HW due Mon

Hilbert Basis Thin Fact. Fields are Noetherian. Thm. Eveny $Z(I)$ equals

Some $Z(f_1,...,f_r)$
 $\overline{f_1(g_1,...,f_r)}$
 $\overline{f_2(g_1,...,f_r)}$ some $Z(F_{1},...,F_{r})$ ie every aav is the intersection of Finitely many hypersurfaces I is f.g. by D . Lemma / Defn. R ring TFAE Every ideal in ^R is fingen 2 R satisfies asc. chain cand: any $\mathcal{I}_1 \subseteq \mathcal{I}_2 \subseteq \cdots$ eventually
stationary. Say R is Noetherian.

 $\sim \mathcal{I}$ = \cup Ii is an ideal. Some I; contains all gens So I_{k} = I_{k} k $>$ j .
 $Q \Rightarrow Q$ If I not f_{q} . make $I_i \subsetneq I_2 \subsetneq I_3 \subsetneq \cdots$ by adding on gen. at a

Prop. R Noetherian => $R[x_1,...,x_n]$ Noeth. In our case R=K, so HBT f_{o} llows. B. We'll do R[x], rest is Say I CR[x] not f.g. Let \int_{0} = non- O elt of I of min deg. $Givmf_i$: f_{i+1} = nonzero elt of of mindeg.

Note $deg F_i \le deg F_{i+1}$ Let a_i = lead coeff of f_i . \mathcal{I}_i = $(a_0, ..., a_i)$ $\subset \mathcal{R}$. R North \Rightarrow $\overline{\perp}_{0} \subseteq \overline{\perp}_{1} \subseteq ...$ eventually So J m st annel $(a_{0},...,a_{m})$ $\Rightarrow a_{m+1} = \sum_{i=0}^{m} r_i a_i \quad r_i \in R$
Let $f = f_{m+1} - \sum_{i=0}^{m} x^{deg f_{m+1} - deg f_i} r_i f_i$ This I cooked up so deg + < deg fm+1 Thus $F \in J_m \implies F_{m+1} \in J_m$ $control.$

Hilbert's <u>Nullstullensatz</u> c.1900 West Nullst. Kalgelosed Eveny max, ideal in KEX1,..., Xn] is of form (x_1-a_1,\ldots,x_n-a_n) . Strong Nullst. Kalgelosed IS KEXI, -.. Xn] ideal. Then $\mathbb{T}(\mathcal{Z}(\mathcal{I})) = \sqrt{\mathcal{I}}$ i.e. $\{aays\}$ $\xrightarrow{bij} \{rad\}$ ideals ? $\times \quad \longmapsto \mathbb{I}(x)$ $Z(T) \longleftarrow T$

The WN implies other natural statements: · Eveny proper ideal in K[x1, ..., Xn] has a common Zero. i.e. $I \subseteq k[x_1,...,x_n] \implies Z(I) \neq \emptyset$ · Converse: a Family of polynomials with no common Zeros generates whole $k[x_{i_1},...,x_n]$

- Aside: SN is a generalization FTA SN because
-
- $(f) \in \mathbb{C}$ [7] radical π by example:
 $\iff f$ has no rep. nots. $\qquad \qquad$ \qquad $\$ \iff f has no rep. nots.
	- $I\left(\mathcal{H}f\right) = \sqrt{f} \quad \text{implies}$ F has ^a root
- **F** factors into linears First note \Rightarrow $\mathcal{I}(\mathcal{U}f) = \mathcal{V}(f)$ $SN \Rightarrow FTA$ because $\mathbb{I}(Z(F)) = \mathbb{I}(\{1,3\}) = ((2-1)(2-3))$
 $T(Z(F)) = \mathbb{I}(S)$ implyes

Both WN & SN Fail for k not alg. closed: e.g. (x^2+1) radical in $\mathbb{R}[\times]$ since $\mathbb{R}[\times 3/(x^2+1)] \cong \mathbb{C}$ But $\mathbb{I}(\mathbb{Z}(x^2+1)) = \mathbb{T}(\phi) = \mathbb{R}[x].$

H of MN => SN "Trick of Rabinowitz" $S_{\alpha\mu}$ ge $\mathbb{I}(\mathcal{Z}(f_{1},...,f_{m}))$ Want 9 some parer (f,,,,,fm). The assumption => a common Fero of the fi is a zero of g. Thus $F_{1,-}, F_{m}, X_{n+1}g-1$ have no common zeros in \mathbb{A}^{n+1} $wy \implies (f_{1,...,f_{m}, Y_{n+1}g-1})$ = $k[x_{i},...,x_{n+1}]$

 $\implies 1 = p_1 f_1 + \dots + p_m f_m + p_{m+1} (x_{n+1}g - 1)$ where pi't K[X1,..., Xn+1] Apply the map $K[x_{1},...,x_{n+1}]\longrightarrow K(x_{1},...,x_{n})$ $x_i \mapsto x_i$ $X_{n+1} \longmapsto Y_q$ $\rightarrow 1 = p_1(x_1,...,x_n,\frac{1}{q})f_1 + ... +$ $P_{m}(x_{1},...,x_{n},y_{q})$ for in $=$ Something in $(F_{1},...,F_{m})$

Fact	Each $(X_1-a_1,...,X_n-a_n)$	
is $maximal$	$\rightarrow k$	
$[X_1-a_1,...,X_n-a_n]$	k	
\uparrow	\uparrow	\uparrow
1	\downarrow	1
1	\downarrow	1
\uparrow	\downarrow	1

Thm. $k = \text{field}$, K extension	k algorithm
If K is fin gen as a k -alg	Under $R \rightarrow R/m$
then K is algebraic over k .	each $x_i \mapsto \overline{a_i} \in \overline{k}$
If $\text{af } WN$. Say $m = \text{max} \text{ ideal}$ in	Some $\overline{a_i} \text{ image of } a_i \in \overline{k}$
$\Rightarrow R/m$ is a field, fingen as k -alg.	$\Rightarrow m \equiv (x_1 - a_1, ..., x_n - a_n)$
$\Rightarrow R/m$ is a field, fingen as k -alg.	$\Rightarrow m \equiv (x_1 - a_1, ..., x_n - a_n)$
\Rightarrow image \overline{k} of k in R/m is $\equiv k$.	Sumes
\Rightarrow image \overline{k} of k in R/m is $\equiv k$.	Sumes
\Rightarrow $m = m$	Sumes