpotent element that records the second order intersection.

One consequence is that there is a Bézout theorem that holds all the time, not just generically.
Another thing that happens in scheme theory is that we can treat varieties over finite fields using geometric intuition from \mathbb{C}. We'll see $\text{Spec}(\mathbb{Z})$ consists of $0 \cup \{\text{primes}\}$. Given an algebraic curve with \mathbb{Z} coefficients, we can reduce mod p, yielding a family of "curves", one for each p. Scheme theory allows us to relate these to each other. (Cf. Weil conjectures).

Example: the Frobenius map

We write any polynomial, say with \mathbb{Z}-coeffs:

$$f(x) = x^2 - x + 3$$

What are the roots in k, for various k?

How many roots does it have in F_7?

Let $k = \overline{F_p}$

$F_p : \mathbb{A}^n \to \mathbb{A}^n$

$$x_i \mapsto x_i^p$$

This is a bijection (why?) but not an isomorphism, since $F_p^* : k[x_1, \ldots, x_n] \to k[x_1, \ldots, x_n]$ is not surjective (x_i is not in the image).
Fact. For \(m \geq 1 \), \(\mathbb{F}_p^m \) is the unique subfield of \(k \) with degree \(m \) over \(\mathbb{F}_p \). And it equals the set of fixed pts of \(\mathbb{F}_p^m \).

Say now \(f(x_1, \ldots, x_n) \) is a polynomial with coeffs in \(\mathbb{F}_p^m \), say
\[
f = \sum \mathcal{C}_I X^I = \mathcal{C}_{i_1, \ldots, i_n} X^{i_1} \cdots X^{i_n}, \quad \mathcal{C}_I \in \mathbb{F}_p^m.
\]

If \((a_1, \ldots, a_n) \in \mathbb{Z}(f) \subseteq \mathbb{A}^n_k \) then
\[
0 = \mathbb{F}_p^m \left(\sum \mathcal{C}_I a_{i_1}^{i_1} \cdots a_{i_n}^{i_n} \right) = \sum \mathbb{F}_p^m(a_{i_1}^{i_1}) \cdots \mathbb{F}_p^m(a_{i_n}^{i_n})
\]
\[
\Rightarrow \mathbb{F}_p^m(a_1, \ldots, a_m) \subseteq \mathbb{Z}(f).
\]

So \(\mathbb{F}_p^m \) maps \(\mathbb{Z}(f) \) to itself. And the fixed points are the points in \(\mathbb{F}_p^m \).

We wanted to count these. In algebraic topology, we would use the Lefschetz fixed point theorem.

How can we do that here? \(\mathbb{Z}(f) \) is a discrete set! Answer: define schemes (rings with a topology on their set of prime ideals...), then define étale cohomology for schemes, then come up with a Lefschetz fixed point theorem, solve the Weil conjectures, win the Fields medal...
\(R = \text{commutative ring} \)

Def. The prime spectrum, or spectrum, of \(R \) is the collection of prime ideals, denoted \(\text{Spec}(R) \).

We also refer to \(\text{Spec}(R) \) as the affine scheme associated to \(R \).

Before, points of \(X \) corresponded to max. ideals in \(k[X] \). So \(\text{Spec}(R) \) has “extra” points. Some of these “points” are contained in others.

Note.
- \(R \) itself is not prime.
- \(0 \) is prime iff \(R \) is a domain.

We should think of: \(\text{Spec}(R) \leftrightarrow X \)

\[R \leftrightarrow k[X] \]

Because of this, we’ll want to think of elements of \(R \) as functions on \(\text{Spec}(R) \).
To this end: For each $p \in \text{Spec}(R)$ let $k(p)$ denote the quotient field of R/p.

Here is how $f \in R$ can be thought of as a function on $\text{Spec}(R)$: for $p \in \text{Spec}(R)$, let $f(p)$ be the image of f under $R \to R/p \to k(p)$.

We call $f(p)$ the value of f at p.

Note that these values lie in different fields: the function 5 on $\text{Spec } \mathbb{Z}$ takes the value $1 \text{ mod } 2$ at $(2) \in \text{Spec } \mathbb{Z}$ and $2 \text{ mod } 3$ at (3).

