Spectral Sequences
Updated July 1 for Beginners
(Pages $1-2,7-8,19,27,32-34$ following Hutchings)
The long exact sequence of a pair allows us to compute $H_{*}(X)$ in terms of $H_{*}(A)$ and $H_{*}(X, A)$.

There is a similar LES for a triple. But what about quadruples, etc? LES's don't work anymore. The answer is spectral sequences.

Filtrations
$X=C W$-complex.
We filter X by subcomplexes: $X_{0} \subseteq X_{1} \subseteq \cdots$
\leadsto filtration of $C_{*}(x): F_{p} C_{k}$
\leadsto associated graded modules:

$$
G_{p} C_{k}=F_{p} C_{k} / F_{P^{-1}} C_{k}
$$

examples (1) $X_{i}=i$-skeleton.
(2) For a fiber bundle, $X_{i}=$ pre-image of i-skeleton of the base.

Filtered Chain Complexes
We have $\partial F_{p} C_{k} \subseteq F_{p} C_{k-1}$
\leadsto induced $\partial: G_{p} C_{k} \rightarrow G_{p} C_{k-1}$
\leadsto associated graded chain complex $\left(G_{p} C_{*}, \partial\right)$
and: induced filtration on $H_{*}(X)$:

$$
F_{p} H_{k}(x)=\left\{\alpha \in H_{k}(x): \exists x \in F_{p} C_{k} \text { s.t. } \alpha=[x]\right\}
$$

\rightarrow associated graded pieces $G p H_{k}(x)$.
Hope. $H_{*}\left(G_{p} C_{*}\right)$ is easy to compute and it determines $G_{p} H_{*}\left(C_{*}\right)$, hence $H_{*}(X)$. We know it works for $\phi \subseteq A \subseteq X$.

Will compute $H_{*}(X)$ by "successive approximations"

Overview
A spectral sequence has pages. Each page is a 2D grid of vector spaces (let's work over a field). There are also differentials, and we get from one page to the next by taking homology.

Each page looks like:

The $E_{p, q}^{r}$ with $p+q=k$ correspond to k-chains at the various levels of the filtration.
e.g. $E_{p, q}^{0}=G_{p} C_{p+q}=F_{p} C_{p+q} / F_{p-1} C_{p+q}$

The differentials always reduce dimension by 1, but as r increases they go further down the filtration. Specifically, on pager, differentials go r units left and $r-1$ units up.

In favorable cases, each term Ep ,q stabilizes with r. For instance if the $E_{p, q}^{0}$ are 0 outside the first quadrant (all the differentials are eventually 0). We define $E_{p i q}^{\infty}$ to be this term. The ∞ page is made of these terms.

Think about paintball. Each generator for $E_{p, 9}^{0}$ gets a paintball. When someone shoots a paintball, both the target and the shooter get eliminated.

We will see: $E_{p, q}^{\infty}=G_{p} H_{p+q}\left(C_{*}\right)$
Sometimes a spectral sequence degenerates, which means all terms stabilize at the same time.

INDEXING (AN ASIDE)
The indexing probably seems weird. Also, the way the arrows turn might seem mysterious. If we instead choose the obvious indexing:

$$
E_{p, q}^{0}=G_{p} C_{q}
$$

then the arrows are more natural:

A downside is that for most natural filtrations, the bottom right of the $1^{\text {st }}$ quadrant would be O^{\prime} 's.

Also, Serre invented spectral sequences for fibrations. There, $E_{p, q}^{2}=H_{p}\left(B ; H_{q}(F)\right)$, which is nice!

By the way, Pere's result illustrates the general pattern, If a theorem starts with "There is a spectral sequence..." then often what the theorem does is deseribe the E^{2} page.

Using Spectral Sequences
Let's say a word about using spectral sequences (yes, before we formally say what they are!)

Often, when using a long exact sequence, the hope is that there are lots of zeros. For instance, if every third term is 0 , the remaining maps are isomorphisms.

