Cohomology

Same basic information as homology, but get

 - multiplicative structure
 - pairing with homology
 - contravariance

Quick idea: \(X = \Delta \)-complex
\[G \] = abelian group, say \(\mathbb{Z} \)
\(\Delta^i(X) = \) functions from \(i \)-simplices of \(X \) to \(G \).
\[\Delta^i(X) \rightarrow \mathbb{Z} \]
\(\delta \) : \(\Delta^i(X,G) \rightarrow \Delta^{i+1}(X,G) \) coboundary \[(-1)^i f(\partial_i \sigma) \]

\[\delta f(\sigma) = \sum_{\sigma = \tau + e} (-1)^i f(\sigma) \]

\(H^*(X;G) \) is homology of this chain complex

Graphs. \(X = 1 \)-dim \(\Delta \)-complex = oriented graph

Let \(f \in \Delta^0(X,G) \)
\[\delta f(e) = f(v_e) - f(v_0) \]

= change of \(f \) over \(e \) "derivative"

think: \(f \) = elevation

\[\rightarrow \text{chain complex:} \]
\[0 \rightarrow \Delta^0(X,G) \rightarrow \Delta^1(X,G) \rightarrow 0 \]

\[H^0(X,G) = \ker \delta \]

= functions constant on each component
= direct product of components

(as opposed to direct sum in homology case)
\[H'(X, G) = \Delta'(X, G) / \text{Im} \delta \]

So for \(f \in \Delta'(X, G) \), have \([f] = 0 \) in \(H'(X, G) \) iff \(f \) has an antiderivative.

Examples.

1. \(X = \text{tree} \)
 Antiderivatives always exist
 \[\Rightarrow H'(X, G) = 0. \]

2. \(X = \emptyset \)
 \[\Delta'(X, G) \cong G \]
 No nontrivial function has an antiderivative
 \[\Rightarrow H'(X, G) \cong G \]

3. \(X = \bigvee_{\alpha} S^1 \)
 \[\Rightarrow H'(X, G) \cong \prod_{\alpha} G \]

More generally. \(X = \text{any tree graph} \).

Let \(T = \text{maximal tree (or forest)} \), \(E = \text{edges outside } T \)
\[\Rightarrow H'(X, G) = \bigoplus_{E} G \]
(again, instead of direct sum).

Why? First consider \(\{ f \mid f|_T = 0 \} \)
Two of these are cohomologous \(\iff \) they are equal
(only possible antiderivative is \(F = \text{const} \)).

Next show any \(f' \in \Delta' \) is cohomologous to some \(f \) with \(f|_T = 0 \). Modify \(f' \) by making one edge of \(T \) evaluate to \(0 \), say add \(g \) to \(f'(e) \).
Then for any edge \(e \) of \(X - T \), either add or subtract \(g \), depending on whether loop through \(e, e' \) traverses them in same or diff directions.
Check new \(f' \) cohomologous to old.
Two dimensions. \(X = 2 \)-dim \(\Delta \)-complex

\[\delta : \Delta'(X,G) \rightarrow \Delta^2(X,G) \]

\[\delta f([v_0,v_1,v_2]) = f([v_1,v_2]) - f([v_0,v_2]) + f([v_0,v_1]) \]

Check that

\[0 \rightarrow \Delta^0(X,G) \rightarrow \Delta'(X,G) \rightarrow \Delta^2(X,G) \rightarrow 0 \]

is a chain complex: say \(f \in \Delta^0(X,G) \).

\[\delta \delta f([v_0,v_1,v_2]) = (f(v_2) - f(v_0)) + (f(v_1) - f(v_0)) - (f(v_2) - f(v_1)) \]

i.e. if you hike a loop, total elevation change is zero.

1-cocycles: \(\delta f = 0 \) iff

\[f([v_0,v_2]) = f([v_0,v_1]) + f([v_1,v_2]) \]

so \(\delta f \) measures failure of additivity.

This is the local obstruction to \(f \) being in \(\text{im} \delta \)

And \(f \neq 0 \) in \(H^1(X) \) \(\iff \) does not come from \(F \in \Delta^0 \).

i.e. if there is a global obstruction.

Analogue with calculus. 1-forms on \(\mathbb{R}^3 \leftrightarrow \) vector fields

Want to know if vector field is \(\nabla f \)

local obstruction: \text{curl} = 0. \quad \text{(closed)}

global obstruction: line integrals = 0. \quad \text{(exact)}

In \(\mathbb{R}^n \), all closed forms are exact.

Not true in other spaces, e.g. \(\mathbb{R}^2 - \{0\} \)

de Rham cohomology: closed forms / exact forms.
Geometric interpretation of 1-cocycles, X a surface.

Take $G = \mathbb{Z}_2$. $\delta f = 0$ means f takes value 1 on even # of edges in each Δ.

$\{ f \} = 0 \iff$ can color regions black & white.

