Math 6421

Online or in person fine. Some HW per week (drop 3) Gradescope. Online office hours Fri 1:30-2:30 Teams & by appt.

Overview of Course

Setup $k = \text{field} (\text{usually can think } k = \mathbb{C})$ k[x1,...,xn] = ring of polynomials in X1,...,Xn with coeffs in K. An = Ak = affine n-space over k = { (a,..., an) & ai e k } In bijection with K". In IA" no vect sp structure, so () not special etc.

Weak Bezout's The
If
$$f_1, f_2 \in \mathbb{C}[X, y]$$
, no common factors
deg $f_i = d_i$
Then $|\mathbb{Z}(f_i, f_2)| \leq d_i d_2$.

Chapter 1 The geometry (algebra dictionary

$$Alg \rightarrow Geom$$
 Given $J \in k[x_1,...,x_n]$ ideal
 $\sim Z(J) = \{a \in |A|^n : f(a) = 0 \forall f \in J\}$
 $example \quad J = \langle f_1,...,f_r \rangle$ ideal generated by $f_1,...,f_r$
 $= \{g_i,f_i + \dots + g_r,f_r : g_i \in k[x_1,...,x_n]\}$
Then $Z(J) = Z(f_1,...,f_r)$ as above.
 $Geom \rightarrow Alg$ Given $V \subseteq |A|^2$
 $\sim I(V) = \{f \in k[x_1,...,x_n] : f(a) = 0 \forall a \in V\}$
this is an ideal.

We have: { subsets of And ~ { ideals in kEx1,..., Xn]} Neither is injective. Why? $(= Z(x) = Z(x^2)$ more interesting direction \longrightarrow all open sets \longmapsto O ideal. in C. To fix latter, replace LHS with affine alg vars For Former, the example is the only issue. (taking poners).

The fix: For an ideal
$$J \subseteq R$$
, have
rad $(J) = \{r \in R : r^i \in J \text{ some } i \ge 1\}$
"radical"
Will use Hilbert's Nullstullensatz to show
 $\{affine alg var's in |A^n\} \iff \{radical ideals in k[x_1,...,x_n]\}$
U
also:
 $\{u_i = \{pts in |A^n\} \iff \{prime ideals ...\}$
 $\{u_i = \{pts in |A^n\} \iff \{maximal ideals\}$

Chapter 2 Projective Varieties. K-0

$$P^n = TR_k^n = (k^{n+1} - 0)/k^*$$

where $V \sim W$ if $V = cW$
 $c \in K^*$.
 $= set of (ines in K^{n+1})$
Write equiv class of $(a_{0},...,a_{n})$
 $a_s [a_0:a_1:...:a_n]$
 $(n R^2: sume pt)$
 R^1
 R^1
 R^2
 R^1
 R^2
 R^1
 R^1
 R^2
 R^2
 R^1
 R^2
 $R^$

Projective varieties

$$f(a_{0},...,a_{n})$$
 is not well-defined on \mathbb{P}^{n}
e.g. $f(x,y) = x + y^{2}$
 $f(-1,1) = 0$
 $f(-2,2) = 2$
So can't say $f([-1:1]) = 0$.
But, if f is homogeneous (all terms have same degree d)
then $f(cv) = c^{d} f(v)$.
So: get Zero sets
in \mathbb{P}^{n} for
homog. pdy 's.

Next time : Better Bezout Z(Fi) conves in P² of deg di Z(F2) & f1, f2 no common factors. (count with $|Z(f_1) \cap Z(f_2)| = d_1 d_2$ Then multiplicity).

