Chap 2 Projective varieties Proj space Pr : compactification of An w/ one infinitely distant pt in each direction. ~ compactification of aav's Precisely: $\mathbb{D}_{n} = \left(k_{n+1} - O \right) \setminus k_{*}$ = (kⁿ⁺¹ - 0) / nonzero Scaling = space of lines thru O

50 x ~y <> x = by bek* Write [(xo,..., xn]] as [xo: ... : xn] "homog. coords" <u>n=1</u> pictures over R Two pics /_P' Y circle K=R one pt as vertiline

algebraically: [x. : x.] $P^{1} = \{ E_{1} : x_{1} \} \cup \{ E_{0} : 1 \} \}$ ⇒ A' U A' = Pt For k= C, P¹ = Riemann sphere. = (v { m}

n=2 R antipodal pts idid R¹_R

 $A' \cup \mathbb{P}^1$ line thru Also have lines in XiX2-plan X0=1 algebraically: $\mathbb{P}^{2} = \{ [1: X_{1}: X_{2}] \} \cup \{ [0: X_{1}: X_{2}] \}$ X1, X2 not both $= \{ [1: x_1: x_2] \} \cup \{ [o: 1: x_2] \} \cup \{ [o: o:] \} \}$

In general:

$$D^n = |A^n \cup P^{n-1}|$$

 $= |A^n \cup \cdots \cup A^n$
This decomp. is not conomical.
Let $U_j = \{ [x_0 : \cdots : x_n] : x_j \neq 0 \}$
 $\longrightarrow P^n = U_j \cup H_j$
 $A^n = P^{n-1}$
The U_j form the standord
affine cover of P^n .
For $k = 0$ the U_j give P^n structure
of a 0 n-manifold.

Projective subspaces Images in PPⁿ of linear subspaces of kⁿ⁺¹. So a line in PPⁿ is image of plane in kⁿ⁺¹. Through any two pts in Pⁿ I! line Fact. Any two lines in P² intersect. PF. Any two planes in K³ intersect.

Projective varieties fe K[xo,...,xn] homog. if all terms have same degree. Fact. The O-set of f is well def. in P. $Pf(x' f(x) = f(x \times) = 0$ f(x) = 0Note: Z(f) in Aⁿ⁺¹ is a cone

A proj alg var in P" is common O-set of fim, fr e k [xo, ..., xn] homog. Examples (i) $Z(0) = \mathbb{P}^{n}$ $\mathcal{Z}(1) = \emptyset$ (1) $Z(X_0,...,X_n) = \emptyset$. (Xo,...,Xn) = { polys w/ no const terms "irrelevant ideal" (2) $Z(X_1 - a_1 X_0, ..., X_n - a_n X_0) = [1: a_1:...:a_n]$ ③ Z(Xo) = "hyperplane at ∞"
≅ 1Pⁿ⁻¹

(Conics $X = \Sigma(t)$ e.g. $f = \chi^2 + \eta^2 - z^2$ 3 std affine charts ~> circle, hyperbola, hyperbola (5) Image of $\varphi: \mathbb{P}^1 \longrightarrow \mathbb{P}^3$ q ([to:t1]) = $[t_{0}^{3}: t_{0}^{2}t_{1}: t_{0}t_{1}^{2}: t_{1}^{3}]$

This is a det. variety $rk\left(\frac{x_{0}}{x_{1}}\frac{x_{1}}{x_{2}}\frac{x_{2}}{x_{3}}\right) \leq 1$ ~ intersection of 3 quadrics. " proj. ratil normal curve of deg 3 exercise: In q is the whole variety Tayesh: 2nd, 3rd cols are multiples of 1st.

6
$$\varphi: \mathbb{P}' \times \mathbb{P}' \longrightarrow \mathbb{P}^{3}$$

 $([x_{0}: X_{1}], [Y_{0}:Y_{1}]) \mapsto$
 $([x_{0}: X_{1}], [Y_{0}:Y_{1}]) \mapsto$
 $[X_{0}Y_{0}: X_{0}Y_{1}: X_{1}Y_{0}: X_{1}Y_{1}]$
 $[m q = Z(Z_{0}Z_{3} - Z_{1}Z_{2})$
 $"quodrice"$
 $(Tong)$
 $Future (5) Grassmannians
 $G_{r,n} = \{r - din \text{ planes in } k^{n}\}$
 $[ater!]$
 $[mage of lines on left or for proj. alg. vars. later!
 $[mage of lines in quadric of proj. alg. vars. later!
 $(f) Compact Riemann surfaces of or proj. alg. vars. later!
 $(g) Moduli space$$$$$

Homogonization Fe KEKI, ..., Xn] ~ he k[xo,..., Xn] homog. Just add X. as needed. Example f(x,y) = y-x² $\sim h(x,y,z) = yz - x^{2}$

So get the old parabola plus [0:1:0] \sim parabola + pt \approx circle. Example (2) is also a homogonization. Upshot: Any affine variety can be projectivized ~ compactness, more symmetry.