SMOOTHNESS

TANGENT SPACE AT A POINT

Idea of tangent space

Will give several equivalent ways of defining the tangent space to an affine alg. variety.

Method 1: Double roots

Consider $f(x) = x^2$. The graph $y = f(x)$ is tangent to $y = 0$ This corresponds to the fact that x^2 has a double root.

More generally, let
$$
V = Z(f_{1,...,}f_{r}) \subseteq A^{n}
$$

let $p \in V$. WLOG $p = 0$.
Let ℓ be a line, then 0 and $q = (a_{1},...,a_{n})$.
So $\ell = \{ta_{1,...,}ta_{n}\} : t \in k\}$

When is l tangent to V at p ?

Have: Vol. given by solving for t in

\n
$$
f_1(ta_1, ..., ta_n) = 0
$$
\n
$$
\vdots
$$
\n
$$
F_r(ta_1, ..., ta_n) = 0.
$$
\nBy assumption $t = 0$ is a soln.

\nThe multiplication of Vol. at O is the highest power of t dividing each $f_i(tq)$.

Def.
$$
l
$$
 is tangent to V at ρ if the multiplicity of $V \cap l$ at ρ exceeds 1.

\nThe tangent space $T \rho V$ is union of the tangent lines.

Two things to check : 1 TpV is indep of choice of fi's 2) T_PV is a linear subspace.

Examples. ①
$$
V = Z(x^2 - y) \subseteq A^2
$$

\n $S_{\alpha y} \downarrow = \{(ta, tb)\}$
\n $\rightarrow t^2a^2 - tb = 0$
\n $\rightarrow t = 0, b/a^2$
\n \rightarrow intersection pts (0,0) ($b_{/a}$, ($b_{/a}$)²)
\n $S_o \downarrow$ tangent $\Leftrightarrow b = 0$
\n $S_o \top_o V = \{x\text{-axis}\}$

$$
\begin{array}{ll}\n\textcircled{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\
& \textcircled{5} & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\
& \sim 2 & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\
& \sim 2 & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\
& \sim 2 & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\
& \sim 2 & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\
& \sim 2 & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\
& \sim 2 & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\
& \sim 2 & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\
& \sim 2 & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\
& \sim 2 & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\
& \sim 2 & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\
& \sim 2 & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\
& \sim 2 & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\
& \sim 2 & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\
& \sim 2 & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\
& \sim 2 & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\
& \sim 2 & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\
& \sim 2 & \sqrt{2} & \sqrt{2}
$$

Method 2: Derivatives

The differential of $f \in k[x_1,...,x_n]$ at p is the linear part of the Taylor series expansion of f at p . That is, if we write f as $f(x) = f(p) + L(x_1 - p_1, ..., x_n - p_n) + G(x_1 - p_1, ..., x_n - p_n)$ where L is linear R G has no linear or const. terms the differential of f at ρ is $L(x-\rho)$. In symbols $L(x-p) = dF|_{p}(x-p) = \sum_{j=1}^{\infty} \overline{dx_{j}}(x_{j}-p)$

$$
\begin{array}{ll}\n\hline\n\text{Thm.} & V = Z(f_1, \ldots, f_r) \subseteq \mathbb{A}^n \\
\text{Assume } \mathcal{I}(V) = (f_1, \ldots, f_r) \quad \text{i.e. } (f_1, \ldots, f_r) \quad \text{radical.} \\
\hline\n\text{Let } \rho \in V. \quad \text{Then} \\
\text{On } \mathcal{T} \circ V = Z(\mathrm{df}_1 |_{\rho}(x - \rho), \ldots, \mathrm{df}_r |_{\rho}(x - \rho)) \subseteq \mathbb{A}^n \\
\text{Conserve } \mathcal{T} \circ V \text{ is independent} \\
\text{On } \mathcal{T} \circ \mathcal{T} \
$$

$$
\underline{\mathbb{P}} f
$$

14. WLOG
$$
p=0
$$
.
\nSay $l = \{(tx_1,...,tx_n)\}$
\nSince $p=0 \in V$, $f_i(0)=0 \forall i$.
\n $\rightarrow f_i(tx_1,...,tx_n) = L_i(tx_1,...,tx_n) + G_i(tx_1,...,tx_n)$
\n $= t L_i(x_1,...,x_n) + t^2 G_i(x_1,...,x_n,t)$.
\nSo $l = T_i V \Rightarrow L_i = 0 \forall i$, when l .