The statement $f \circ p$ translates to $f(p) = 0$.

The fact that we can add & multiply functions pointwise translates to the fact that $R \to k(p)$ is a ring homomorphism.

Will eventually interpret these functions as global sections of the structure sheaf on $\text{Spec}(R)$.
If $R = k[X] = k[x_1, \ldots, x_n]/\mathbb{I}(x)$ & p is a max. ideal of R (ie a pt of X), then $k(p) = k$ and the value of $f \in R$ is the value in the classical sense.

Example. Spec$(C[x]) = 0 \cup \{x - a : a \in C\}$

This is the full set of prime ideals since every polynomial factors into linear terms. Let’s call this space A_C^n

Picture:

![Diagram](http://example.com/diagram.png)

The functions on A_C^n are polynomials. So $f(x) = x^2 - 3x + 1$ is a function. Its value at $(x-1)$ (which we think of as 1) is $f(1)$. Really we should take the equiv. class of $f(x)$ in $(C[x]/(x-1))$, but this is the same as setting $x = 1$. (by the division alg)

The value of F at (0) is just $f(x)$. Let try it!

This whole discussion works over any alg. closed k.
Example. $\text{Spec } \mathbb{Z} = 0 \cup \{\text{primes}\}$

Same picture:

\[\bullet \quad \bullet \quad \bullet \quad \bullet \]

(2) (3) (5) (0)

It boils down to the fact that the intersection of all prime ideals is not 0.

100 is a function. Its value at 3 is 1. It has a (double!) Zero at 2...

Example. $\text{Spec } k = pt.$

Example. $R = k[\varepsilon]/\varepsilon^2$ “ring of dual numbers” k alg. closed

Think of ε as a small number (its square is 0).

Will show: $\text{Spec}(R) = \{ (\varepsilon) \}.$

Indeed: Primes of $R \leftrightarrow$ primes $\mathfrak{p} \subseteq k[x], \mathfrak{p} \ni (\varepsilon^2)$

$k[\varepsilon]$ principal so

$\mathfrak{p} = (f)$ and $(\varepsilon^2) \subseteq f \iff f | \varepsilon^2 \quad \square$

The function ε is nonzero but its value at all points of $\text{Spec}(R)$ is 0. So:

functions are not determined by their values
Example. $\text{Spec}(R[x]) = \{(0)\} \cup \{(x-a)\} \cup \{\text{irred. quadratics}\}$
Call it \mathbb{A}^1_R
The first two pieces are familiar. The new pts are complex conjugate pairs.

Consider $f(x) = x^3 - 1$.
Its value at $(x-2)$ is 7, or $7 \mod (x-2)$; this is $f(2)$.
Its value at $(x^2 + 1)$ is $-x-1 \mod (x^2+1)$, which we can think of as $-i-1$.

Example. $\mathbb{A}^1_{\mathbb{F}_p} = \text{Spec} \mathbb{F}_p[x] = \{(0)\} \cup \{\text{irred. polys}\}$
(since $\mathbb{F}_p[x]$ is a domain.
Can identify each irred poly with the corresponding set of Galois conjugates in $\overline{\mathbb{F}_p}$.
A polynomial f is not determined by its values on \mathbb{F}_p but is det. by values on $\overline{\mathbb{F}_p}$

\text{e.g. } f(x) = 1 \& g(x) = x^2 + x + 1 \text{ with } p = 2.

Example. $\mathbb{A}^2_{\mathbb{C}} = \text{Spec} \mathbb{C}[x,y]$
Note: $\mathbb{C}[x,y]$ not principal: (x,y) is not princ.
$(0) \in \mathbb{A}^2_{\mathbb{C}}$
$(x-a, y-b) \in \mathbb{A}^2_{\mathbb{C}}$ (these are max. ideals)
Other irreducibles also lie in \mathbb{A}^2_C, such as $y - x^2$ & $y^2 - x^3$.

To picture this, the $(x-a, y-b)$ correspond to points of C^2.

