

The blown of A at O π : $\mathbb{A}^n \setminus o \longrightarrow \mathbb{P}^{n-1}$ $(a_1,...,a_n) \mapsto [a_1:...:a_n]$ $\Gamma_{\pi} \subseteq \mathbb{A}^n \times \mathbb{P}^{n-1}$ graph. $\widetilde{A}^n = \widetilde{C}^{far}$ of Γ_n in $\mathbb{A}^n \times \mathbb{P}^{n-1}$ C blowur of H at O.

 12 case $\pi(x,y) = [x: y]$ (or x/y) $\widetilde{\mathbb{A}^2}$ = { (x,y) , $[$ t (t, 1) : xt, = yto } Check: this is the closure of $\Gamma_{\!n}$

$$
E \longrightarrow \widetilde{\mu}
$$
\n
\nProjection to \vec{M} induces
\n
$$
\overrightarrow{p} : \widetilde{\mu} \rightarrow \vec{M}
$$
\n
\nand
$$
\overrightarrow{p} : (\overrightarrow{x}, \overrightarrow{y}) = \{(\overrightarrow{x}, \overrightarrow{y}), [\overrightarrow{x}, \overrightarrow{y}]\} \quad (\overrightarrow{x}, \overrightarrow{y}) = 0.
$$
\n
\n
$$
E = \text{exceptional line/divisor}
$$
\n
\n
$$
E = \text{exceptional line/divisor}
$$
\n
\n
$$
E = \text{exceptional line/divisor}
$$

Affine cover of
$$
\tilde{M}^2
$$

\nThe least set of \tilde{M}^2 is $\sqrt{4^n} = V_0 \cup V_1$, $V_i \subseteq \tilde{M}^2 \times \tilde{M}$

\nwhere

\n
$$
V_0 = \{((x, y), [1:t,1]) : x = y\}
$$
\n
$$
V_1 = \{((x, y), [1:t,1]) : x = y\}
$$
\nNote: $V_i \cong \tilde{M}^2$

\n
$$
V_0 \text{ words}: Y, U = t_1
$$
\n
$$
V_0 \text{ words}: Y, V = t_0
$$
\n
$$
V_1 \text{ codes}: Y, V = t_0
$$
\n
$$
V_1 = \{(x, u \times), [1:u]\}^2 = \{(x, u)\}
$$
\n
$$
V_1 = \{(x, y, y), [1:u]\}^2 = \{(y, v)\}
$$

Under $p: \widetilde{M}^2 \rightarrow M^2$	
u find	1
1	x fixed
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
2	1
3	1
4	1
5	1
6	1
7	1

 $S_{\alpha\mu} \chi \subseteq \mu^{\alpha}$ sing. set 5 A resolution is
 $\widetilde{A} \longrightarrow X$ s.t. X nonsing $A \longrightarrow X$ at C open. $P: \widetilde{X} \longrightarrow X$ s.t. X nonsing & restr. $\widetilde{\chi}\setminus \rho^{\cdot\cdot}(s) \longrightarrow \chi \setminus S$ is an isomorphism Resolution for curves : blow up pts surfaces over C: Jung, Walker Zariski 35 $5 - f_0$ lds char = $0 \cdot \frac{7}{6}$ ariski Annals 44

3 Folds char 40 Abhiyankar (Z's student) Resolving singularities
All varieties char 0 : Hironaka ~10

Example 1
C = $Z(x^2-y^2)$

resolution:

 \overrightarrow{m} in \overrightarrow{M}^2

Higher dim Version: $\begin{picture}(120,20) \put(0,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}}$ $X = Z(x^2+y^2-z^2)$ $\tilde{x} = Z(x^{2}+y^{2}-1)$ $\widetilde{\mathsf{x}} \rightarrow \mathsf{x}$ $(x,y,z) \longmapsto (xz,yz,z)$ xy plane \longmapsto pt

