Good for today: coord free description of tangent spaces.

We'll show
\n
$$
T_P X \cong (M_{M^2})^* \cong (m_{m^2})^*
$$

\n $M \subseteq k[x_1,...,x_n]$
\n $m \subseteq k(x_1,...,x_n)$
\n $m \subseteq k(x_1,...,x_n)$
\n $m \in (x, -p_1,...,x_n-p_n)$
\n $m = (x, -p_1,...,x_n-p_n)$
\n F_{ns} that vanish at p

Cotangent spaces $T_{p} * V = dual \text{ of } T_{p}V$ = $\{l_{\text{linear}} \mathcal{T}_{P} \} \rightarrow k \}$ $=$ "linear forms" Notation, q & K Ex.,.., Xn] $d_{\rho}q = \text{diff. of } q \text{ at } \rho.$ e.g. $g(x,y) = x^2 + xy + x$
dg = $(2x + y + 1) \frac{d}{dx} + x \frac{d}{dy}$
dog = $\frac{d}{dx}$ e $(k^n)^*$

Prop. Same X. Differentiation induces Prop. Let $X = Z(f,...,f_m) \subseteq M^n$ histin pe X ge k[x] Surj $M \rightarrow T_P^*V$ R.
Smith and pg is lin form on TpX. with Kemel M^2 . II. Setup. WLOG p=0. If To show well-def. WLOG $T_P V = \langle x_1, \ldots, x_r \rangle$ Say G1, G2 & K[x1,..., xn] rep. 9. (change of coords) $\implies G_1 - G_2 = \sum h_i f_i$ hiellX) Let $\widetilde{M} = (x_1, ..., x_n) \in k[x_1, ..., x_n]$ $\Rightarrow d_{P}(G,-G_{2}) = \sum_{\text{product}} (d_{\text{phi}}) f_{i}(p)$
 $\Rightarrow \text{product} \left(\sum_{n|k} f_{n}(p) f_{n}(p) \right)$ Its image in KEXJ is M. \overline{O} by defined
= \overline{O} \Box \overline{O} that this form
= \overline{O} \Box \overline{O} that this form

Pop	Same X	Differentiation induces
Surj	$M \rightarrow T_P^* X$	
with kemel	M^2	So: $T_P^* X = M / N$
191	Setup	$WLOG P = 0$
WLOG	$T_P X = Xx_1, ..., X_T$	
(change of words)		
Let	$\widetilde{M} = (x_1, ..., x_n)$	
Its image in $kEXJ$ is M		
Surjectivity: let $l = \sum c_i X_i^* \in T_P^* X$		
Then	$L = \sum c_i X_i$	
has dL = l		

Kemel: S_{ay} geM, $d_o g \equiv O \epsilon T_p^* X$ & g is image of $G \in \widetilde{M}$ So $d_0G \equiv O$ on $T_0 \times (\frac{f_{i}r_{s}r}{f_{i}r_{s}r})$ Then $d_0G = \sum x_j (d_0f_j)$ (by defin of $T_{P}X$) Let $\overline{G} = G - \Sigma \lambda_j f_j$ Then G still maps to g in K[X]. But $d_0\overline{6}$ = 0 on To \overline{R} Sonst & lin. tems of Gvanish. \Rightarrow \overline{G} \in $\widetilde{M}^2 \Rightarrow$ g \in M^2

Moving the * $R = ring$, $M \subseteq R$ max ideal. \rightsquigarrow R.M \subseteq M, R.M² \subseteq M² So M, M/M² modules over R Also, mult by M on M/M² is O map. So M/m² is R/M-module C field! l'e M/m² is vect sp. over R/M S_{0} $T_{P}V = (M/m^{2})^{*}$ makes

(M/M^{2)*} is called Zarisk^y tangent sp. Differentials Prog. F: X - Y morphism of aar's $\rho \in X$ $\rightarrow f_* : T_P X \rightarrow T_{flp} Y$ $BF. F. KEYJ \rightarrow kEXJ$ prein of M is $N = \begin{cases} \frac{1}{\pi} & \text{if } P \text{ is } \sqrt{\frac{1}{\pi}} \\ \frac{1}{\pi} & \text{if } P \text{ is } \sqrt{\frac{1}{\pi}} \end{cases}$ S_{0} N/μ^{2} \longrightarrow M/μ^{2} \Box

Coord free descr. of differential $\begin{array}{ll} \text{Example} & \chi = Z(x^3 - y^2) \subseteq M^2 \ \text{Rep.} & X \subseteq M^n & \text{irred.} \end{array}$ $\begin{array}{ll} \text{Example} & \chi = Z(x^3 - y^2) \subseteq M^2 \ \text{A} & \text{per}(1,1) & \text{can see dim } M/m^2 = \end{array}$ f_{ϵ} k[X] Then $F - F(p) \in M$. and dpf = image of $f - f(q)$
in $M/m^2 = T_p^*V$ π Subtracting $f(e)$ kills const tem.
 π $(3x-1)/2 - 1$
 $= 3/2(x-1)$ Modding by M^2 kills quad &

