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This is the simplest proof of the Nullstellensatz that I have been able to
come up with. It is meant for students learning commutative algebra
for the first time—students perhaps lost in the sea of new vocabulary,
with no clear guidance about which concepts are all-important (e.g.,
Noetherianness, and integrality and finiteness of ring extensions) and
which are less so. Accordingly, we use nothing beyond unique factoriza-
tion in one-variable polynomial rings and the basics of field extensions.

Dan Bernstein led me to some references, and it turns out that my
proof is the same in its essentials as one by Zariski [2]. Zariski’s proof
led to the definition of a class of rings called either Jacobson rings or
Hilbert rings, which are defined as “the class of rings to which this
argument applies”; see [1] for a discussion. Also, our arguments about
denominators motivate the definition of a finite extension of rings, al-
though we avoid using this language explicitly.

I am also grateful to Keith Conrad for his helpful comments.

Theorem. Let k be a field and K a field extension which is finitely

generated as a k-algebra. Then K is algebraic over k.

Example of Proof. Suppose k is infinite and K is the simple tran-
scendental extension k(x). We claim that if f1, . . . , fm ∈ K, then the
k-algebra A they generate is smaller than K. To see this, choose c ∈ k
away from the poles of the rational functions fi. Then no element of
A can have a pole at c, so 1/(x− c) is not in A, and A is smaller than
K. Embellishing this argument yields the full proof:

Proof. We will assume throughout that K is transcendental over k and
finitely generated as a k-algebra, and deduce that K is not finitely
generated as a k-algebra, a contradiction.

Suppose first that K has transcendence degree one; this means that
it contains a subfield k(x) which is a copy of the one-variable ratio-
nal function field, and that K is algebraic over k(x). This, together
with the finite generation of K, shows that K has finite dimension
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as a k(x)-vector space. Choose a basis e1, . . . , e` and write down the
multiplication table for K:

eiej =
∑

k

aijk(x)

bijk(x)
ek ,

with the a’s and b’s in k[x]. We will show that for any f1, . . . , fm ∈ K,
the k-algebra A they generate is smaller than K. It is convenient to
adjoin f0 = 1 as a generator. Express f0, . . . , fm in terms of our basis:

fi =
∑

j

cij(x)

dij(x)
ej ,

with the c’s and d’s in k[x]. Now, an element a of A is a k-linear
combination of f0 = 1 and products of f1, . . . , fm. Expanding in terms
of our basis, we see that a is a k(x)-linear combination of products of the
ei, with the special property that the denominators of the coefficients
involve only the d’s. Using the multiplication table repeatedly, we
see that a is a k(x)-linear combination of the ei, whose coefficients’
denominators involve only the b’s and d’s. A precise way to state
the result of this argument is: when a is expressed as a k(x)-linear
combination of the ei, with every coefficient in lowest terms, then all its
coefficients’ denominators’ irreducible factors are among the irreducible
factors of the b’s and d’s. Therefore

1

some other irreducible polynomial
cannot lie in A,

and A is smaller than K.
This argument requires the existence of infinitely many irreducible

polynomials in k[x]; to prove this one can mimic Euclid’s proof of the
infinitude of primes in Z. (If k is infinite then one can just take the
infinitely many linear polynomials x − c, c ∈ k.)

Now suppose K has transcendence degree > 1 over k, and choose a
subextension k′ over which K has transcendence degree 1. By the
above, K is not finitely generated as a k′-algebra, so it isn’t as a
k-algebra either. (To build k′ explicitly, choose k-algebra generators
x1, . . . , xn for K over k and set k′ = k(x1, . . . , x`−1), where x` is the
last of the x’s which is transcendental over the field generated by its
predecessors.) ¤

‘Weak’ Nullstellensatz. Let k be an algebraically closed field. Then

every maximal ideal in the polynomial ring R = k[x1, . . . , xn] has the

form (x1 − a1, . . . , xn − an) for some a1, . . . , an ∈ k. As a consequence,
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a family of polynomial functions on kn with no common zeros generates

the unit ideal of R.

Proof. If m is a maximal ideal of R then R/m is a field which is finitely
generated as a k-algebra. By the previous theorem it is an algebraic
extension of k, hence equal to k. Therefore each xi maps to some
ai ∈ k under the natural map R → R/m = k, so m contains the ideal
(x1 − a1, . . . , xn − an). This is a maximal ideal, so it equals m. To
see the second statement, consider the ideal generated by some given
polynomial functions with no common zeros. If it lay in some maximal
ideal, say (x1 − a1, . . . , xn − an), then all the functions would vanish
at (a1, . . . , an) ∈ kn, contrary to hypothesis. Since it doesn’t lie in any
maximal ideal, it must be all of R. ¤

Nullstellensatz. Suppose k is an algebraically closed field and g and

f1, . . . , fm are members of R = k[x1, . . . , xn], regarded as polynomial

functions on kn. If g vanishes on the common zero-locus of the fi,

then some power of g lies in the ideal they generate.

Proof. Probably no one will ever improve on the trick of Rabinowitsch:
the polynomials f1, . . . , fm and xn+1g − 1 have no common zeros in
kn+1, so by the weak Nullstellensatz we can write

1 = p1f1 + · · · + pmfm + pm+1 · (xn+1g − 1) ,

where the p’s are polynomials in x1, . . . , xn+1. Taking the image of
this equation under the homomorphism k[x1, . . . , xn+1] → k(x1, . . . , xn)
given by xn+1 7→ 1/g, we find

1 = p1

(

x1, . . . , xn,
1

g

)

f1 + · · · + pm

(

x1, . . . , xn,
1

g

)

fm .

After multiplying through by a power of g to clear denominators, we
have Hilbert’s theorem. ¤
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