CUP, CAP, AND POINCARÉ DUALITY

Poincaré duality.
$$H^{k}(X) \xrightarrow{\cong} H_{n-k}(X)$$

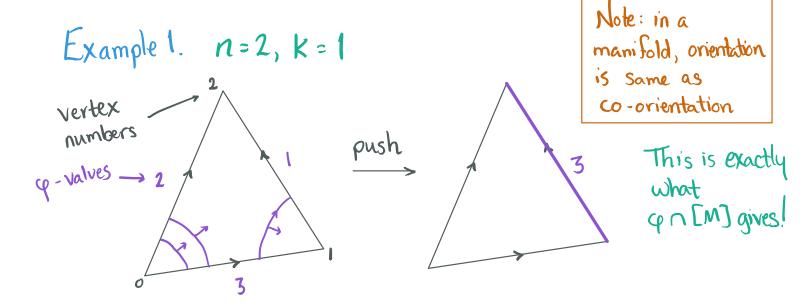
 $\varphi \longmapsto [M] \land \varphi$

Also. Under this isomorphism, cup product corresponds to intersection: $\varphi \cup \psi \longmapsto \varphi^* \cap \psi^*$

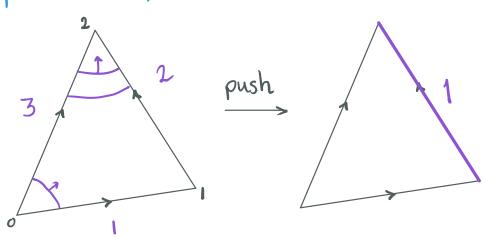
We'll work with Δ -complexes, simplicial (co)homology.

CAP

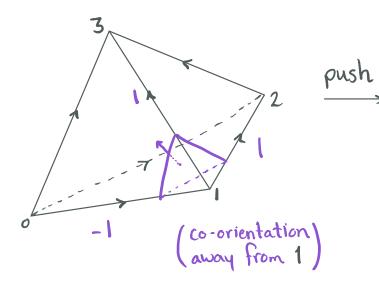
Idea. Realize cohomology class φ as "intersect with dual object." Push dual in each simplex toward highest vertex (this is well-defined across different simplices in a Δ -complex). Result is $[M] \land \varphi = \varphi^*$

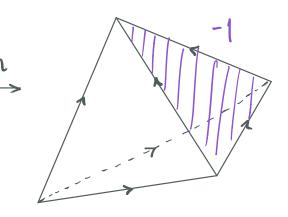


Example 2. n=2, K=1

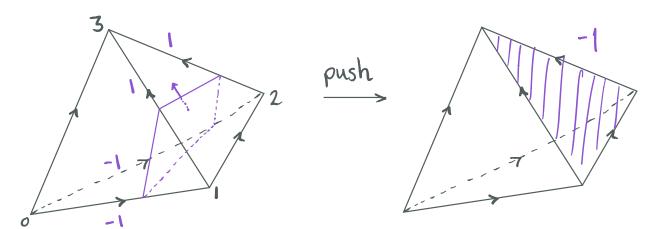


Example 3 n=3, k=1

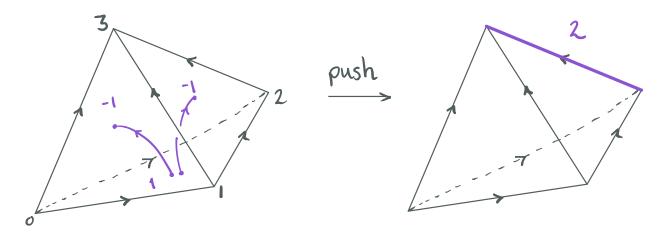




Example 4 n=3, K=1



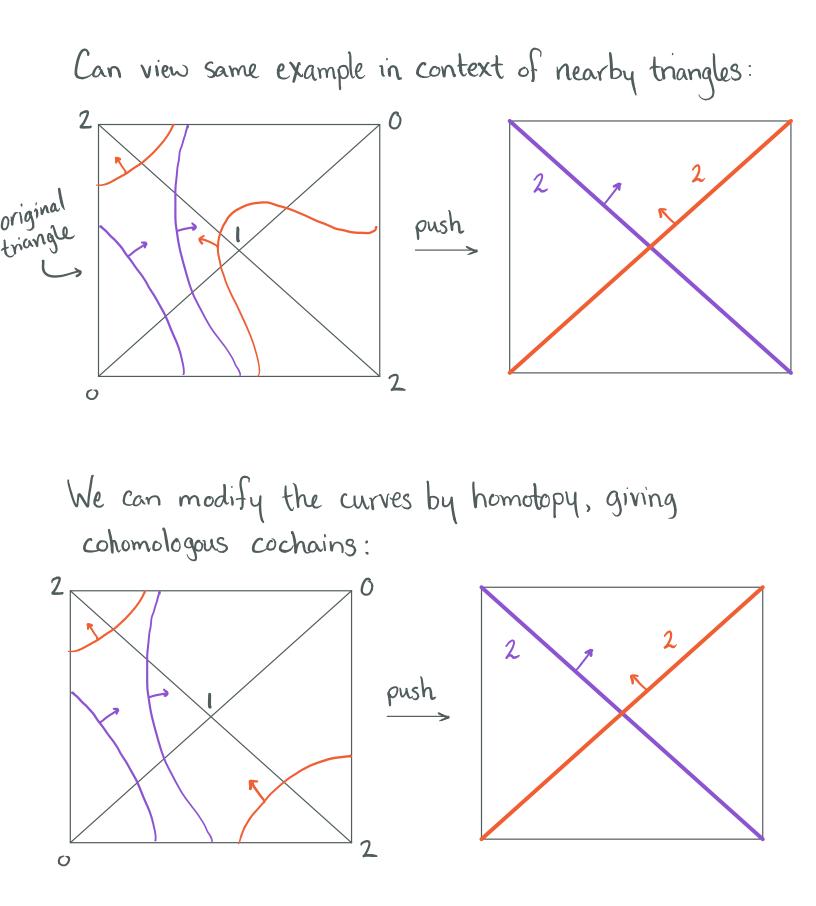
Example 5 n=3, k=2



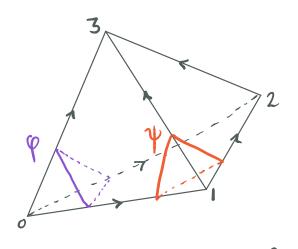
Cup

Idea. To find quy, push qup, push y down and intersect

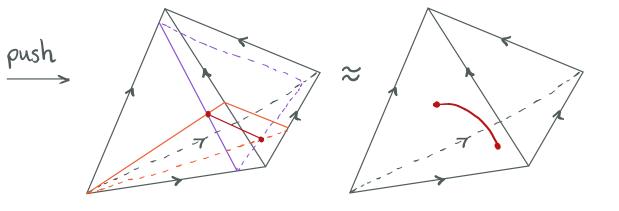
Example 1. n=2, k=1 y=2 push z intersection q=2 z z



Example 2. $n=3, k=1, 1 \pmod{2}$ this time)



Have $q \lor \psi \in \mathbb{H}^2 \longrightarrow$ should be dual to a 1-cell. If we push all the way and intersect, get a point (not what we want). If we push almost all the way, we get what we want:



This is dual to quy!

Note: In the earlier examples, pushing almost all the way also works.