For ② say
$$
V = Z(g_1, ..., g_s)
$$

\n $\rightarrow f_i = h_i g_1 + ... + h_i g_s$
\n $\rightarrow df_i = dh_i g_1 + ... + dh_i g_s + h_i dg_1 + ... + h_i s dg_s$
\nSince $g_i(p) = 0$ have
\n $df_i|_{p} = h_i dg_i|_{p} + ... + h_i s dg_s|_{p}$
\n $\Rightarrow Z(df_i|_{p},..., df_r|_{p}) \supset Z(dg_i|_{p},..., dg_s|_{p})$
\nand vice versa.

Note: $\bigcirc \Rightarrow$ $\top_{p}V$ (inear)

Examples. ①
$$
V = Z(x^2-y)
$$
 at $p=0$
\n $\rightarrow 2x|_0 \cdot x - 1|_0 \cdot y = 0$
\n $0 \cdot x - 1 \cdot y = 0$
\n $y = 0$

$$
(2)
$$
 V = Z(y²-x²-x³) \subseteq A²
\n \sim 2x-3x²|_o ·x + 2y|_o ·y = 0
\n0 = 0

$$
G \quad V = Z(y^{2} - x^{3}) \quad \text{Similar when } p = 0.
$$
\n
$$
For \quad p = (1, 1):
$$
\n
$$
-3x^{2}(1, 1) \cdot (x-1) + 2y(1, 1) \cdot (y-1) = 0
$$
\n
$$
-3(x-1) + 2(y-1) = 0.
$$

$$
\bigoplus V = Z(x^m - y^m)
$$

\n
$$
\rightarrow \text{Tr}(a, b) V \text{ given by}
$$

\n
$$
ma^{m-1}(x-a) + mb^{m-1}(y-b) = 0.
$$

\nAssuming chark+m, this is a line.

Note. Can define Tp V for V (quasi-projective): pass to an affine chart, take ${\mathcal T}_P V$ as above, take $closure$ in \mathbb{P}^n .

SMOOTH POINTS

A point p on an affine alg. (or quasi/proj.) var. V is smooth if dim $T_pV = dimV$. Uthenwise, p is Singular.

Say V is smooth if it is smooth at all points. ef. 27 lines theorem.

Note This makes sense over any field!

Examples. ①
$$
\#^n
$$
 is smooth at all points $\pi \#^n = \#^n$.\n\n② As above $\mathcal{Z}(x^m - y^m)$ is smooth at all points.

A variety has ^a smooth locus and ^a singular locus

Example. The singular locus of
$$
Z(y^2-x^3)
$$
 is
(0,0).

More generally, the sing. locus is small...

Thm: The singular locus of a variety
$$
V
$$
 is a proper
closed subset. More specifically, if V is an
irred aff. var. of dim d with $I(V)$ gan.
by f_{1, ...,} fr, then the sing. locus is the
common zero set of the $(n-d)x(n-d)$ minors
of the Jacobian matrix $(d^{\text{f}i}/dx_j)$.

$$
\begin{array}{lll}\n\text{2F} & \text{for } n=2, d=1. \\
\text{Given by} & \text{df}_{dx}(a,b) (x-a) + \text{df}_{dy}(a,b)(y-b) = 0 \\
\text{So } \text{sing. locus is} & \text{Z}(f, \text{df}/dx, \text{df}/dy) \qquad \Box\n\end{array}
$$

Next time: a coord. Free description:
\n
$$
T_p V \cong (m_{lm^2})^*
$$

\nwhere $m \subseteq k[V]$ is the set of fins that vanish

at p

COTANGENT SPACES

A linear form on
$$
T_P V
$$
 is an element of T_P^*V ,
the dual of $T_P V$. In other words, a linear
form is a linear map $T_P V \rightarrow k$.

