VARIETIES

Roughly, a variety is a space that is locally isomorphic to an affine variety. Think: manifold.

Def. • A prevariety is a ringed space X that has a finite open cover by affine varieties
• A morphism of prevarieties is a morphism of ringed spaces.
• The elts of $O_X(U)$ are called regular fns

An open subset of X isomorphic to an aff. alg. var is called an affine open set.

Examples. ① affine alg. var's
② open subsets of aff alg. var's
recall: any open subset of $\mathbb{Z}(I)$ is covered by finitely many $D(f)$

Next: can glue pre-varieties together:
Gluing Pre-varieties

Let \(X_1, X_2 \) be pre-varieties.

\[U_{1,2} \subseteq X_1, \quad U_{2,1} \subseteq X_2 \]

are nonempty open subsets.

\(f : U_{1,2} \to U_{2,1} \) is an isomorphism.

\(\xrightarrow{\sim} X = X_1 \sqcup \frac{X_2}{(f|_{(a) \sim a})} \)

Let \(i_j : X_j \to X \) for \(j = 1, 2 \).

Say \(U \subseteq X \) is open if \(i_j^{-1}(U) \) is open for \(j = 1, 2 \) (quotient topology).

Define for all open \(U \subseteq X \):

\[\mathcal{O}_X(U) = \{ \varphi : U \to k : \forall j, i_j^* \varphi \in \mathcal{O}_{X_j}(i_j^{-1}(U)) \} \]

So a \(\varphi \) is regular if both restrictions are.

This does define a sheaf.

Exercise. Images of \(i_1, i_2 \) are open subsets of \(X \) isomorphic to \(X_1, X_2 \).

We generally identify \(X_1 \) & \(X_2 \) with their images.

Since \(X_1, X_2 \) are covered by affine open sets, this is true for \(X \). Thus: \(X \) is a prevariety.
Example. \(X_1 = X_2 = \mathbb{A}' \)

\[U_{1,2} \cap U_{2,1} = \mathbb{A}' \setminus \{0\} \]

We'll consider two different \(f' \)'s.

\[f(x) = \frac{1}{x} \]

By construction \(X_1 = \mathbb{A}' \) open in \(X \).

The complement \(X \setminus X_1 = X_2 \setminus U_{2,1} \) is \(\{0\} \in X_2 \)

This corresponds to \(\infty = \frac{1}{0} \) in \(X_1 \)

\[\sim X = \mathbb{A}' \cup \{\infty\} (= \mathbb{P}') \]

For \(k = \mathbb{C} \) this is \(\hat{\mathbb{C}} \). The \(\mathbb{R} \)-points form a circle:

We can give an example of gluing morphisms

\[X_1 \to X_2 \subseteq \mathbb{P}' \quad X_2 \to X_1 \subseteq \mathbb{P}' \]

\[x \mapsto x \quad x \mapsto x \]

These glue together to give the morphism

\[\mathbb{P}' \to \mathbb{P}' \]

\[x \mapsto \frac{1}{x} \]
In this case get \mathbb{A}' with two O's.

\[f(x) = x \]

The piecewise defined map gives a map $g : X \to X$ that exchanges the two O's. It is weird that $\mathbb{A}' \setminus \{0\}$ is not closed (not even in the Euclidean topology), but it is the set of solutions to $g(x) = x$.

When we finally define a variety, we will rid this pathology.

General gluing construction
$I = \text{finite set, } X_i = \text{pre-var } i \in I.$

Suppose $i \neq j$, we have open U_{ij} & isomorphisms $f_{ij} : U_{ij} \to U_{ji}$ s.t. \forall distinct i, j, k we have

- $f_{ji} = f_{ij}^{-1}$
- $U_{ij} \cap f_{ij}^{-1}(U_{jk}) \subseteq U_{ik}$ and $f_{jk} \circ f_{ij} = f_{ik}$ on $U_{ij} \cap f_{ij}^{-1}(U_{jk})$

$\sim X = \coprod X_i / a \sim f_{ij}(a)$

The above conditions ensure \sim is symm & trans.
Now define topology & structure sheaf as before.
Example Complex affine curves.

\[X = \{(x,y) \in \mathbb{A}^2_c : y^2 = (x-1)(x-2) \cdots (x-2n)\} \]

Recall this looks like \(\cdots \) \((n=3) \)

We'd like to compactify, by adding a point \(x = \infty \) and two corresponding \(y \)-values.