It's the same with spectral sequences. Here's an example. We said that in Serre's spectral sequence we have $E_{p, q}^{2}=H_{p}\left(B, H_{q}(F)\right)$. So if B is m-dimensional and F is n-dimensional, the E^{2} page lives in the $m \times n$ rectangle:

All arrows going in \& out of $E_{m, n}^{r}$ are 0 for $r \geqslant 2$. So: $E_{m, n}^{2}=E_{m, n}^{\infty} \cong H_{m+n}(E)$.

Formal Definitions and Statements

Say we have the $X_{p}, F_{p} C_{*}, G_{p} C_{*}$ as above.
We set $E_{p, q}^{0}=G_{p} C_{p+q}$

$$
\partial_{0}^{1}: E_{p, q}^{0} \rightarrow E_{p, q-1} \quad(=u s u a l \text { boundary } \partial)
$$

Then $E_{p, q}^{\prime}$ is obtained by, taking homology at $E_{p, q}^{0}$, so $E_{p, q}^{1}=H_{p+q}\left(G_{p} C_{*}\right)$
\& $\partial_{1}: E_{p, q}^{\prime} \longrightarrow E_{p-1, q}^{\prime}$ is defined as: given $\alpha \in E_{p, q}^{\prime}$, represent it by a chain $x \in F_{p} C_{p+q} \leadsto \partial x \in F_{p} C_{p+q-1}$

$$
\leadsto \partial_{1}(\alpha)=[\partial x]
$$

In other words ∂_{1} is the usual ∂ in the same sense as $\delta: H_{n}(X, A) \rightarrow H_{n-1}(A)$ is the usual ∂.

Exercise: ∂_{1} is well def. $\& \partial_{1}^{2}=0$.
Again, $E_{p, q}^{2}$ obtained by taking homology:

$$
E_{p, q}^{2}=\frac{\operatorname{ker}\left(\partial_{1}: E_{p, q}^{1} \longrightarrow E_{p-1, q}^{1}\right)}{\operatorname{im}\left(\partial_{1}: E_{p+1, q}^{\prime} \longrightarrow E_{p, q}^{\prime}\right)}
$$

In general: $E_{p, q}^{r}=\frac{\left\{x \in F_{p} C_{p+q}: \partial x \in F_{p-r} C_{p+q-1}\right\}}{F_{p-1} C_{p+q}+\partial\left(F_{p+r-1} C_{p+q+1}\right)}$
where really we quotient by the intersection of the denominator by the numerator.

This is an approximation of cycles/boundaries: if a chain has boundary, but the boundary is far down the filtration, we consider it acycle (for now). Similarly, if a chain is a boundary of a chain much higher in the filtration, we consider it to not be a boundary (for now).

Proposition. Let $\left(F_{p} C_{*}, \partial\right)$ be a filtered complex, and define the $E_{p, q}^{r}$ as above. Then:
(1) ∂ induces a well-defined map $\partial_{r}: E_{p, q}^{r} \longrightarrow E_{p-r, q+r-1}^{r}$ with $\partial_{r}^{2}=0$.
(2) E^{r+1} is the homology of $\left(E^{r}, \partial_{r}\right)$.
(3) $E_{p, q}^{\prime}=H_{p+q}\left(G_{p} C_{*}\right)$
(4) If the filtration of C_{i} is bounded $\forall i$ then $\forall p, q$ if r is sufficiently large then

$$
E_{p, q}^{r}=G_{p} H_{p+q}\left(C_{*}\right)
$$

Pf. Exercise

Cartoon

Here is a schematic of a filtration, and some chains in it.

So the edge 2 lies in X_{3}, but its boundary lies in X_{2}, and one component of the boundary lies in X_{1}.

Zeroth approximation: Take boundaries in X_{p} / X_{p-1}
So a chain in X_{p} is a cycle if its boundary lies in X_{p-1}. In this approximation, the edge labeled I is not a cycle but the others are.

First approximation: of the remaining chains, see if they have boundary in $X_{p-1} / X_{p}-2$, etc.

