Curves thru given pts

Existence

1. Thru 2 pts 1 line.
 \[ax + by = c \]
 2 constraints (given pts)
 3 unknowns \(a, b, c\).

2. Thru 5 pts 1 quadric
 (same lin. alg)
 Bézout \(\Rightarrow\) if 3 are collinear
 then quadric is reducible
 (not a conic) \(\Rightarrow\) union of 2 lines.

Uniqueness

Need some kind of general posn.

1. always unique (if 2 pts distinct)
2. if all 5 pts collinear, then can take that line & any other line.

BUT if no 3 collinear get uniqueness: can't be 2 distinct lines by hyp.

3. Thru 9 pts 1 cubic (same lin alg).

\(\text{Bezout} \neq \text{if 3 are collinear} \Rightarrow \text{quadric is reducible}
\text{not a conic} \Rightarrow \text{union of 2 lines.}\)
3. If there are 8 of 9 pts lie on conic C, then many CUL are cubics containing the 9 pts.

Even without this, uniqueness harder to come by.

Say $C_0 = \mathbb{Z}(f_0)$ cubics.

$C_\infty = \mathbb{Z}(f_\infty)$

& $|C_0 \cap C_\infty| = 9$.

Then $C_t = \mathbb{Z}(f_0 + tf_\infty) \text{ t} \in kv\infty$ contains all 9 pts.

But these are only ones going through the 9 pts, or even 8 of them.

Cayley - Bacharach thru k alg closed.

If D is a cubic curve passing thru 8 pts of $C_0 \cap C_\infty$ then $D = C_t$ some t. In partic, D passes thru the 9th pt.
Claim 1.

No 4 of the ai collin.

Proof. Bézout \(\Rightarrow \) Co, Coo would both contain this line.

\[\Rightarrow |C_0 \cap C_\infty| = \infty > 9. \]

Claim 2.

No 7 of the ai lie on quadric.

Proof. Same.

Claim 3.

Any 5 of the ai determine a unique quadric

Proof. If 5 pts lie on two quadrics E, F

Bézout \(\Rightarrow \) EnF contains line L

Claim 1 \(\Rightarrow \) L contains at most 3 of the ai.

The other \(\geq 2 \) pts must lie on other comp of E (line)
& other comp of F. (line)

Both are lines. Must be same line. So E = F.
Claim 4. No 3 of the a_i collin.

Proof. Say $a_1, a_2, a_3 \in L$ line

Claim 1 $\Rightarrow a_i \not\in L $ $i > 3$.

$a_4, ..., a_8$ lie on unique quadric E.

(Claim 3)

Let b be another pt on L.

c be another pt not on E or L.

By lin alg E cubic

$q = x p + y p_0 + z p_0 o$

Vanishing at b, c. (3 vars, 2 eqns)

By $\otimes q \neq 0$.

Let $F = \mathbb{Z}(q)$.

Fn L contains a_1, a_2, a_3, b

Bezout $\Rightarrow F = L \cup$ quadric

The quadric contains $a_4, ..., a_8$ (p, p_0, p_{oo} all vanish at $a_1, ..., a_8$)

By uniqueness of E:

$F = L \cup E$

but c not in E, L hence not in F. contradiction.
Claim 5. No 6 of a_1, \ldots, a_8 lie on a quadric.

Proof. Say a_1, \ldots, a_6 lie on $Q = \text{quadric}$.

Claim 4 \implies $Q \not\subset L_1 \cup L_2$

\implies Q conic.

Let L: line thru a_7, a_8.

$b =$ another pt on Q

c = pt not on L or Q

As before, have nonzero cubic

$$q = xp + yp + zp_0$$

vanishes at b, c. Also at a_1, \ldots, a_8

Let $F = \mathbb{Z}(q)$. Note $b, c \in F$.

F contains $a_1, \ldots, a_6, b \in Q$

$\implies F = Q \cup \text{line}$

The line is L, but L hence F does not contain c.

Contrad.
Finishing...

Let \(L = \text{line thru } a_1, a_2 \)
\(Q = \text{quadric thru } a_3, \ldots, a_7 \)

Claim 3 \(\Rightarrow Q \text{ unique} \)
Claim 4 \(\Rightarrow Q \text{ conic (can't be 2 lines)} \)
Claim 4 \(\Rightarrow a_8 \notin L \)
Claim 5 \(\Rightarrow a_8 \notin Q \)

Let \(b, c \in L \setminus Q \)

Again, \(J \text{ non-0 cubic} \)
\(q = xP + yP_0 + zP_00 \)
Vanishing on \(b, c \mapsto F = Z(q) \)

\(F \cap L \text{ contains } a_1, a_2, b, c \)
Bézout \(\Rightarrow F = L \cup Q \quad \text{quadric} \)
The quadric contains \(a_3, \ldots, a_7 \)

So it is \(Q \)
So \(F = L \cup Q \)

\(\Rightarrow a_8 \text{ not in } F. \)
But \(F \) is a lin interp. of 3 cubics cont. \(a_1, \ldots, a_8 \)
contradiction.
Proof of Pappus

Cayley-Bacharach \implies E contains C_3

(We assumed $C_1 \neq C_2$, o/w nothing to prove.)

Pascal's Mystic Hexagon similar

(note: the C_i can't all lie on the conic by Bezout.)

C, D are cubics given by triples of lines in hexagon.

E given by L_1, L_2, line thru c_1, c_2
Smooth cubies are groups

\[C = \mathbb{Z}(y^2 - x^3 - ax - b) \leq \mathbb{P}^2 \]

smooth

\[o = [0:1:0] \in C \]

pt at \(\infty \)

For \(c = [u:v:w] \)

let \(\bar{c} = [u:-v:w] \)

refl. thru x-axis.
in \(\mathbb{A}^2 \) plane

so \(\bar{0} = 0 \).

Define \(a + b = \bar{c} \)

Thm. \(C \) is an abel. gp.

PF: identity: \(0 \).

inverse: \(c + \bar{c} = 0 \).

abelian: \(\checkmark \).
associativity, assume WLOG
\(0, a, b, c, a+b, b+c, -(a+b), -(b+c)\) all distinct from each other and \
\(-(a+b)+c) & -(a+(b+c))

(uses smoothness)

Let \(D = ab, c(a+b), o(b+c)\)
\(E = oab, bc, a(b+c)\)

\(C & D\) cubics meeting at 9 pts, no common comp. \(E\) passes thru 8 hence 9th by Cay-Ba

The 9th pt is \(-(a+b)+c)\)
The line thru \(a, b+c\) meets \(C\) in \(-(a+(b+c)) & -(a+b+c)\) hence equal. \(\Box\)
Tao says: Pascal is a degenerate case of the associativity law on cubic.

& Pappus is a degenerate case of Pascal.

Mordell’s Thm. \(\mathbb{Q} \) pts on \(C \)

form a fin. gen. abel. gp.