SMOOTHNESS

TANGENT SPACE AT A POINT

dea of tangent space:

Will give several equivalent ways of defining the tangent space to an affine alg. variety.

Method 1: Double roots

Consider $f(x) = x^2$. The graph y = f(x) is tangent to y = 0. This corresponds to the fact that x^2 has a double root.

More generally, let
$$V = Z(f_{1},...,f_{r}) \subseteq A^{n}$$

let $p \in V$. WLOG $p = 0$.
Let l be a line thru 0 and $q = (a_{1},...,a_{n})$.
So $l = \{(ta_{1},...,ta_{n}): t \in k\}$

When is l tangent to V at p?

Two things to check: () TpV is indep. of choice of fi's (2) TpV is a linear subspace.

Examples. (i)
$$V = Z(x^2 - y) = A^2$$

Say $l = \{(ta, tb)\}$
 $\longrightarrow t^2a^2 - tb = 0$
 $\longrightarrow t = 0, \ b/a^2$
 $\longrightarrow \text{ intersection pts } (0,0) \ (b/a, (b/a)^2)$
So l tangent \Longrightarrow $b = 0$
So $T_0V = \{x - axis\}$

(a)
$$V = Z(y^2 - x^2 - x^3) \subseteq A^2$$

Say $L = \{(ta, tb)\}$
 $\longrightarrow t^2b^2 - t^2a^2 - t^3a^3 = 0$
For all values of a,b we have that t
is a multiple root
 \Rightarrow all lines tangent, $T_0V = A^2$
(b) $V = Z(y^2 - x^3)$
 $\longrightarrow t^2b^2 - t^3a^3$
Ditto.

Method 2: Derivatives

The differential of $f \in k[x_1,...,x_n]$ at p is the linear part of the Taylor series expansion of f at p. That is, if we write f as $f(x) = f(p) + L(x_1 - p_1,...,x_n - p_n) + G(x_1 - p_1,...,x_n - p_n)$ where L is linear & G has no linear or const. terms the differential of f at p is L(x-p). In symbols: $L(x-p) = df|_p (x-p) = \sum_{j=1}^n \frac{df}{dx_j} (x_j - p_j)$

Thm.
$$V = Z(f_{1}, ..., f_{r}) \subseteq A^{n}$$

Assume $I(V) = (f_{1}, ..., f_{r})$ i.e. $(f_{1}, ..., f_{r})$ radical.
Let $p \in V$. Then
() $TpV = Z(df_{1}|_{P}(X-P), ..., df_{r}|_{P}(X-P)) \subseteq A^{n}$.
(2) Moreover TpV is indep of choice of f_{1} .

WLOG
$$p=0$$
.
Say $l = \{(tx_{1},...,tx_{n})\}$
Since $p=0 \in V$, $f_{i}(0)=0 \forall i'$.
 $f_{i}(tx_{1},...,tx_{n}) = L_{i}(tx_{1},...,tx_{n}) + G_{i}(tx_{1},...,tx_{n})$
 $= tL_{i}(x_{1},...,x_{n}) + t^{2}G_{i}(x_{1},...,x_{n},t)$.
So $l \in T_{0}V \implies L_{i}=0 \forall i$, whence (1).

For (2) Say
$$V = Z(g_1, ..., g_s)$$

 $\rightarrow f_i = h_{ii} g_1 + ... + h_{is} g_s$
 $\rightarrow df_i = dh_{ii} g_1 + ... + dh_{is} g_s + h_{ii} dg_1 + ... + h_{is} dg_s$
Since $g_i(p) = 0$ have
 $df_i | p = h_{ii} dg_1 | p + ... + h_{is} dg_s | p$
 $\Rightarrow Z(df_i | p, ..., df_r | p) \supseteq Z(dg_i | p, ..., dg_s | p)$
and vice versa.

Note: 1) => TpV linear.

Examples. (1)
$$V = Z(X^2 - Y)$$
 at $p = 0$.
 $2x|_0 \cdot x - 1|_0 \cdot y = 0$
 $0 \cdot x - 1 \cdot y = 0$
 $y = 0$

(2)
$$V = Z(y^2 - x^2 - x^3) \subseteq A^2$$

 $\longrightarrow 2x - 3x^2|_0 \cdot x + 2y|_0 \cdot y = 0$
 $0 = 0$

(3)
$$\sqrt{2} = Z(y^2 - x^3)$$
 similar when $p = 0$.
For $p = (1, 1)$:
 $-3x^2|_{(1,1)} \cdot (x - 1) + 2y|_{(1,1)} \cdot (y - 1) = 0$
 $-3(x - 1) + 2(y - 1) = 0$.

$$\begin{array}{l} \textcircled{4} \quad V = Z(x^{m} - y^{m}) \\ & \longrightarrow \quad T(a,b) V \quad given \quad by \\ & ma^{m-1}(x-a) + mb^{m-1}(y-b) = 0. \\ & \text{Assuming chark } t m, this is a line. \end{array}$$

Note. Can define TpV for V (quasi-projective): pass to an affine chart, take TpV as above, take closure in P."

SMOOTH POINTS

A point p on an affine alg. (or quasi/proj.) var. V is smooth if $\dim T_p V = \dim_p V$. Otherwise, p is singular.

Say V is smooth if it is smooth at all points. cf. 27 lines theorem.