Examples: disk, annulus:

\[\begin{array}{c}
\text{unlabeled } = 0.
\end{array}\]

Take $G = \mathbb{Z}$. Again $\delta f = 0 \quad \rightarrow \text{ collection of curves}$

\[\begin{array}{c}
e.g. \quad \text{or} \quad \text{arrows point up.}
\end{array}\]

$[f] = 0 \iff$ can assign elevation to each vertex consistently.

Exercise: Construct nontrivial cocycle on annulus.

So: in annulus, can walk in a loop and change your elevation!

cf. international dateline.

Exercise: Find geometric interpretations of 1- & 2-cocycles in a 3-manifold.
Cohomology Groups (Some Abstract Algebra)

Start with a chain complex of abelian groups C:

$$
\cdots \rightarrow C_n \xrightarrow{\partial_n} C_{n-1} \rightarrow \cdots
$$

$$
\Rightarrow H_n(C) = \ker \partial_n / \text{im } \partial_{n+1}
$$

To get cohomology, we dualize: replace each C_n with its dual $C_n^* = \text{Hom}(C_n, G)$

replace each ∂ with $\delta = \partial^* : C_{n-1}^* \rightarrow C_n^*$

Notice: $\delta \delta = \partial^* \partial^* = (\partial \partial^*)^* = 0^* = 0$

$$
\Rightarrow H^n(C, G) = \ker \delta / \text{im } \delta
$$

Guess: $H^n(C, G) \cong \text{Hom}(H^n(C), G)$ too optimistic, but almost true.

It is true for graphs.

Example.

$$
C : 0 \rightarrow \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \rightarrow 0
$$

$$
\Rightarrow H_0(C) = \mathbb{Z}, \; H_1(C) = \mathbb{Z}/2\mathbb{Z}, \; H_2(C) = 0, \; H_3(C) = \mathbb{Z}
$$

$C^* : 0 \leftarrow \mathbb{Z} \xleftarrow{0} \mathbb{Z} \xleftarrow{2} \mathbb{Z} \xleftarrow{2} \mathbb{Z} \leftarrow 0$

$$
\Rightarrow H^0(C, \mathbb{Z}) = \mathbb{Z}, \; H^1(C, \mathbb{Z}) = 0, \; H^2(C, \mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}, \; H^3(C, \mathbb{Z}) = \mathbb{Z}
$$

See: Torsion shifts up one dimension.

This holds in general, since any chain complex of finitely generated free abelian groups splits as a direct sum of

$$
0 \rightarrow \mathbb{Z} \rightarrow 0
$$

and

$$
0 \rightarrow \mathbb{Z} \xrightarrow{m} \mathbb{Z} \rightarrow 0
$$
Universal Coefficient Theorem for Cohomology

\[C : \cdots \to C_n \to C_{n-1} \to H_n(C) \]

\[T_n(C) = \text{torsion subgroup of } H_n(C). \]

We just showed: If the \(H_n(C) \) are finitely generated, and each \(C_i \) is free abelian, then

\[H^n(C, \Z) \cong H_n(C)/T_n(C) \oplus T_{n-1}(C) \]

This is a special case of:

Theorem. There is a split short exact sequence:

\[0 \to \text{Ext}(H_{n-1}(C), G) \to H^n(C, G) \to \text{Hom}(H_n(C), G) \to 0 \]

The group \(\text{Ext}(H_{n-1}(C), G) \) is explicit. It describes all extensions of \(H_{n-1}(C) \) by \(G \). Some properties: If \(H \) is finitely gen, then

1. \(\text{Ext}(H \oplus H', G) \cong \text{Ext}(H, G) \oplus \text{Ext}(H', G) \)
2. \(\text{Ext}(H, G) = 0 \) if \(H \) is free
3. \(\text{Ext}(\Z/n\Z, G) \cong G/nG \)

These imply the special case of UCT above.

Universal coefficient theorem for homology:

\[H_n(X, \Q) \cong H_n(X, \Z) \otimes \Q \quad \text{ (later).} \]
Cohomology of Spaces

\(\chi = \text{space}, \ G = \text{abelian group} \)

\(C^n(\chi, G) = \text{singular } n\text{-chains with coefficients in } G, \text{ except allow } \infty \text{ sums} \)

\(= \text{dual of } C_n(\chi) \)

\(= \text{Hom}(C_n(\chi), G) \)

Coboundary \(\delta \) is \(\partial \): for \(\varphi \in C^n(\chi, G) \)

\[\delta \varphi : C^{n+1}(\chi) \xrightarrow{\partial} C^n(\chi) \xrightarrow{\varphi} G. \]

Again, \(\delta^2 = 0 \).

\[\sim H^n(\chi, G) \quad \text{cohomology group with coefficients in } G. \]

\[= \ker \delta / \text{im } \delta = \text{cocycles/coboundaries} \]

Cocycles. A cochain \(\varphi \) is a cocycle iff \(\delta \varphi = \varphi \partial = 0 \),

i.e. \(\varphi \) vanishes on all boundaries.

