THE SNEAF OF REGULAR FUNCTIONS

Want an analogue of $f: M \rightarrow \mathbb{R}$ in diff. top or $f: M \to \mathbb{C}$ in complex analysis. We defined morphisms on aff alg. var's. Want a version for open subsets. A map should be ^a morphism if it is ^a morphism on a nbd of each pt.

Det. $X = aff$ alg. var. $U \subseteq X$ open. A regular for on U is a map $q: U \rightarrow k$ with: \forall ae $U \exists$ poly this f, g with $f(x) \neq 0$ and $q(x) = \frac{g(x)}{f(x)}$ \forall x in an open subset U_a with $a \in U_a \subseteq U$ The set of all such regular this is denoted $\mathcal{O}_{\mathsf{X}}(\mathcal{U})$.

Note $O_X(u)$ is a k-algebra

Example.
$$
X = Z(x_1x_4 - x_2x_3) \subseteq A^4
$$
.

\n
$$
U = XXZ(x_2, x_4)
$$
\n
$$
Q: U \longrightarrow k
$$
\n
$$
(x_1, ..., x_4) \longmapsto \begin{cases} x_{1x_2} & x_{2} \neq 0 \\ x_{3x_4} & x_{4} \neq 0 \end{cases}
$$
\nThis Q is a reg. In on U.

\nIndeed it is well-defined since $x_1x_4 - x_2x_3 = 0$

\n
$$
\implies x_{11}x_{2} = x_{31}x_{4} \quad \text{when } x_{21}x_{4} \neq 0.
$$
\nAlso, it is locally a rational π .

\nNote: neither formula works at all points, e.g. first formula fails at $(0, 0, 0, 1)$.

\nIn fact there is no global way to write Q .

Fact. $X = aH$. alg. var. $U \subseteq X$ open. $\varphi \in \mathcal{O}_X(u)$. Then $\mathbb{Z}(\varphi) = \{x \in U : \varphi(x) = 0\}$ is closed in U . \underline{Pf} . By defin, any pt $a \in U$ has a nbd $U_a \subseteq U$ where $q = 9a/f_a$ (fato on Ua). So $Z_{a} = \{x \in U_{a} : \varphi(x) \neq o\} = U_{a} \setminus Z(g_{a})$ is open in $X \implies U \mathbb{Z}_a$ open in X But $UZ_a = U\Z(\phi)$. So $Z(\varphi)$ closed.

As a Consequence we have...

fact	(identity thm for regular fns).	$X =$ irred aff alg. var.
$\emptyset \neq U \subseteq V$ open.	If $\varphi_1, \varphi_2 \in O_X'(V)$ agree on U then	
they agree on V.		
If. The set $Z(\varphi_1 - \varphi_2)$ contains U and is closed		
by the previous fact. Hence it contains $\overline{U} = \text{closure}$		
of U in V.		
But $\overline{V} = X$ (open subsets of irred spaces are dense).		
Thus V is irred (in a top space A irred $\Leftrightarrow \overline{A}$ irred)		
$\Rightarrow \overline{U} = V$		

The fact should not be surprising since open sets in the Zariski top. are big (dense in Euc. top.). So for k = $\mathbb C$ the fact is obvious. The interesting thing is the analogy with the identity theorem in complex analysis: if two holom. Ins agree on an open set, they are equal.

Next goal: compute $\mathcal{O}_X(\mathcal{U})$ explicitly in some cases.

Det. $X = a$ Hine alg. γar . \subseteq A
 \vdash \vdash \in K \subseteq X \subseteq \subseteq \land \vdash \vdash $D(f) = \chi \setminus Z(f)$ is called the distinguished open subset of f in X .

If of claim: Can rewrite q locally as
$$
9ahaf
$$
 faha, Note, faha and gaha vanish on each $Z(ha)$.

\nAlso, faha does not vanish on each $Z(ha)$.

\nBut ha also vanishes exactly on $Z(ha)$.

\nSo faha & ha have same zero set. Replace ha w/faha.

\nFrom now on we make the assumption from the claim.

\nClaim: $9ah = 9bfa$ V a, b ∞ D(f).