Note. This makes sense over any field!

Examples. (1) At is smooth at all points
since
$$T_P A^n = A^n$$
.
(2) As above $Z(x^m - y^m)$ is smooth
at all points.

A variety has a smooth locus and a singular locus.

Example. The singular locus of
$$Z(y^2-\chi^3)$$
 is $(0,0)$.

More generally, the sing. locus is small...

Next time: a coord. Free description:

$$T_P V \cong (m/m^2)^*$$

where $m \subseteq k[V]$ is the set of fins that vanish
at p.

COTANGENT SPACES

A linear form on
$$T_PV$$
 is an element of T_P^*V ,
the dual of T_PV . In other words, a linear
form is a linear map $T_PV \rightarrow k$.

Prop.
$$V = Z(f_1, ..., f_r) \subseteq A^n$$

 $p \in V, g \in k[V].$
Then dg is a linear form on $T_p V.$

Pf. dg is linear. The point is to show it is
well defined on
$$T_PV$$
.
Say $G_1, G_2 \in k[x_1, ..., x_n]$ map to $g \in k[V]$.
 $\implies G_1 - G_2 = \sum F_i \cdot f_i$.
 $\implies dp(G_1 - G_2) = \sum dpF_i f_i + F_i dpf_i$
Since $f_i = 0$ on V , first set of terms vanish.
But T_PV is defined by $dpf_i = 0$.
 $\implies dpG_1 = dpG_2$

Let $m \subseteq k[V]$ be the unique max. ideal of functions that vanish at p. If $p = (a_1, ..., a_n)$ then $m = (x_1 - a_1, ..., x_n - a_n)$.

Prop.
$$V = Z(f_{1},...,f_{m}) \subseteq A^{n}$$

Differentiation induces a surjective map
 $m \longrightarrow Tp^{*}V$
with kernel m^{2} .
Pf. WLOG $p = 0$.
Let $e_{1},...,e_{r}$ be a basis for TpV ,
extend to basis $e_{1},...,e_{n}$ for A^{n} .
Assume the Si are written with this basis.
Let e^{2} be dual basis for $(A^{n})^{*}$.
Let $M = (x_{1},...,x_{n})$ max ideal.
Then m is image of M in k[V].
Surjectivity. Let $l = \hat{\Sigma}c_{1}e^{i} \in Tp^{*}V$.
This l extends to linear functional on A^{n}
Let $L = \hat{\Sigma}c_{1}x_{1} \in M$.
The image of L is k[V] has differential l .
Kernel. Say $g \in m$ has $dg = 0$. Say g is image of
 $G \in M$. Then $dG \equiv 0$ on TpV .
Then $dpG = \hat{\Xi} \times jdpS_{j}$
Let $\hat{G} = G - \hat{\Xi} \times iS_{j}$.
Then \hat{G} still maps to g_{1} , but $dpG = 0$ on TpV .
 \Rightarrow const & lin. terms vanish $\Rightarrow \hat{G} \in M^{2}$
 $\Rightarrow g \in m^{2}$.

If R is a ring with max, ideal m, then
$$R:m \leq m$$

and $R:m^2 \leq m^2$, so:
 m and m/m^2 are modules over R.
Also, multiplication by elts of m gives 0 so:
 m/m^2 is a module over the field R/m .
(that is, a vector space).
By the previous prop, we now have:
Then $V \leq /A^n$ affine alg. var.
 $p \in V$
 $m \leq k[V]$ as above.
Then $T_p V \approx (m/m^2)^*$
The vector space $(mVm^2)^*$ is sometimes called the
Zariski tangent space.
Cor. $f: V \rightarrow W$ is a morphism of affine alg. var.'s, $p \in V$
Then f induces a lin. map $T_p V \rightarrow T_{Rip} W$
Pf. f induces $g: k[W] \rightarrow k[V]$, $g'(m) = n$ for Rp .
 $Mn^2 \rightarrow m/m^2$

We also get a coordinate free definition of the differential.

Prop. V = irred. affine var,
$$p \in V$$
.
 $f \in k[V]$
Then $f - f(p) \in m$ and
 $dpf = image of f - f(p) in m/m^2$.
Pf. Lift f to $f \in k[x_1,...,x_n]$
Subtracting $f(p)$ kills const. term.
Madding out by M^2 kills quadratic and higher.
Example. $V = Z(x^3 - y^2) \leq A^2$.
First we find two poly's rep'ing some elt of $T(x_{i,n}V)$:
Here, $m = (x-1, y-1)$
 $\longrightarrow m^2 = (x^2 - 2x + 1, (x-1)(y-1), y^2 - 2y + 1)$
 $= (x^2 - 2x + 1, (x-1)(y-1), x^3 - 2y + 1)$
 $= (x^2 - 2x + 1, (x-1)(y-1), x^3 - 2y + 1)$
 $\implies y = (x^3 + 1)/2$
 $= (2x^2 - x + 1)/2$
 $= (2x^2 - x + 1)/2$
 $= (3x - 1)/2$ in m/m^2 .
Next we show V is not smooth at $(0, 0)$:
 $m = (x, y) \implies m^2 = (x^2, xy, y^2) = (x^2, xy)$
 $\implies m/m^2$ is vect. sp. spanned by $x \& y$.
But dim V = 1.