At $p=(1,1)$ can see dim $M/m^2 = 1$: $M = (x-1, y-1)$ x^3 $\sim M^2$ = $(x^2-2x+1, (x-1)(y-1), y^2-2y+1)$ \rightarrow y -1 = (x³+1)/2 - 1
= (x(2x-1) +1)/₂ - 1 $=(2x^2-x+1)/2 - 1$ At ρ = (0,0) can see dim M/m^2 = 2: $M = (x,y)$, $M^2 = (x^2,xy,y^2)$ y_0 ^v M/m² = {ax +by}

Projective varieties $O_{X,P} = \{f|g \in k(X) : g(P) \neq 0\}$ $m \epsilon$ fige $\mathcal{O}_{x,p}$ s.t. $f(p)=0$ max ideal. <u>Lemma</u>. X, M, m, p as above.
 $M/m^2 \approx m/m^2$ $\begin{array}{ll}\n\mathbf{H} & \text{WLOG} & \mathsf{P} = \mathsf{O} \\
\text{Inclusion} & \mathsf{M} \hookrightarrow \mathsf{m}\n\end{array}$ Induces injection $M|_{M^2} \hookrightarrow M|_{m^2}$

 $Suri$ Let $\int\int g e^{m}1m^{2}$ so $g(0) \neq 0$ $\sim f|_{q(0)} - f|_{q}$ = $f('q_{00} - 1)g)$ ϵm^{2} S_0 $f/g|0$ = f/g in m/m^2 $m \times k$ \in k \in k Cor 1. $f: X \rightarrow Y$ rat.
 $\rightarrow f_* : T_f X \rightarrow T_{f(p)} Y$. $C_{01}2. X.Y \text{ bind} \rightarrow \dim X = \dim Y$ Back to dim $\boxed{\text{Im}}$ $X \subseteq \mathbb{A}^n$ irred $dim X = tr deg_{K} K(X)$. Milne Also: $trdeg_k k(x) = dim k[x]$. If It's the for hypersurfaces, true for all X since every Hulek
X is brat. equiv to hypersurf. (Noether norm).

For hypersurfaces: We proved dim = $n-1$ so suff.
to show triding = $n-1$ $X = Z(f) \subseteq M^h$ f irred. $\sim k[1] = k[x_1,...,x_n]/(f)$ WLOG F USES X1 $k(x) = k(x_2,...,x_n)$ [xi] /(f) transc. basis.

HEISUKE HIRONAKA "Resolution of singularities of an clothaic variety over
algebraic variety over Annals of Math.

\$9. The notion of J-stability.

§10. The existence of a J-stable regular τ -frame and a J-stable standard base.

Chapter IV. THE FUNDAMENTAL THEOREMS AND THEIR PROOFS. §1. Localization of resolution data and resolution problems.

- § 2. Preparation on resolution data $(R_1^{N,n}, U)$.
- § 3. Proofs of the implications (A) and (B).
- §4. Proofs of the implications (c) and (D).

Introduction

Let X be complex-(resp. real-)analytic space, i.e., an analytic C -(resp. R -)space in the sense defined in §1 of Chapter 0. We ask if there exists a morphism of complex-(resp. real-)analytic spaces, say $f: \widetilde{X} \rightarrow X$, such $that:$

(1) \tilde{X} is a complex-(resp. real-)analytic manifold, i.e., a non-singular complex-(resp. real-)analytic space.

(2) if V is the open subspace of X which consists of the simple points of X, then $f^{-1}(V)$ is an open dense subspace of \tilde{X} and f induces an isomorphism of complex-(resp. real-)analytic manifolds: $f^{-1}(V) \xrightarrow{\approx} V$, and

(3) f is proper, i.e., the preimage by f of any compact subset of X is compact in \tilde{X} .

This is the problem which we call the resolution of singularities in the category of complex-(resp. real-)analytic spaces, or more specifically, the resolution of singularities of the given complex-(resp. real-)analytic space X. If X is a reduced *complex*-analytic space, then the open subspace V is dense in X and therefore the condition (2) implies that f is a modification. (The term 'reduced' means that the structural sheaf of local rings has no nilpotent elements.) It should be noted, however, that V is not always dense if X is a reduced real-analytic space. So far as the resolution of singularities is concerned, we are particularly interested in the case of reduced complex-(resp. real-)analytic spaces. As for the general case in which X may not be reduced, we have a better formulation of the problem in terms of normal flatness. (See Definition 1, § 4, $Ch. 0.$

The most significant result of this work is the solution of the above problem for the case in which X has an algebraic structure; that is to say, X is covered by a finite number of coordinate neighborhoods, each of

