Chapter 1. Affine alg. vars & the geometry / alg dictionary Setup: $S \subseteq k[x_1,...,x_n]$ \sim $Z(S) = \{a \in \mathbb{A}^n : f(a) = 0\}$ $Y = \{f \in S\}$ "affine alg var" $Examples$ $0 \phi = Z(k[x_{1},...,x_{n}])$ Second = $Z(1)$
Second = $Z(1)$
Makes sense since (1) = $k[x_{i_{1}...,i_{n}}]$

 (2) $\mathbb{A}^n = \mathbb{Z}(0)$ 3 $(a_1,...,a_n) = Z(x_1, ..., x_n, a_n)$ compare: lin alg. 4 Hyperplanes S Conics $Z(f) \subseteq M^2$ deg $f=2$. e.g. x^2-y^2-1 xy^{-1} $y-x^2$ x^2 $(x-y)(x+y)$ x^2-1 K | | | "clouble"

Q Algebraic groups

\nShnk = Z(det - 1)
$$
\subseteq M^n
$$

\nGLnk complement of Zldet)

\nby defn.

\nIn general, computers of a way's are a way's of the following:

\n $V = \{ (x_{i,j,t}) \in M^{n^2+1} : det(x_{i,j})t - 1 = 0 \}$

\n $Q: Ghnk \rightarrow V$

\n $A = (aij) \mapsto (aij, detA)$

\nis a bijection:

\n $\bigcap_{i=1}^{n} A_i$

(1) Twisted cubic $C = Im q$ where $q : \mathbb{A}^3 \longrightarrow \mathbb{A}^3$ $t \mapsto (t, t^2, t^3)$ As a variety $C = Z(x^2-y, x^3 - z)$ $= Z(x^2 - 4, z - x4)$ intersection of two "quadn'is" C is also ^a determinantal var $C = \{(x,y,z) \in \mathbb{A}^3 :$ (x y z) < 2 } $Q.$ Is any int. of quadrics a det. var?

Q A family of (smooth) cubics

\n
$$
C_{\lambda} = Z(x(x-1)(x-\lambda) - y^{2}) \subseteq A^{2}
$$
\n
$$
\lambda \neq 0, 1 \quad k = C
$$
\n
$$
C_{\text{lain}}
$$
\n
$$
C_{\lambda} \cong \bigcirc Z(x^{2}+y^{2}) \cong A^{2}
$$
\n
$$
C_{\lambda} \cong \bigcirc Z(x^{2}+y^{2}) \oplus \bigcirc Z(x^{2}+y^{2})
$$
\n
$$
C_{\lambda} \longrightarrow A
$$
\n
$$
(x,y) \longrightarrow x \qquad Z(x^{2}+y^{2})+3x^{2}y-y^{3}
$$
\nif the $x = 0, 1, \lambda$

\n

Nonexamples $k = 0$ in M^n
1 Fact. Every aff alg var is closed in Euclidan top \Rightarrow {z: |z|<1} not an ear in μ 2) Fact. The intentor of any loger is ϕ . \Rightarrow {z: 17| \leq 1} not an aav. 3) Fact. Any proper variety in the is Finite (by FTAIg) \Rightarrow $\mathbb{Z} \subseteq \mathbb{C}$ is not a.a.v.

Basic Properties of aav's $0 \forall S \subseteq k[x_{1,...,}x_{n}]$ have $\mathcal{Z}((s)) = \mathcal{Z}(s)$ (exercise) (2) Intersections of aav's are aav $\bigcap_{\alpha}\mathcal{Z}(\mathcal{I}_{\alpha})\cdot\mathcal{Z}(\cup\mathcal{I}_{\alpha})$ 3 Finite unions of aav's are aavé $V(\pm)$ $V(\pm) = V(\pm)$

(exercise)
 $\mathcal{L}_{\text{finite, s}}^{\text{finite, s}}$ example $V(x)$ U $V(y) = V(xy)$

A topology on ^a spaceX is a collection of sets, called
Closed sets such that sets are closed \Rightarrow not Hausdorff.
(3) Arbitray intersections (4) compact \Rightarrow closed of closed sets are closed.
Complements of closed sets called open. Def. Zariski topology on \mathbb{A}^n has aav's as the closed sets.

 Z ariski lopology Basic properties \Rightarrow this indeed is ^a topology The Zariski top is strange: red sets such that $\begin{array}{ccc} \textcircled{ } \mathcal{A} \mathsf{II} & \textcircled{ } \mathsf{roper} \text{ closed} \text{ sets have } \phi \text{ interval} \ \textcircled{ } \mathcal{A}, \mathsf{X} \text{ closed} & \textcircled{ } \mathsf{Proper} \text{ closed} \text{ subsets of } \mathsf{A}^1 \text{ one finite.} \end{array}$ 1 \$, X closed (2) Proper closed subsets of \mathbb{A}^1 ore finite.
(2) Finite unions of closed (3) No two open sets are disjoint. 2) Finite unions of closed (3) No two open sets are disjoint.
sets are closed \Rightarrow not Havsdorff. 4 Compact => closed A concept : A set is Zariski dunse iff every polynomial is det. by
its valves on that set.
e.g. $Z \subseteq A_R$