 $\widetilde{\mathsf{x}}$

<u>Example 2</u> $C = Z(\psi^2 - x^2 - x^3) \propto$ $p^{-1}(C)$ = { (x,y) , $Ct_0:t_1$; $y^2 = x^3 + x^2$, $t_0 y = t_1 x$ } $p^{-1}(C) \cap V_0 = \{(x, xu), [1:u] \} : x^2(x+1-u^2)=0\}$ = { $(x, u) : x^2(x+1-u^2) = 0$ } $\subseteq \mathbb{A}^2$ $\rho^{-1}(C) = \rho$ arabela $\lambda \rho t$
Closure \tilde{C} is parabela. Smooth! $Example 3 C = Z(y^2 - x^3)$ $P^{-1}(C) \cap V_0 = \{(x,u) : \&u\}^{-1} = X^3$ \rightarrow parabola. $x^2(x-u^2)$ $\sum_{\ell\in\mathcal{N}}$ Aside: link of cusp is (3,2) - cune on T2

Algebra version: Hamis example $0 = Y \subseteq X = 1/k^2$
 $Y \subseteq X \subseteq 1/k^2$ aav's $Y \subseteq X \subseteq \mathcal{H}$ aav's $Y = Z(f_0, ..., f_m)$ $f_i \in k[X]$ D_{e} fine:
 $Q: X \dashrightarrow \mathbb{P}^{m}$ Can do similar for projva $x \mapsto [f_{0}(x) : \cdots : f_{m}(x)]$ regular on $X \setminus Y$
 $\Gamma_a \subseteq \mathbb{A}^n \times \mathbb{P}^m$ & $P: \Gamma_a \longrightarrow X$ Topological version:
 $\Gamma_a \subseteq \mathbb{A}^n \times \mathbb{P}^m$ & $P: \Gamma_a \longrightarrow X$ Topological version: $\Gamma_{\varphi} \subseteq \mathbb{A}^n \times \mathbb{P}^m$ & $\rho: \Gamma_{\varphi} \longrightarrow X$
closure is closureis $Bl_{Y}(X)$ blowp of X at Y

Blowing up higher-dim subvars p⁻¹(Y) "exceptional divisor" $q: \mathbb{A}^2 \rightarrow \mathbb{P}^1$ Can do similar for projvar's (use homog. polys). Idea: replacing pts in Y with space of normal directions. e.g. $Y = Z$ -axis in \mathbb{R} : pts in Y get replaced

HEISUKE HIRONAKA "Resolution of singularities of an ingularities or an
algebraic variety over
a field of characteristic Annals of Math.

\$9. The notion of J-stability.

§10. The existence of a J-stable regular τ -frame and a J-stable standard base.

Chapter IV. THE FUNDAMENTAL THEOREMS AND THEIR PROOFS. §1. Localization of resolution data and resolution problems.

- § 2. Preparation on resolution data $(R_1^{N,n}, U)$.
- § 3. Proofs of the implications (A) and (B).
- §4. Proofs of the implications (c) and (D).

Introduction

Let X be complex-(resp. real-)analytic space, i.e., an analytic C -(resp. R -)space in the sense defined in §1 of Chapter 0. We ask if there exists a morphism of complex-(resp. real-)analytic spaces, say $f: \widetilde{X} \rightarrow X$, such $that:$

(1) \tilde{X} is a complex-(resp. real-)analytic manifold, i.e., a non-singular complex-(resp. real-)analytic space.

(2) if V is the open subspace of X which consists of the simple points of X, then $f^{-1}(V)$ is an open dense subspace of \tilde{X} and f induces an isomorphism of complex-(resp. real-)analytic manifolds: $f^{-1}(V) \xrightarrow{\approx} V$, and

(3) f is proper, i.e., the preimage by f of any compact subset of X is compact in \tilde{X} .

This is the problem which we call the resolution of singularities in the category of complex-(resp. real-)analytic spaces, or more specifically, the resolution of singularities of the given complex-(resp. real-)analytic space X. If X is a reduced *complex*-analytic space, then the open subspace V is dense in X and therefore the condition (2) implies that f is a modification. (The term 'reduced' means that the structural sheaf of local rings has no nilpotent elements.) It should be noted, however, that V is not always dense if X is a reduced real-analytic space. So far as the resolution of singularities is concerned, we are particularly interested in the case of reduced complex-(resp. real-)analytic spaces. As for the general case in which X may not be reduced, we have a better formulation of the problem in terms of normal flatness. (See Definition 1, § 4, $Ch. 0.$

The most significant result of this work is the solution of the above problem for the case in which X has an algebraic structure; that is to say, X is covered by a finite number of coordinate neighborhoods, each of

