HW due Non

Hilbert Basis Thm Thm. Every Z(I) equals some Z(Fi,...,Fr) i.e. every aar is the intersection of Finitely many hypersurfaces Lemma (Defn. R ring TFAE () Eveny ideal in R is fingen. @ R satisfies asc. chain cond: any $I_1 \subseteq I_2 \subseteq \cdots$ eventually stationary. Say R is Noetherian.

Fact. Fields are Noetherran. PF of Lemma. $\bigcirc \rightarrow \oslash \quad \text{let} \ \mathcal{I}_1 \subseteq \mathcal{I}_2 \subseteq \cdots$ \sim I = U I_i is an ideal. I is f.g. by D. Some I; contains all gons so Ik =I. k≥j. $\textcircled{2} \Rightarrow \textcircled{1} \quad |f \ I \ not \ f.q.$ make $I_1 \subsetneq I_2 \subsetneq I_3 \gneqq \cdots$ by adding on gen. at a time.

Prop. R Noetherian => R[x1,..., xn] Noeth. In our case R=K, so HBT fallows. Pf. We'll do R[x], rest is induction. Say I S R[x] not f.g. Let fo = non-O elt of I of min deg. Given fi': fi'+1 = nonzero elt of I \ (fo,...,fi') = ji of mindeg.

Note deg fi < deg fi+1 Let ai = lead coeff of fi. $I_i = (a_0, \dots, a_i) \subset \mathbb{R}$. \mathbb{R} Noeth $\implies \mathbb{I}_0 \subseteq \mathbb{I}_1 \subseteq \dots$ eventually stat. 50 3 m st am+1 e (ao,..., am) → am+1 = Eriai rieR Let f = fm+1 - Žxdegfm+1-degfi rifi This I cooked up so deq I < deg fint ! Thus fe Jm >> fm+1 & Jm contrad.

Hilbert's Nullstullensatz c.1900 Weak Nullst. k alg closed Every max, ideal in KEX1,..., Xn] is of form (x1-a1,..., Xn-an). Strong Nullst. k alg closed IS KEX1,..., Xn] ideal. Then I(Z(I)) ⇒ √E i.e. { aavsz bij frad. ideals ? in K[x1,..., Xn]} $X \longmapsto \mathbb{I}(X)$ Z(I) ← I

The WN implies other natural statements: . Every proper ideal in K[X1,...,Xn] has a common zero. i.e. $I \subseteq k[x_1, ..., x_n] \Longrightarrow Z(I) \neq \phi$ · Converse: a family of polynomials with no common Zeros generates whole K[x1,...,xn].

- Aside: SN is a generalitation of Fund Thm Alg.
- First, note
- $(f) \in \mathbb{C}[Z]$ radical $\iff f$ has no rep. roots.
 - $SN \implies FTA$ because I(Z(F)) = V(F) implies F has a root.

FTA => SN because f factors into linears $\rightarrow I(f(t)) = (t)$ TT by example: $f(z) = (x-1)(x-3)^2$ $I(Z(F)) = I(\{1,3\}) = ((Z-1)(Z-3))$ $= \sqrt{(1)}$

Both WN & SN Fail for k not alg. closed: e.g. $(\chi^{2}+1)$ radical in IR[X] since $R[\chi]/(\chi^{2}+1) \cong \mathbb{C}$ But $\mathbb{I}(\mathbb{Z}(\chi^{2}+1)) = \mathbb{I}(\phi) = \mathbb{R}[\chi].$

Her MN >> SN "Trick of Rabinowitz" Soy ge I(Z(f1,...,fm)) Want grome power e (fi,..., fm). The assumption \Rightarrow a common zero of the fi is a zero of g. Thus ti, ..., fm, Xn+19-1 have no common zeros in Ant1 $W_N \Longrightarrow (f_{i,\dots}, f_m, \chi_{n+1}g - 1)$ = K[x1,..., Xn+1]

 \Rightarrow 1 = pifi + ... + pmfm + pm+1 (Xn+19-1) where pi' K[X1,..., Xn+1] Apply the map $K[x_1,...,x_n] \longrightarrow k(x_1,...,x_n)$ Xi har Xi Xn+1 - 1/9 $\rightarrow 1 = p_1(x_1,...,x_n,\frac{1}{q})f_1 + \dots +$ pm(x1,..., xn, /g) fm in " Something in (Fi,..., Fm)

Fact. Each
$$(X_1 - \alpha_1, ..., X_n - \alpha_n)$$

is maximal.
 \overrightarrow{H} . $k[X_1, ..., X_n] \longrightarrow k$
 $(X_1 - \alpha_1, ..., X_n - \alpha_n)$
 $f \longrightarrow f(\alpha_1, ..., \alpha_n)$
 $1 \longrightarrow 1$
This is \cong so done.

Thm.
$$k = field$$
, K extension k alg closed $\Rightarrow R/m = \bar{k}$ IF K is fin gen as a k-algUnder $R \rightarrow R/m$ then K is algebraic over k.Under $R \rightarrow R/m$ Ff of WN. Say $m = \max$ ideal in
 $R = kEx_1,..., xn$?some \bar{a}_i image of $\bar{a}_i \epsilon \bar{k}$ $R = kEx_1,..., xn$? $\Rightarrow m \ge (x_1 - a_1, ..., xn - an)$ $\Rightarrow R/m$ is a field, fin gen as k-alg.
(since R is), $m^2(x_1 - a_1, ..., xn - an)$ $Have Knm = \{o]$.(else $m = R$)But m' maximal \Rightarrow image \bar{k} of k in R/m is $\cong k$. $\Rightarrow m = m'$