Make coord change \(\bar{x} = \frac{1}{x} \) where \(x \neq 0 \).

\[y^2 \bar{x}^{2n} = (1-\bar{x})(1-2\bar{x}) \cdots (1-2n\bar{x}) \]

Also \(\bar{y} = yx^n \)

\[\bar{y}^2 = (1-\bar{x})(1-2\bar{x}) \cdots (1-2n\bar{x}) \]

We can now add the pts \(\bar{x} = 0, \bar{y} = \pm 1 \).

Get a compactified curve by gluing \(X_1 = X \) (as above) to \(X_2 = \{(\bar{x},\bar{y}) \in \mathbb{A}^2 : \bar{y} = (1-\bar{x})(1-2\bar{x}) \cdots (1-2n\bar{x})\} \)

with \(f : U_{1,2} \rightarrow U_{2,1} \)

\[(x,y) \mapsto (\bar{x},\bar{y}) = (\frac{1}{x}, \frac{y}{x^n}) \]

where \(U_{1,2} = \{(x,y) : x \neq 0\} \) , \(U_{2,1} = \{(x,y) : \bar{x} \neq 0\} \)

Next: Which other operations on pre-varieties (besides gluing) give more pre-varieties?
Open & Closed Sub-prevarieties \(X = \text{pre-variety} \)

Open subprevarieties. \(U \subseteq X \) open. Then \(U \) is a pre-var with \(\mathcal{O}_U = \mathcal{O}_X|U \).

Since \(X \) is covered by affine varieties, \(U \) is covered by open subsets of affine varieties. We already showed these are, in turn, covered by finitely many \(\text{D}(f) \)'s, which are affine varieties.

Closed subprevarieties. Let \(Y \subseteq X \) closed. An open \(U \subseteq Y \) is not nec. open in \(X \), so can't define the structure sheaf \(\mathcal{O}_Y \) that way. Instead, define \(\mathcal{O}_Y(U) \) to be the \(k \)-alg. of \(\text{fns} \ U \rightarrow k \) that are locally restrictions of sections on \(X \):

\[
\mathcal{O}_Y(U) = \left\{ \phi : U \rightarrow k : \forall a \in U \exists \text{ open nbd } V \text{ of } a \text{ in } X \text{ and } \phi' \in \mathcal{O}_X(V) \text{ s.t. } \phi = \phi'|U \right\}
\]

Exercise: this makes \(Y \) a pre-variety.

Locally closed subprevarieties \(U \) open, \(Y \) closed \(\Rightarrow U \cap Y \) open in \(Y \) & closed in \(U \). Combine the previous two constructions (there are 2 ways, but get same answer).

Example. \(\{(x,y) \in \mathbb{A}^2 : x=0, y \neq 0\} \subseteq \mathbb{A}^2 \)
For more complicated subsets, we may not be able to make it into a pre-var.

Non-example. \(\mathbb{A}^2 - (\{x\text{-axis}\} \setminus \{0\}) \)
This does not look like an aff. var. near 0.
Products of Pre-varieties

Naively, would cover X & Y by finitely many aff. var's and take the products of those. But would need to check the resulting sheaf is well def.

Def. X, Y pre-varieties

A **product** of X & Y is a prevariety P with morphisms $\pi_X : P \to X$ & $\pi_Y : P \to Y$ s.t.

![Diagram](image)

Prop. Any two pre-varieties have a product P. Moreover P with π_X, π_Y is unique up to \simeq.

We denote P by $X \times Y$.