What about the "bonus" points? (0) is "behind" all the traditional pts. It does not lie on $y = x^2$.

$(y - x^2)$ lies on $y = x^2$, but nowhere particular on it.

\[\begin{array}{c}
\text{1-dim} \\
\downarrow \\
\text{f(x,y)} \\
\text{"closed pt"} \\
(x-a, y-b) \\
(0) \text{ 2-dim} \\
\end{array} \]

Example \[\mathbb{A}^3_C = \text{Spec } C[x,y,z] \]

Again there are points of dim...

0: $(x-a, y-b, z-c)$
3: (0)
2: (f) \(f \) irred.
1: impossible to classify; irred. curves example: $(x,y) \leftrightarrow z$-axis
From Ring Operations to Spec Operations

Quotients. \(\text{Spec } R/I \subseteq \text{Spec } R \)

Special case: \(S \subset R \) is a fin. gen. \(\mathbb{C} \)-alg. gen. by \(x_1, \ldots, x_n \) with relations \(f_i(x_1, \ldots, x_n) = 0 \). So \(R = k[x_1, \ldots, x_n]/(f_i) \) and \(\text{Spec } R/I \) is the set of pts of \(\text{Spec } R \) satisfying the \(f_i \), e.g.

Localizations. \(\text{Spec } S^{-1}R \subseteq \text{Spec } R \)

Exercise: \(\text{Spec } S^{-1}R \leftrightarrow \) primes in \(\text{Spec } R \) not meeting \(S \).

Example. \(S = \{1, f, f^2, \ldots \} \subseteq R \)

\[\text{Spec } S^{-1}R = \{ p \in \text{Spec } R : f \notin p \} \]

More specific. \(R = \mathbb{C}[x, y] \) \(f(x, y) = y - x^2 \)

\[\text{Spec } S^{-1}R = \{ x \in \text{Spec } R : f \text{ doesn't vanish} \} \]

= \(\mathbb{A}_\mathbb{C}^2 \) minus pts on \(y - x^2 \)

and the bonus pt \((y - x^2)\).
Vanishes everywhere iff it is nilpotent.

Geometrically: a function on Spec R.

The primes.

Thus, the nilradical is the intersection of all nilradicals. The set of nilpotents form an ideal called

\[(a, b, b^2) \mapsto (x, y^2, z^2)\]

\[\mathbb{C}[x, y, z]/(b - a^2) \xrightarrow{\text{Spec}} \text{Spec } \mathbb{C}[x, y, z]/(b - a^2, y^2 - x^2, h - x^2)\]

Say \(f : p \rightarrow C \)

\[C = \{(x, y, z) : z = y^2, h = x^2, x^2 = 0\} \subset \mathbb{C}\]

\[p = \{(a, b) : b = a^2\} \subset \mathbb{C}\]

Explicit example. f: B --> A map of rings
Topography

\(R = \text{comm. ring} \)
\(S \subseteq R \text{ subset} \)

\[Z(S) = \{ p \in \text{Spec} R : f(p) = 0 \ \forall f \in S \} \]

As usual, the closed sets in \(\text{Spec} R \) are defined to be the \(Z(S) \)'s. This is the Zariski topology.

By the definition of value, we also have:

\[Z(S) = \{ p \in \text{Spec}(R) : f \in p \ \forall f \in S \} = \{ p \in \text{Spec}(R) : p \supseteq S \} \]

As usual: \(Z(S) = Z((S)) \& S \subseteq T \Rightarrow Z(T) \subseteq Z(S) \)

Example. \(Z(xy, yz) \subseteq \mathbb{A}^3_{\mathbb{C}} = \text{Spec} \ \mathbb{C}[x, y, z] \)

This is the set of pts with \(y = 0 \) or with \(x = z = 0 \). Also, the bonus points:

- the generic point of the \(xz \)-plane, aka \((y)\)
- and the gen. pt of \(y \)-axis, aka \((x, z)\)

Also: 1-dim pts in \(xz \)-plane.
The $\mathcal{Z}(S)$ are the closeds for a topology on $\text{Spec}(R)$ since:

