VARIETIES

Roughly, a variety is a space that is locally isomorphic to an affine variety. Think: manifold.

- Def. A prevariety is a ringed space X that has a finite open cover by affine varieties • A morphism of prevarieties is a morphism of ringed spaces.
 - The elts of $O_{x}(U)$ are called regular fris

An open subset of X isomorphic to an aff. alg. var is called an affine open set.

Next : can glue pre-varieties together.

GLUING PRE-VARIETIES

X₁, X₂ = pre-varieties
U₁, z
$$\equiv$$
 X₁ U₂, \equiv X₂ nonempty open subsets
f: U₁, z \rightarrow U₂, 1 an isomorphism.
 \rightarrow X = X₁ II X₂ gluing
 $=$ X₁ II X₂/(f(a)~a)
Let i_j: X_j \rightarrow X be x \rightarrow [x₃] equiv.
Example the coses
Say U \equiv X open if i_j'(U) open j=1,2 (quotient top.)
Define for all open U \equiv X
 $O_{X}(U) = \{\varphi: U \rightarrow k: i_{j}^{*} \varphi \in O_{X_{j}}(i_{j}^{*}(U)) j$.
So: a fin is regular if both restrictions are
This does define a sheaf.
Exercise. Images of i'₁, i'₂ are open subsets of X
isomorphic to X₁, X₂.
We generally identify X₁ & X₂ with their images.
Since X₁, X₂ covered by affine open sets, this is
true for X. Thus: X is a prevariety.

another exercise

Example.
$$X_1 = X_2 = |A|$$

 $U_{1,2} = U_{2,1} = |A| \setminus \{0\}$
We'll consider two different f's.

F(x) = 1/x By construction $X_1 = |A|$ open in X.
The complement $X \setminus X_1 = X_2 \setminus U_{2,1}$ is $\{0\} \in X_2$
This corresponds to $\infty = \frac{1}{0}$ in X_1
 $\longrightarrow X = |A| \cup \{\infty\} (= \mathbb{P}^1)$.
For $k = \mathbb{C}$ this is $\widehat{\mathbb{C}}$. The \mathbb{R} -points form a circle:
 $-1 \qquad -1 \qquad -1 \qquad -1 \qquad 0 \qquad 1/2 \qquad 1 \qquad 0$
We can give an example of gluing morphisms
 $X_1 \rightarrow X_2 = \mathbb{P}^1 \qquad X_2 \rightarrow X_1 \subseteq \mathbb{P}^1$
 $x \mapsto x \qquad x \mapsto x$
These glue boother to give the morphism
 $\mathbb{P}^1 \rightarrow \mathbb{P}^1$
 $x \mapsto 1/x$

f(x) = X

In this case get A' with two O's.

The piecewise defined map gives a map $g: X \rightarrow X$ that exchanges the two O's. It is weird that $A' \setminus \{o\}$ is not closed (not even in the Euclidean topology), but it is the set of solutions to g(x) = X.

When we finally define a variety, we will rid this pathology.

General gluing construction I = finite set, Xi = pre-var i'∈I. Suppose ∀ i ≠ j we have open Uij & isomorphisms Fij: Uij → Uji s.t. ∀ distinct i,j,k we have • fji = fij • Uij ∩ fij (Ujk) ⊆ Uik and fjk • fij = fik on Uij ∩ fij (Ujk) ~ X = ∐Xi/a~fij(a)

The above conditions ensure \sim is symm & trans. Now define topology & structure sheaf as before.

Example Complex affine curves.

$$X = \{(x,y) \in |A_{c}^{2}: y^{2} = (x-1)(x-2)\cdots(x-2n)\}$$
Recall this looks like) $\forall \forall \forall (n=3)$
We'd like to compactify, by adding a point $\chi = \infty$ and two corresponding y-values.

Make coord change
$$\bar{x} = \frac{1}{x}$$
 where $x \neq 0$.
 $\rightarrow q^2 \bar{x}^{2n} = (1-\bar{x})(1-2\bar{x})\cdots(1-2n\bar{x})$
Also $\bar{q} = q x^n$
 $\rightarrow \bar{q}^2 = (1-\bar{x})(1-2\bar{x})\cdots(1-2n\bar{x})$
We can now add the pts $\bar{x} = 0$, $\bar{q} = \pm 1$.

Get a compactified curve by gluing
$$X_1 = X$$
 (as above)
to $X_2 = \{(\bar{x}, \bar{y}) \in A^2 : \bar{y} = (1-\bar{x})(1-2\bar{x}) \cdots (1-2n\bar{x})\}$
with $f: U_{1,2} \longrightarrow U_{2,1}$
 $(x,y) \longmapsto (\bar{x}, \bar{y}) = (\frac{1}{x}, \frac{y}{x^n})$
where $U_{1,2} = \{(x,y) : x \neq 0\}$, $U_{2,1} = \{(x,y) : \bar{x} \neq 0\}$

OPEN & CLOSED SUB-PREVARIETIES

X = pre-variety.

Open subprevarieties. $U \subseteq X$ open. Then U is a pre-var with $O_u = O_X | u$. Since X is covered by affine varieties, U is covered by open subsets of affine varieties. We already showed these are, in turn, covered by finitely many D(f)'s, which are affine varieties.

Closed subprevarieties. Let $Y \subseteq X$ closed. An open $U \subseteq Y$ is not nec. open in X, so can't define the structure sheaf O_Y that way. Instead, define $O_Y(U)$ to be the k-alg. of fins $U \longrightarrow k$ that are locally restrictions of sections on X: $O_Y(U) = \{q: U \longrightarrow k: \forall a \in U \exists open nbd \lor of a in X and q' \in O_X(V) s.t. q = q' | U \}$ Exercise: this makes Y a pre-variety.

Locally closed subprevarieties. U open, Y closed \Rightarrow UNY open in Y & closed in U. Combine the previous two constructions (there are 2 ways, but get same answer).

Example.
$$\{(x,y) \in A^2 : x = 0, y \neq 0\} \leq A^2$$

For more complicated subsets, we may not be able to make it into a pre-var.

Non-example. A² - (Ex-axis] (0) This does not look like an aff. Var. near O.

PRODUCTS OF PRE-VARIETIES

Naively, would cover X & Y by finitely many aff. var's and take the products of those. But would need to check the resulting sheaf is well def.

Prop. Any two pre-varieties have a product P. Moreover P with π_x , π_y is unique up to \cong .

We denote P by XXY.