\nIf of claim: These. Ins agree on $D(fa) \cap D(fb)$, since $q = \frac{94}{k} = \frac{94}{k} + \frac{94}{k}$, there. And they are zero otherwise (need to use 2^{nd} statement of previous claim).

\nThe $D(fa)$ cover $D(f)$. Pass to the complement:

\n $Z(f) = \bigcap_{a \in D(f)} Z(f_a) = Z(f_a : a \in D(f))$?\nSo: $T(Z(f)) = T(Z(fa)) = \sqrt{f(a \cdot a \in D(f))}$

 $F \in \mathcal{I}(\mathcal{Z}(f)) \implies f \in \sqrt{f_{a}:a \in D(f)}$

$$
\Rightarrow f^{n} = \sum_{\alpha} k_{\alpha}f_{\alpha} \quad \text{some } n \in \mathbb{N}, k_{\alpha} \in k[\mathbb{X}]
$$

Thus $\varphi = \frac{96}{5}f_{b} = \frac{3}{5}f^{n}$ (both denoms nonzero The open subsets cover $D(f)$, so done. \square

Note. Really need k alg. closed.
For example
$$
\frac{1}{x^{2}+1}
$$
 is regular on $A_{\mathbb{R}}^{T}$
but not in $\mathbb{R}[x]$.

There is an algebraic interpretation of what we just did

LOCALIZATIONS

R ring S mutt closed subset so I ^c S The localization of Rat S is ^S R fig ftp.ges3 nfnaontiIfeedfaiddinom where fig ⁿ ^f Yg if ³ heS sit Hfg f g 0 Later germs of Fns localizations when 5 fn ⁿ ^cIN write Rf for ⁵ R Lemmy X aff alg var Fe KEX Then Ox Dcf kCX ^g Caskalgis Pf There is ^a k alg map Kang Ox DHL ^y 91gⁿ ¹ 91f actualquotient format of polynomials fraction

Check this is well defined:
\nif
$$
91f n \sim 9'/f m
$$
 then
\n
$$
f^{k}(gf^{m}-g'f^{n})=0 \text{ in } k[X] \text{ some } k \in \mathbb{N}.
$$
\n
$$
\Rightarrow gf^{m} = g'f^{n} \Rightarrow 9/f^{n} = 9'/f^{m} \text{ as } f_{nS}.
$$

Surjectivity: The last Prop.
\nInjectivity: If
$$
{}^{g_1}F^n \equiv o
$$
 as a $Im \in D(f)$
\nthen $g \equiv o$ on $D(f)$.
\n $\Rightarrow fg \equiv o$ on X
\n $\Rightarrow f(g \cdot 1 - o \cdot f^n) = o$ in k[X]
\n $\Rightarrow 9!f \cdot 1 - 0 \cdot 9!f \quad \Box$

Example: reg. Fins on $A^2 \setminus O$.

Let
$$
X = M^2
$$
, $U = M^2 \setminus O$.
Will show: $O_X(U) = k[x_1, x_2]$.
i.e. $O_X(U) = O_X(X)$.

This is an analog of the removable singularity thm in complex analysis: a holom. In on Clo can be extended.

Let
$$
\varphi \in O_x(U)
$$
.
\n**Prop** \Rightarrow on the open sets $D(x_1) = (A' \setminus 0) \times A'$
\nand $D(x_2) = A' \times (A' \setminus 0)$ can write φ as
\n $\int_{V_1} w$ and $\int_{V_2}^{V_1} w$ with $\int_{V_1} g \in k[x_1,x_2]$.
\nWLOG x, If, x₂ y.

On
$$
D(x_1) \cap D(x_2)
$$
 both representations are valid.
\n $\Rightarrow fx_2^n = gx_1^m$.
\nBut $Z(fx_2^n - gx_1^m)$ is closed
\n $\Rightarrow fx_2^n = gx_1^m$ on $\overline{D(x_1)} \cap \overline{D(x_2)} = A^2$
\n $\Rightarrow fx_2^n = gx_1^m$ in $k[A^2] = k[x_1, x_2]$.

 \Box

If $m>0$ then $x_1\nmid f$, contradiction.