It is a coboundary if it has an "antiderivative."

Since \(C_n(\chi) \) free, UCT gives:

\[0 \rightarrow \text{Ext}(H_{n-1}(\chi), G) \rightarrow H^n(\chi, G) \rightarrow \text{Hom}(H_n(\chi), G) \rightarrow 0 \]

"Cohomology groups of \(\chi \) with arbitrary coefficients is determined by the homology groups of \(\chi \) with \(\mathbb{Z} \) coefficients."

What is \(\text{Ext} \)?

Let \(B_n = \text{im } \partial_{n+1} \) (boundaries)

\(Z_n = \ker \partial_n \) (cycles)

\[\sim \text{ in } : B_n \rightarrow Z_n \]

\[\text{Ext } (H_{n-1}(\chi), G) = \text{Coker } i_{n-1}^* \]

\(\sim \text{dual to } i_{n-1} \)
COHOMOLOGY IN LOW DIMENSIONS

\(n = 0 \) \quad \text{Ext term is trivial, so}
\[H^n(X, G) \cong \operatorname{Hom}(H^0(X), G) \]

Can see directly from definitions:
- Sing. 0-simplices \(\leftrightarrow \) points of \(X \)
- Cochains \(\leftrightarrow \) functions \(X \to G \) (not continuous)
- Cocycles \(\leftrightarrow \) vanish on boundaries
 \(\leftrightarrow \) const. on each path component
\[\Rightarrow H^n(X, G) = \text{functions } \{ \text{path components of } X \} \to G \]
\[\cong \text{Hom}(H_0(X), G) \].

\(n = 1 \) \quad \text{Ext = 0 since } H_0(X) \text{ free}
\[\Rightarrow H^1(X, G) \cong \text{Hom}(H_1(X), G) \]
\[\cong \text{Hom}(\pi_1(X), G) \text{ if } X \text{ path conn.} \]

COEFFICIENTS IN A FIELD

\(H_n(X, F) = \) homology gps of chain complex of \(F \)-vector spaces \(C_n(X, F) \)
Dual complex \(\text{Hom}_F(C_n(X, F), F) = \text{Hom}(C_n(X), F) \)
\[\cong H^n(X, F) \]
Can generalize UCT to fields (or pid's) \(\Rightarrow \text{Ext vanishes for fields} \)
\[\cong H^n(X, F) \cong \text{Hom}_F(H_0(X, F), F) \]

For \(F = \mathbb{Z}/p\mathbb{Z} \text{ or } \mathbb{Q}, \text{ Hom}_F = \text{Hom} \)
Examples of 2-cocycles

1. $X = D^2$

 We know $H^2(D^2, \mathbb{Z}) = 0$

 So $\varphi = \delta \psi$.

 What is ψ?

 Solution:

 No obstructions.

2. $X = S^2$

 Want to show $[\varphi] \neq 0$

 in $H^2(S^2, \mathbb{Z})$

 i.e. no antiderivative ψ.

 Any ψ with $\delta \psi = \varphi$ must satisfy:

 writing a for $\psi(a)$

 \[
 \begin{align*}
 b + d &= a \\
 e + c &= a \\
 b + f &= c \\
 e + f &= d + 1
 \end{align*}
 \]

 \[
 \Rightarrow (b+d) - (e+c) = 1 \\
 \Rightarrow a - a = 1.
 \]

3. $X = T^3$, $G = \mathbb{Z}/2\mathbb{Z}$.

 Realize T^3 as Δ-complex by subdividing cube

 into 6 tetrahedra, identifying opp faces of the

 cube. Let L = line segment in cube that is a loop

 in T^3, misses 1-skeleton. Declare $\varphi(T) = 1$ if

 $T \cap L \neq \emptyset$. Show $[\varphi] \neq 0$ in $H^2(T^3, \mathbb{Z}/2\mathbb{Z})$.

Cohomology Theory

Reduced groups, relative groups, long exact seq of pair, excision, Mayer-Vietoris, all work for cohomology.

Induced Homomorphisms - Contravariance

Given \(f: X \to Y \), get chain maps \(f^*: C_*(X) \to C_*(Y) \).
Dualize: \(f^*: C^n(Y) \to C^n(X) \)
\(f^* \delta = \delta f^* \) dualizes to \(\delta f^* = f^* \delta \)
\(\implies f^*: H^n(Y, G) \to H^n(X, G) \)
with: \((fg)^* = g^* f^* \) \& \((id)^* = id \)
Say \(X \to H^n(X, G) \) is a contravariant functor.

Homotopy Invariance

\(f \simeq g : X \to Y \implies f^* = g^* : H^n(Y) \to H^n(X) \).
Dualize the proof for homology
Recall there is a chain homotopy \(P \) s.t. \(g^* - f^* = \delta P + P \delta \)
Dualize: \(g^* - f^* = P^* \delta + \delta P^* \)
\(\implies P^* \) a chain homotopy between \(f^* \) & \(g^* \)
So all the work has been done.