(i) $\bigcap \mathcal{Z}(I_i) = \mathcal{Z}(\sum I_i)$
(ii) $\mathcal{Z}(I) \cup \mathcal{Z}(J) = \mathcal{Z}(IJ)$
(iii) $\mathcal{Z}(I) \subseteq \mathcal{Z}(J) \iff I \subseteq J$

Example. \(\mathbb{A}_C^1\)

The open sets are: \(\emptyset\), \(\mathbb{A}_C^1\) minus a finite set of max ideals

Indeed, given $f \in C[X]$, we factor it $f = \prod (x - a_i)$

So $f \in p_i$ where $p_i = (x - a_i)$. Also, $f(0) \iff f = 0$ and f contained in no prime ideals $\iff f$ const.

So: open sets are determined by their intersections with the traditional pts.

Example. $\text{Spec } \mathbb{Z}$

The open sets are \emptyset & complement of finitely many ordinary primes.
Example, \mathbb{A}^2_c

Recall the pts are:

max ideals $(x-a,y-b)$ 0-dim

$(f(x,y))$ irred. 1-dim

(0) 2-dim

The closed sets are:

- the whole space = closure of (0)
 \[f \text{ vanishes on } (0) \implies f=0 \]
- a finite (possibly empty) set of curves
 (each the closure of a 1-dim pt)
 and finite number of 0-dim pts

To prove this, the hint is: if $f(x,y)$ and $g(x,y)$ are irred. poly's that are not multiples of each other their 0-sets intersect in a finite # of pts (this follows from fact that dim $\mathbb{A}^2_c = 2$, proved a long time ago).

\[f: B \to A \]
\[\sim f^* : \text{Spec } A \to \text{Spec } B \quad \text{continuous} \]

i.e. Spec is a contravariant functor Rings \to Top.
Basis for the topology: For \(f \in R \),
\[
D(f) = \{ p \in \text{Spec}(R) : f(p) \neq 0 \}
\]

Fact. \(D(f) \subseteq D(g) \iff f^n \in (g) \) some \(n \neq 1 \)
\[\iff g \text{ invertible in } A_f \]

Proof idea. \(Z(g) \leftrightarrow \text{Spec} (R/(g)) \)
\[D(g) = Z(g)^c \]
\[\implies f = \text{zero function on } Z(g) = \text{Spec } R/(g) \]
\[\implies f \text{ nilpotent on } R/(g) \]
\[\text{i.e. } f^n \in (g). \]

Def. In a top. space, we say a point is
- closed if it is its own closure
- generic if its closure is the whole space.
- generic in a closed set \(K \) if its closure is \(K \).

We say \(x \) is a specialization of \(y \) if \(x \in \overline{\{y\}} \)

eg \((x-7, y-49) \) is a specialization of \((y-x^2) \).

Fact. The closed pts of \(\text{Spec} R \) are the max ideals.

So traditional pts are the closed pts, bonus pts are not closed.
The Structure Sheaf

Define $O_{\text{Spec } R}(D(f)) = \text{localization of } R \text{ at the multiplicative set of all functions that do not vanish outside } Z(f)$, i.e. those $g \in R$ s.t. $Z(g) \subseteq Z(f)$ (or $D(f) \subseteq D(g)$).

Note. This only depends on $D(f)$, not f.

Fact. The natural map $Rf \rightarrow O_{\text{Spec } R}(D(f))$ is an exercise.

If $D(f') \subseteq D(f)$ define restriction

$$O_{\text{Spec } R}(D(f)) \rightarrow O_{\text{Spec } R}(D(f'))$$

in the obvious way. The latter ring is a further localization. → pre-sheaf.

Thm. This data gives a sheaf. “Affine scheme”

A scheme is a ringed space locally isomorphic to an affine scheme.
Pf of Thm. Let's check gluability in the case of a finite cover of $\text{Spec}(R)$:

$$\text{Spec}(R) = \text{D}(f_1) \cup \cdots \cup \text{D}(f_n)$$

Say we have elts $a_i/f_i \in R_{f_i}$ that agree on the overlaps $R_{f_i}f_j$.