SHEAVES

A presheaf of rings F on a topological space X conists of data: • V open $U \subseteq X$ a ring $\mathcal{F}(U)$ \longleftarrow the ring of fins · V opens $U \subseteq V \subseteq X$ a ring hom $\rho_{v,u}: \mathcal{F}(v) \longrightarrow \mathcal{F}(u)$ called the restriction map. Such that $\cdot \mathcal{F}(\phi) = 0$ \cdot $\int u,\mu = id \forall U.$ \cdot $\rho_{v,u}$ \circ $\rho_{w,v}$ = $\rho_{w,u}$ \forall $u \in V \subseteq W$. The elts of $\mathcal{F}(\mathcal{U})$ are called sections of \mathcal{F} over \mathcal{U} . The $\varphi_{v,u}$ are written as $\varphi \mapsto \varphi|_{v}$.

The presheaf F is called a sheaf of rings if it
satisfies the following gluing property:
if U=X open,
$$
\{U_i\}_T
$$
 is an open cover of U
and $\varphi_i \in \mathcal{F}(U_i)$ sections Vi s.t. $\varphi_i|_{U_i \cap U_j} = \varphi_j|_{U_i \cap U_j}$
Y ij_i cT then $\exists!$ $\varphi \in \mathcal{F}(U)$ s.t. $\varphi_i|_{U_i} = \varphi_i \forall i$.

Examples. ① X = irred aff. alg. var.
\nThe
$$
C_X(U)
$$
, plus usual restriction, form
\na sheaf. The preshead axioms are clear:
\nThe gluing property means $q: U \rightarrow k$
\nis regular if it is regular on each set
\nof an open cover. But a fin is reg. iff
\nit is locally rational.
\nThis C_X is the sheaf of regular fins on X
\n Q X = \mathbb{R}^n , $T(U) = \{q: U \rightarrow \mathbb{R} \text{ continuous}\}$
\nSimilarly for differentiable fins, analytic fins,
\narbitary fins.
\nB = \mathbb{R}^n , $T(U) = \{\text{constant} \text{ fins}\}$
\nIt is a presheaf, but not a sheaf:
\nLet U_1, U_2 nonempty disjoint open sets,
\n $q: \in U_1$ const. Ins with different values...
\n" being constant is not a lead condition"
\nCan fix by taking locally const. Ins.

Aside. A smooth manifold is a sheaf of R-algebras C_M on a (second countable, Hausdorff) topological space M that is locally isomorphic to the sheaf of smooth fins on \mathbb{R}^n .

Genms. Let F be a presheaf on a top sp. X.

\nFix a e X and consider pairs
$$
(U, \varphi)
$$
 where U is an open nbd of a 8, $\varphi \in T(U)$.

\nSo, $(U, \varphi) \sim (U', \varphi')$ if there is an open V with $a \in V \subseteq UNU'$ and $\varphi|_{V} = \varphi'|_{V}$.

\nThe set of all equiv: classes is the stalk. Fa of T at a. It inherits a ring structure from the rings $T(U)$. The elts of Ta are called the genus of T at a.

Germs are also referred to as local fins. For smooth \widehat{m}_s , can calculate all derivatives from the germ.

If φ_1, φ_2 are regular fins on open subset U of affalgvar X and they represent the same germ at ae U then they agree on all of U (identity thm).

 $Next: genus \Leftrightarrow (ocalizations.$

Lemma. X = aff. alg. Var. ,
$$
a \in X
$$

\nS = {f_f k[X] : f(a) + o;
\nThe stalk $O_{X,a}$ of O_{X}^{\prime} is k-alg isomorphic to
\nS' k[X] = { $91f$: f.g. k[X], f(a) + o;
\nThis is called the local ring of X at a.
\nPf. Note S is mult. closed, so the lemma makes sense.
\nHave a k-alg hom:
\nS' k[X] $\rightarrow O_{X,a}$ require days.
\n $91f$ \longmapsto (D(f), 915)
\nCheck well dtds, inj., surj.
\nLemma/Defn X = aff. alg. var., $a \in X$
\nEven proper ideal of $O_{X,a}$ is contained in the ideal
\n $\text{Ta} = \text{I}(a)O_{X,a} = \{ 31f | f.g. k[X], g(a) = o, f(a) + o \}$
\ncalled the maximal ideal of $O_{X,a}$.
\n $\text{Pa} = \text{Ta} \cup \text{S} = \text{A} \cup \text{A} \cup \text{A} \cup \text{A}$
\nSau, T \in O'x.a. an ideal $\text{A} = \text{A} \cup \text{A} \cup \text{A} \cup \text{A} \cup \text{A}$

