Nerview. From last time:
Chapter 1. The geometry [algebra
dictionary

$$f_{1,...,f_r} \in k[x_{1,...,x_n}]$$

 $Z(f_{1,...,f_r}) = \{a \in A^n : f_i(a) = 0 \forall i\}$
"affine algebraic variety"
There is a bijection
 $\{aav's \text{ in } A^n\} \leftrightarrow \{\stackrel{rad}{=} \stackrel{ideals}{=} \stackrel{in}{=} \}$
 $V \longmapsto I(V)$
 $Z(J) \leftarrow J$

Chapter 2. Projective varieties $P^n = (k^{n+1} - 0)/k^*$ [(a_0,...,a_n)] written [a_0: ... : a_n] $P^n = A^n \cup P^{n-1}$ homogeneous poly's in K[xo,...,xn] ~ projective alg. Var's These are always compact and tend to have more symmetry/ info (e.g. intersections at 00).

3 Grassmannian

Gr.n = {r-dim planes thru 0 in Kⁿ} Note: TPⁿ = G1,n+1

(1) Blow up

(Fixing, not destroying) The map $\mathbb{A}^2 \setminus 0 \longrightarrow \mathbb{P}^1$ does not extend to (). The blowup of A at 0: $\{(Q, L) \in \mathbb{A}^2 \times \mathbb{P}^1 : Q \in \mathbb{R}\}$ Q get a copy of P'atO. Application: resolving singularities. $\chi^3 = \gamma^2$

k alg Degree V = 1An or Pn dim V=k. deg V = genericlexpected # inforsections with n-k plane For V = Z(f) "hypersurface" deg V = deg f Helps undustand number of solns when dim=0.

Smoothness A Variety is <u>smooth</u> exactly when it is a manifold... can use manifold theory. Chapter 5. Curves in the plane. Setup f & C[Xo, X, X2] homog. $C = \underline{X}(t) \in \mathbb{P}_{5}$ Picture: When deg f = 2C is a "conic"

Thm. (Five pts determine a conic) Given P1,..., Ps & TP2 I conic passing thru all pi (generically unique) Bézoul's thm. $C_1 = Z(f_1)$ deg $f_1 = d_1$ $C_2 = Z(f_2)$ & F, , Fz no common factor Then $|Z(f_1) \cap Z(f_2)| = d_1 d_2$ (count with mult.) Thm. Given $\binom{d+1}{2}$ distinct pts in \mathbb{P}^2 I deg d curve passing thru.

Cayley-Bacharach Thr $C_1, C_2 \subseteq \mathbb{P}^2$ cubic curves with $|C_1 \cap C_2| = 9$ If C3 passes thru & of the pts, it passes thru the 9th

Smoothness for curres: $C = \Sigma(t)$ smooth a p if some df (p) nonzero.

Thm. fe ([Ko, X1, K2) irred, homog, deg d $\sim Z(f)$ Then # sing pts $\leq \begin{pmatrix} d^{-1} \\ 2 \end{pmatrix}$ Classification of cubic curves in P² 1 sing pt: equiv to $Z(x^2=y^3) \subseteq |A^2| = 4x^3 - g_2 x - g_3$ "Weierstrass curres"