The edges labeled 2 and 3 have boundary in the $1^{\text {st }}$ approximation.
The edge labeled 4 has boundary in the $2^{\text {nd }}$ approx.
At each stage we take homology, so at the stage when we discover a chain's boundary, the boundary gets killed and the chain with boundary gets forgotten since it is not a cycle.
(Can think of searching for each chain's boundary with a stronger \& stronger Flashlight.)

These stages are exactly the pages of the spectral sequence.

Baby Examples
Example 1. $X=y_{0}^{e} \omega_{0}, X_{0}=X^{(0)}, X_{1}=X^{(1)}=X$.

Example 2. $X=y_{0}^{\omega}, X_{0}=\{u\}, X_{1}=\{v, w\}, X_{2}=X$.

E°

E^{\prime}

$E^{2}=E^{\infty}$

Of course we get that $H_{0}(X ; F)=F$ both times. The first spectral sequence gives

$$
H_{0}(X ; F)=\langle v, w\rangle /\langle v-w\rangle
$$

and the second gives: $H_{0}(X ; F)=\langle v, w\rangle /\langle w\rangle$

Toddler Example
Example 3. $X=\mathbb{R}^{2}$ with usual cell decamp into unit squares.

$$
\begin{aligned}
& X_{0}=x^{(0)} \\
& X_{1}=X^{(1)} \\
& X_{i}=X_{i-1} \cup \text { \{one square \} } i \geqslant 2
\end{aligned}
$$

Eventually, all the squares get killed.
This filtration is not bounded, so you'll need to think a bout direct limits (or do a finite grid instead)

FINE $P_{\text {RUNT }}$

We were a little loose in Example 2. In order to do more complicated examples we need to rectify this. Consider the differential on the E^{-1} page

The map here doesn't make sense since de does not lie in $\langle w\rangle$.

If we read the definitions more carefully, we see that we should have written:

Taking homology, we have $E_{1,-1}^{2}=\langle v, w\rangle /\langle v, v-w\rangle=0$. So we get the same answer as before, except we're doing it correctly.

In this example, writing $\langle v, w\rangle /\langle v\rangle$ fixes the codomain of ∂_{1} In other examples (like the next two) writing the $E_{p q}^{r}$ as quotients can also correct the domain of ∂r. As weill see, we need to choose coset reps carefully so the image of ∂_{r} lies in the correct term of the filtration.

Adolescent Example
Inspired by the last two examples, we consider spectral sequences associated to filtration where we add one cell at a time.

Lets compute $H_{*}\left(S^{1}\right)$ this way. The filtration.

The spectral sequence:
Formally, the image of the first map is $u-w$. But

$$
E^{2}=E^{3}=E^{4}
$$

A subtlety: $\partial_{3}(e) \notin\langle u\rangle$ but $e \equiv 0$ in the quotient and $\partial e \in\langle u\rangle$ Similarly, use: $g+h \equiv e+f+g+h$ $\langle u\rangle$

$$
E^{-s}=E^{\infty}
$$

Or:

So u represents $H_{0}\left(S^{1}\right) \cong \mathbb{Z}$
e+ftg+h represents $H_{1}\left(S^{1}\right) \cong \mathbb{Z}$.

The One-at-a-time Spectral Sequence

Similar to the last example, lets compute the homology of T^{2} by adding one cell at a time. Use $\pi / 2$

$$
\begin{array}{ll}
X_{0}=\{v\} & X_{3}=X_{2} \cup e_{3} \\
X_{1}=X_{0} \cup e_{1} & X_{4}=X_{3} \cup u \\
X_{2}=X_{1} \cup e_{2} & X_{5}=X_{4} \cup L
\end{array}
$$

Which gives

$$
H_{k}\left(T^{2}\right)= \begin{cases}\mathbb{Z} & k=0,2 \\ \mathbb{Z}^{2} & k=1\end{cases}
$$