 $S_{\alpha\gamma}$ $T \subseteq \mathcal{O}_{\chi,\alpha}$ an ideal not contained in I_{α} \rightarrow \exists \exists if ϵ \pm with $f(a)$, $g(a) \neq 0$. \Rightarrow $f(g \in C_{\chi,a})$ \Rightarrow 1 ϵ $\mathcal{O}_{x,\alpha} \Rightarrow \pm \epsilon \mathcal{O}_{y,\alpha}$

MORPHISMS

A ringed space is a top space X with a sheaf of rings O_X . We call O_X the structure sheaf. An affine variety is a ringed space with its sheat ot regular Fns. An open subset of ^a ringed space is ^a ringed Space (retrict). Want to say $X \longrightarrow Y$ is a morphism if it pulls

elts of $\mathcal{O}_V(Y)$ to $\mathcal{O}_X(u)$. But elts of $\mathcal{O}_X(u)$ are not necessarily fins. So:

From now on sheaves are sheaves of k-valued fins

Defn. Let $f: X \longrightarrow Y$ be a map of ringed spaces. Then f is ^a morphism if it is continuous and if \forall open $U \subseteq Y$ and $\varphi \in \mathcal{O}_Y(U)$ we have $f^*q \in \mathcal{O}_X(f^{-1}(u))$. So for ^a morphism gives k alg homom's f^* : $\mathcal{O}_X(u) \longrightarrow \mathcal{O}_X(f^{-1}(u)).$

- Notes. Morphisms & isomorphisms of (open subsets of) affine alg. var's are morphism & isomorphisms of ringed spaces
	- · Continuity is used so $f^{-1}(U)$ open.
	- Compositions of morphisms are morphisms
	- · Restrictions of morphisms are morphisms: if $U \subseteq X$ open X $f(U) \subseteq V$ open in Y then Π u is ^a morphism

Morphisms have ^a gluing property

Lemma	Y,Y ringed spaces, $f: X \rightarrow Y$
{U:3 open cover of X st. each f U _i is a morphism.	
14. Continuity: works since continuity is local.	
15. Continuity: works since continuity is local.	
16. f will back $s: Let V \subseteq Y open, q \in Gv(Y)$	
17. $(f * q) u_i \cap f'(v) = (f u_i \cap f'(v)) \cap f(u_i \cap f'(v))$	
17. $(f * q) u_i \cap f'(v) $ since $f u_i$ a morphism	
17. $(f * q) u_i \cap f'(v) $ since $f u_i$ a morphism	
17. $(f * q) u_i \cap f'(v) $ since $f u_i$ a morphism	
18. $(f * (v))$ is a morphism.	
19. $(f * (v))$ is a morphism.	
10. $(f * q) u_i \cap f'(v) $ since $f u_i$ are morphism.	
11. $(f * q) u_i \cap f'(v) $ since $f u_i$ are morphism.	

Prop.
$$
U = \text{open subset of } aff
$$
. $alg \cdot \text{var } X$

\n $Y = \text{aff. } alg \cdot \text{var.} \subseteq \mathbb{A}^n$

\nThe morphisms $f \cdot U \to Y$ are exactly the maps of the form $f = (q_1, \ldots, q_n)$ with $q_i \in \mathcal{O}_X(U)$

In particular, the morphisms $U \rightarrow \mathbb{A}^1$ are exactly the elts of Ox(U).

If. Assume
$$
f: U \rightarrow V
$$
 a morphism

\nThe coords f_n $y_1, \ldots, y_n : Y \rightarrow k$ are regular

\nSo $q_i \in f^* y_i$ lies in $\mathcal{O}_X(f^{-1}(Y)) = \mathcal{O}_X(U)$

\nThus f is of the given form.

Now say
$$
f = (q_1, ..., q_n)
$$
 as above.

