Morphisms $\chi \subseteq \mathbb{A}^n$, $\chi \subseteq \mathbb{A}^m$ aav's $F: X \longrightarrow Y$ is a morphism if it's restriction of a polyn. map $A^{n} \rightarrow A^{m}$. i.e. J fi,..., fm e k[xi,..., Xn] s.t. $f(x) = (f_1(x), ..., f_m(x))$ V × e X . A morphism is an isomorphism if it has an inverse morphism

Examples () Affine change of coords $A^n \rightarrow A^n$ linear map + translation. This is = \iff linear map is. $(2) C : Z(Y-x^2) \subseteq A^2$ $f: A^1 \to C$ $t \mapsto (t,t^2)$ slope t $f^{-1}: C \rightarrow A^{\prime}$ In general, (x,y) $\mapsto x^{\prime}$ are morphisms isomorphism

(3)
$$C = Z(x^3+y^2-x^2)$$

 $f: M' \rightarrow C$
 $t \mapsto (t^2-1, t(t^2-1))$
 $f(1) = f(-1).$
(4) $C = Z(y^2-x^3) \subseteq M^2$
 $f: M' \rightarrow C$
 $t \mapsto (t^2, t^3)$
 $f(1) = f(-1).$
Slope t
 $f(1) = f(-1).$
(4) $f(1) = f(-1).$
 $f(1)$

facts about morphisms 1) Morphisms are continuous wrt Zaniski topology $f: X \rightarrow Y$ $f'(Z(h_{1},..,h_{r}))$ = Z(h, of, ..., hr of) 2 Morphisms do not always map aav's to oav's $Z(xy-1) \longrightarrow A'$ $(\chi, q) \longmapsto \chi$ Image is /A¹ \ 0

Coordinate Rings X = aav $\sim k[X] = \{f|_X : f \in k[x_1, ..., x_n] \}$ = Epoly fors on X } = coord ring on X. k[X] is a ring, in fact a K-algebra. More: $k[X] = \frac{k[x_1, \dots, x_n]}{I(X)}$

5. if X = Z(xy-1) $[Y_{X}] \in k[X] \quad (!)$ [4] First examples 0 k [Aⁿ] ≅ k [x,.., xn] ② k[p] ≅ k (cf proof (x,-a),..., $f \mapsto f(p)$ $(x_n - a_n)$ $f \mapsto f(p)$ $(x_n - a_n)$ 3 KEXJ≅K X = PIU...UPr $f \longmapsto (f(p_1), ..., f(p_n))$

More examples
(F) L =
$$Z(Y-mx-b)$$

 $k[L] \cong k[x]$
 $k[L] \cong k[x]$
First, any poly in x.y
is equiv to a poly in x
 $Y \sim mx+b$
 $k[L] \longrightarrow k[x]$
 $(x^{3} + b) + mx+b)$
 $[f(x,y)] \longrightarrow f(x, mx+b)$
 $k[x] \longrightarrow k[L]$
 $f(x) \mapsto [f(x)]$
These are inverses.

(5)
$$C : Z(x^2+y^2-z^2) \leq A^3$$
 cone
 $k = C$.
exercise: in $k[C]$
 $(x^3 + 2xy^2 - 2xz^2 + x) \sim (x - x^3)$

Irreducibility & Goord rings
Prop. X irred
$$\iff k[X]$$
 integral
Dep. X irred $\iff II(X)$ prime
 $\iff k(X), \dots, Xn)/I(X)$ integral
domain
Fact. $k[X]$ gen. by coord fins,
 $X \rightarrow k$
 $(a_1, \dots, a_n) \mapsto a_i$
hence the name (?) Simil

() Twisted cubic $(= Z(y-x^2, Z-x^3))$ Will show C is irred. $Pf #1 (y-x^2, z-x^3)$ prime. Use K[x,y,Z] = (k[x,y])[Z] k[x,y] = (k[x])[y] Suppose $fg \in (Y-X^2, Z-X^3)$. Division alg: $f(x,y,z) = (z-x^3) f_1(x,y,z) + remainder$ (const in 2) $(z-x^3)f_1(x,y,z) + (y-x^2)f_2(x,y) + f_3(x)$ $mil_{ar} = g(x,y,z) = (z - x^3) g_1(x,y,z) - (y - x^2) g_2 + g_3(x)$ Since $fg \in (Y-X^2, Z-X^3) \Rightarrow f_3 = 0 \text{ or } g_3 = 0$

Indeed if $F_3(x) & g_3(x)$ both nonzero, can find a point in AP where $y-x^2$, $z-x^3$ Vanish but fg does not.

Alternately show: $K[X;Y;7]/(Y-X^2, Z-X^3) \longrightarrow k[X]$

Back to the dictionary
sub-aav's of
$$X \iff rad$$
, ideals in $k[X]$
 $Y \subseteq X \longmapsto k[Y] \subseteq k[X]$

 $\begin{array}{ccc} Pf \# 2 & f: | A' \rightarrow C & \text{is a surj.} \\ & f & t \mapsto (t, t^2, t^3) & \text{morphism...} \\ IF & C &= C_1 \cup C_2 & \text{then } A' &= f^{-1}(C_1) \cup f^{-1}(C_2) \\ & A' & \text{irred contrad.} \end{array}$