More Fine P PR IT
Part 4 of the main proposition says:

$$
E_{p, q}^{\infty}=G_{p} H_{p+q}\left(C_{*}\right)
$$

In the above examples, it is tempting to think of each box on the $k^{\text {th }}$ diagonal of the E^{∞} page as a direct summand of $H_{k}(X)$

But the above statement tells us:
$E_{0, k}^{\infty}$ is a subgroup of $H_{k}(X)$
$E_{1, k-1}^{\infty}$ is a subgroup of $H_{k}(X) / E_{0, k}^{\infty}$
$E_{2, k-2}^{\infty}$ is a subgroup of $H_{k}(x) /\left\langle E_{0, k}^{\infty}, E_{1, k-1}^{\infty}\right\rangle$
etc.

For instance, in the last example, the $E_{1,0}^{\infty}$ entry $\left\langle e_{1}\right\rangle$ is naturally a subgroup of $H_{1}\left(T^{2}\right)$, while the $E_{2,-1}^{\infty}$ entry $\left\langle e_{1}, e_{2}\right\rangle /\left\langle e_{1}\right\rangle$ is naturally a subgroup of $H_{1}\left(T^{2}\right) /\left\langle e_{1}\right\rangle$. In this example, it's hard to get lost, but in more complicated examples, it is important to keep this straight.

Application: $C_{\text {ellular }}=S_{\text {angular }}$
Prop. For X a Δ-complex, $H_{*}(X) \cong H_{*}^{\text {cell }}(X)$
Pf. Let $X_{i}=X^{(i)} \quad$ (filtration by skeleta)
$\leadsto E_{p q}^{0}=C_{p+q}\left(X^{(p)}\right) / C_{p+q}\left(X^{(p-1)}\right)$
$\leadsto E_{p q}^{\prime}=H_{p+q}\left(X^{(p)}, X^{(p-1)}\right)$ (by defnof rel. hoo.)
Recall: $H_{p+q}\left(X^{(p)}, X^{(p-1)}\right) \cong\left\{\begin{array}{cc}C_{p}^{\text {cell }}(X) & q=0 \\ 0 & q \neq 0\end{array}\right.$
where $C_{p}^{\text {cell }}(X)$ is the free F-module on the p-cells.

Now: $\partial_{1}: H_{p}\left(X^{(p)}, X^{(p-1)}\right) \longrightarrow H_{p-1}\left(X^{(p)}, X^{(p-1)}\right)$ is the usual ∂ (CF. LES for triple).
This exactly records the gluing maps of the p-cells to the ($p-1$)-skeleton.
$\Rightarrow E^{2}$ page is $H_{*}^{\text {cell }}(X)$ in bottom row, and O elsewhere
$\Rightarrow E^{\infty}=E^{2}$ (the spec. seq. degenerates on page 2). The proposition follows.

APPLICATION: KÜNNETH
$\left(C_{*}, \partial\right),\left(C_{*}^{\prime}, \partial^{\prime}\right)$ chain complexes over a field

$$
\left(C \otimes C^{\prime}\right)_{k}=\oplus_{i+j=k}^{\oplus} C_{i} \otimes C_{j}
$$

and $\partial(\alpha \otimes \beta)=(\partial \alpha) \otimes \beta+(-1)^{i} \alpha \otimes\left(\partial^{\prime} \beta\right) \quad \alpha \in C_{i}, \beta \in C_{j}^{\prime}$
Prop. The natural map

$$
\bigoplus_{i+j=k} H_{i}\left(C_{*}\right) \otimes H_{j}\left(C_{*}^{\prime}\right) \longrightarrow H_{i+j}\left(C \otimes C^{\prime}\right)
$$

is an isomorphism.
Pf. Define $F_{p}\left(C \otimes C^{\prime}\right)_{k}=\underset{i \leq p}{\oplus} C_{i} \otimes C_{k-i}$