Claim. 5 is continuous.
\n
$$
\pi_{0}f_{\text{charl}} \cdot S_{\text{avg}} \ncong \pi_{0}f_{\text{charl}} \cdot S_{\text{avg}} \cdot \pi_{0}f_{\text{avg}} \cdot S_{\text{avg}} \cdot
$$

Clanno.
$$
f^*
$$
 takes regular fins to reg fins
\n f^* of claim. Say $q \in G_Y(W)$ regular. Then
\n $f^*q = q \circ f : f^{-1}(W) \rightarrow k$
\nis regulatory for the same reason.

\n1

\n

MORPHISMS AND PRODUCTS

$$
X = Z(T) \subseteq \mathbb{A}^{n}, Y = Z(T) \subseteq \mathbb{A}^{m} \text{ aff. alg. var's}
$$

$$
X = Z(T, T) \subseteq \mathbb{A}^{n} \times \mathbb{A}^{m}
$$

- Note $X*Y$ does not have product topology. For instance $\Delta = \{ (x,x)\}$ is closed in $A' \times A'$ but not in the product topology (exercise)
- Prop (Univ. prop. for products). $X, Y = aff.$ alg. var's. π_{x} , π_{y} proj's of $x \times Y$ to factors. Then for any aff alg Var Z and morphisms $f_x: Z \rightarrow X$, $f_y: Z \rightarrow Y$ there is a unique morphism $f: Z \longrightarrow X X Y$ st $f_X = \pi_X \circ f$, $f_Y = \pi_Y \circ f_Y$

 S_0 : giving a morphism to $X \times Y$ is same as giving ^a morphismto each factor $P1$. Uniqueness obvious: only one choice for f. This is a morphism by the last Prop, which characterizes morphisms

The univ. prop. For $X \times Y$ corresponds to univ prop. For tensor prod. of coord rings $\Rightarrow k[x \times Y] \cong k[x]$ & kry]

AFFINE VARIETIES

Recall we showed:

$$
\left\{\n \begin{array}{l}\n \text{affine alg} \\
\text{vars}\n \end{array}\n \right\}/\sim\n \left\{\n \begin{array}{l}\n \text{fin. gen.} \\
\text{k-alg's}\n \end{array}\n \right\}/\sim
$$

The construction of a variety from a presentation of a k-alg can give different aff. alg. var's, depending on the presentation. The above Cor implies the var's are isomorphic. So...

From now on, an affine variety is a ringed space isomorphic to an aff. alg var, that is, a $Z(\mathbb{I}).$

Prop. $X = aff$. var , $f \in k[X]$. to be an aff. alg var $Z(I)$. => D(f) is an affine variety with $k[\mathcal{D}(f)] = k[x]_f \leftarrow \text{localization}.$ Pf . Have $Y = \{(x,t) \in X * \mathbb{R} : t f(x) = 1\} \subseteq X * \mathbb{A}$ is an aff. alg var, since $Y = Z(t f(x)-1)$. This Y is isomorphic to D(f) via $f: Y \rightarrow X$ $f^{-1}: X \rightarrow Y$ $(x,t) \mapsto x.$ $x \mapsto (x, \frac{1}{f(x)})$ $\Rightarrow x \cong Y$. We already showed $\mathcal{O}_X(D(f)) \cong k[X]_f$ and $O_{\mathsf{X}}(\mathsf{X})$ = $k[\mathsf{X}]$.

Example.
$$
M^2 - 503
$$
 is not an aff. Var.

\nLet $X = M^2$ and $U = M^2 - 503$.

\nGive U, the sheaf structure $O_u(U) = O_x(U)$

\nIf $O_u(U)$ were an aff. vor we would have

\n $O_u(U) = k[u]$.

\nBut we already showed for this X, U, that

\n $O'_x(U) = O_x(X) \cong k[x,y] \cong k[M^2]$ (remov, sing, thm)

\nIn the case of the correspondence by k -alg

\nhomoms & variety, the homogeneous (eq: = g(u): = u

).\nThis is a contradiction, since $U \hookrightarrow X$ is not surjective.

We can cover U by D(x1) & D(x2), which are affine. So maybe we should allow ringed spaces that are covered by aff. vars...

About that claim further up: perhaps we should thing of a regular for as a rational for that is well defined (instead of a rational fin where the denominator does not vanish). Then the claim is easy: the composition σf two rational fins is rational, and the composition of two well-defined fins is well def. In particular, the composition of two regular fins is regular.