Prop.
$$
V = Z(f_1, ..., f_r) \subseteq A
$$

\n $p \in V$, $g \in k[V]$.
\nThen dg is a linear form on $T_P V$.

$$
\begin{array}{ll}\n\text{Pf.} & dg is linear. \text{The point is to show it is} \\
& \text{well defined on } T_{P}V. \\
& \text{Say } G_{1}, G_{2} \in k[x_{1}, ..., x_{n}] \text{ map to } g \in k[V] \\
& \Rightarrow G_{1} - G_{2} = \sum F_{i} \cdot f_{i} \\
& \Rightarrow d_{P}(G_{1} - G_{2}) = \sum dp F_{i} f_{i} + F_{i} dp f_{i} \\
& \text{Since } f_{i} = 0 \text{ on } V, \text{ first set of terms vanish.} \\
& \text{But } T_{P}V \text{ is defined by } dpF_{i} = 0. \\
& \Rightarrow dp G_{1} = dp G_{2}\n\end{array}
$$

Let $m \in k[V]$ be the unique max. Ideal of functions that vanish at p . If $p = [a_1, ..., a_n]$ then $m = (X_1 - a_1, \ldots, X_n - a_n).$

Pop.	$V = Z(f_1, ..., f_m) \subseteq \mathbb{A}^n$	
Differentiation induces a surjective map		
$m \rightarrow T_p^*V$		
with kenel m?		
If	$WLOG$	$p = 0$.
Let e ₁ , ..., e _r	be a basis for T_pV ,	
Example 1		
Assume the S _i are written with this basis.		
Let e ⁱ be dual basis for $(\mathbb{A}^n)^*$.		
Let e ⁱ be dual basis for $(\mathbb{A}^n)^*$.		
Let M = (x ₁ , ..., x _n) max ideal.		
Then m is image of M in k[V].		
Surjectivity. Let $l = \sum c_i e^i \in T_p^*V$.		
This l extends to linear functional on \mathbb{A}^n		
Let $l = \sum c_i x_i \in M$.		
Then $\text{diag } \text{of } L$ is k[V] has differential l .		
Kernel. Say $g \in m$ has $dg = 0$. Say g is image of $G \in M$. Then $dg = \text{Dom } T_pV$.		
Then $dg = \text{G} - Z \rightarrow f_j$.		
Then $dg = \text{G} - Z \rightarrow f_j$.		
Then \overline{G} still maps to g , but $dg = \text{Dom } T_pV$.		
Then \overline{G} still maps to g , but $dg = \text{Dom } T_pV$.		

If R is a ring with max, ideal m, then R:m 5 m
\nand R.m² cm², so:
\nm and m/m² are modules over R.
\nAlso, multiplication by elts of m gives 0 so:
\nm/m² is a module over the field R/m.
\nthat is, a vector space).
\nBy the previous prop, we now have:
\n
$$
\frac{\pi}{2}
$$
\nThen. V \subseteq Aⁿ affine alg. var.
\n $p \in V$
\n $m \subseteq k[V]$ as above.
\nThen. $T_{p}V \cong (m/m^{2})^{*}$
\nThe vector space. $(m/m^{2})^{*}$ is sometimes called the
\nZariski tangent space.
\nCor. F: V → W is a morphism of affine alg. var's, $p \in V$
\nThen F induces a lin. map $T_{p}V \rightarrow T_{f(p)}W$
\nThen F induces a lin. map $T_{p}V \rightarrow T_{f(p)}W$
\n $m_{q} \rightarrow m/m^{2} \qquad \square$

We also get a coordinate free definition of the differential.

Pop.	$V =$ irred. affine var, $p \in V$.	
$F \in k[V]$	T han $f = f(p) \in m$ and def $f =$ image of $f = f(p)$ in m/m^2 .	
$2F$.	Lift f to $f \in k[x_1,...,x_n]$	Subtracting $f(p)$ kills const. term.
Madding out by M^2 kills quadratic and higher.		
F inst we find two poly's replacing same elt of $T_{(1,1)}^*$ T	h etc. $m = (x-1, y-1)$	
$m^2 = (x^2-2x+1, (x-1)(y-1), y^2-2y+1)$		
$= (x^2-2x+1, (x-1)(y-1), x^3-2y+1)$		
$= (x^2-2x+1, (x-1)(y-1), x^3-2y+1)$		
$= (2x^2-x+1)/2$		
$= (2x^2-x+1)/2$		
$= (3x-1)/2$ in m/m^2 .		
$Next$ we show V is not smooth at $(0,0)$:		
$m = (x,y)$ $\Rightarrow m^2 = (x^2, xy, y^2) = (x^2, xy)$		
$\Rightarrow m/m^2$ is vect. sp. spanned by $x \& y$.		
But dim $V = 1$.		