Let $g_i = f_i^h$, so $\text{D}(f_i) = \text{D}(g_i)$.

$\leadsto a_i/g_i \in R_{g_i}$.

To say a_i/g_i & a_i/g_j agree on the overlap (in $A_{g_i}g_j$) means for some m_{ij} :

$$(g_i, g_j)^{m_{ij}}(g_j a_i - g_i a_j) = 0$$

in R. Let $m = \max m_{ij}$, so

$$(g_i, g_j)^m(g_j a_i - g_i a_j) = 0 \quad \forall \ i, j.$$

Let $b_i = a_i g_i^m \forall i$.

$hi = g_i^{m+1}$ so $\text{D}(h_i) = \text{D}(g_i)$

So: on each $\text{D}(h_i)$ we have a function b_i/h_i and the overlap condition is

$$h_j b_i = h_i b_j$$

Have $\cup \text{D}(f_i) = \text{Spec } R \Rightarrow 1 = \Sigma r_i h_i$ some $r_i \in R$.

Define $r = \Sigma r_i b_i$.

This restricts to each b_i/h_j. Indeed

$$r h_j = \Sigma r_i b_i h_j = \Sigma r_i h_i b_j = b_j$$
Nullstellensatz

\[
\mathbb{II}(S) = \text{fns vanishing on } S.
\]

Nullstellensatz:

\[
\left\{ \text{closed subsets of } \text{Spec}(R) \right\} \leftrightarrow \left\{ \text{radical ideals of } R \right\} \\
X \mapsto \mathbb{II}(X) \\
\mathbb{Z}(I) \leftrightarrow I \\
\left\{ \text{irred. closeds of } \text{Spec}(R) \right\} \leftrightarrow \left\{ \text{prime ideals of } R \right\}
\]
Visualizing Nilpotents

Motivation: \(\text{Spec } \frac{\mathbb{C}[x]}{(x(x-1)(x-2))} \leftrightarrow \{0,1,2\} \)

The map \(\mathbb{C}[x] \rightarrow \frac{\mathbb{C}[x]}{(x(x-1)(x-2))} \) can be interpreted (via Chinese R.T.) as: take a function on \(\mathbb{A}^1 \), restrict it to \(0,1,2 \)

What about non-radical ideals?

Consider \(\text{Spec } \frac{\mathbb{C}[x]}{(x^2)} \). As a subset of \(\mathbb{A}^1 \) it is just the origin, which we think of as \(\text{Spec } \frac{\mathbb{C}[x]}{(x)} \). Now want to remember the \(x^2 \).

Image of \(f(x) \) is \(f(0) \) and \(f'(0) \)
Aside: CRT

CRT: Knowing \(n \mod 60 \) is same as knowing \(n \mod 2,3,5 \)

What is Spec \(\mathbb{Z}/(60) \)? The ideals \((2), (3), (5) \) with discrete top.

The stalks are \(\mathbb{Z}/4, \mathbb{Z}/3, \mathbb{Z}/5 \)
INTERSECTION MULTIPLICITY

For Bézout’s thm, need a notion of intersection multiplicity:

Let \(I \subseteq k[x_0, \ldots, x_n] \) be a homog ideal with finite projective \(0 \) locus, \(a \in \mathbb{P}^n \).
Choose an affine patch of \(\mathbb{P}^n \) containing \(a \), and let \(J \) be the corresp. affine ideal.

\[
mult_a (I) = \dim_k O_{\mathbb{A}^n, a} / J O_{\mathbb{A}^n, a}
\]

Example. \(X = Z(x_0x_2-x_1^2) \) \(Y = Z(x_2) \)

\[
mult_a (X, Y) = mult_a (x_0x_2-x_1^2, x_2) \\
= \dim_k O_{\mathbb{A}^2, 0} / (x_2-x_1^2, x_2) \\
= \dim_k O_{\mathbb{A}^2, 0} / (x_2, x_2) \\
= \dim_k k[x_1, x_2] / (x_2^2, x_2) \\
= \dim_k k[x_2] / (x_2) \\
= 2.
\]