$$
\begin{aligned}
& \leadsto E_{p, q}^{0}=G_{p}\left(C \otimes C^{\prime}\right)_{p+q}=C_{p} \otimes C_{q}^{\prime} \\
& \text { Have } \begin{aligned}
\partial\left(C_{p} \otimes C_{q}^{\prime}\right) & \subseteq\left(\partial C_{p} \otimes C_{q}^{\prime}\right) \oplus\left(C_{p} \otimes \partial^{\prime} C_{q}^{\prime}\right) \\
& \subseteq\left(C_{p-1} \otimes C_{q}^{\prime} \oplus\left(C_{p} \otimes C_{q-1}^{\prime}\right)\right. \\
& \subseteq G_{p-1} \oplus G_{p}
\end{aligned}
\end{aligned}
$$

So we already see that the spectral sequence will degenerate on page 2. The differential only reaches down one level of the filtration.

From above: $\partial_{0}=(-1)^{p} \otimes \partial^{\prime}$
We want $E_{p q}^{\prime}=\operatorname{ker} \partial_{0} / i m \partial_{0}$. Note the $(-1)^{p}$ does not affect the Kernel or the image.
$\leadsto E_{p q}^{-1}$ is the homology of the chain complex

$$
\cdots \rightarrow C_{p} \otimes C_{q+1}^{\prime} \xrightarrow{\partial^{\prime}} C_{p} \otimes C_{q}^{\prime} \rightarrow C_{p} \otimes C_{q-1}^{\prime} \rightarrow \cdots
$$

which is, by definition: $H_{*}\left(C_{*}^{\prime} ; C_{p}\right)$.
The universal coefficient theorem for homology:

$$
O \rightarrow H_{n}\left(C_{*}^{\prime}\right) \otimes C_{p} \rightarrow H_{n}\left(C_{*}^{\prime} ; C_{p}\right) \rightarrow \operatorname{Tor}\left(H_{n-1}\left(C_{*}^{\prime}\right), C_{p}\right) \rightarrow 0
$$

But $\operatorname{Tor}(A, B)=0$ if A or B is torsion free

$$
\begin{aligned}
& \Longrightarrow H_{*}\left(C_{*}^{\prime} ; C_{p}\right) \cong H_{*}\left(C_{*}^{\prime}\right) \otimes C_{p} \\
& \text { So } E_{p q}^{\prime} \cong C_{p} \otimes H_{q}\left(C_{*}^{\prime}\right)
\end{aligned}
$$

Next $\partial_{1}=\partial \otimes 1$. Similar as above, $E_{p q}^{2}$ is the homology of

$$
\cdots \rightarrow C_{p+1} \otimes H_{q}\left(C_{*}^{\prime}\right) \rightarrow C_{p} \otimes H_{q}\left(C_{*}^{\prime}\right) \rightarrow C_{p-1} \otimes H_{q}\left(C_{*}^{\prime}\right) \rightarrow \cdots
$$

We are working over a field. So the $H_{q}\left(C_{*}^{\prime}\right)$ are torsion free
\rightarrow can apply UCT as above

$$
\leadsto E_{p q}^{2}=H_{p}\left(C_{*} \otimes H_{q}\left(C_{*}^{\prime}\right)\right)=H_{p}\left(C_{*}\right) \otimes H_{q}\left(C_{*}^{\prime}\right)
$$

Each elt of $E_{p q}^{2}$ is represented by $\alpha \otimes \beta$ where α is a cycle in $C_{p} \& \beta$ is a cycle in C_{q}^{\prime}.
$\Rightarrow \alpha \otimes \beta$ is a cycle in $C_{*} \otimes C_{*}^{\prime}$.
\Rightarrow all higher differentials vanish, ie. $E^{2}=E^{\infty}$.
The proposition follows

For the Künneth formula, you also want to know that $H_{*}(X \times Y) \cong H_{*}\left(C_{*}(X) \otimes C_{*}(Y)\right)$, but this is straightforward with simplicial homology.

Fiber Bundles

Next goal: Leray-Serre spectral sequence for fiber bundles.
A fiber bundle is a space that locally looks like a product (perhaps not globally).

First examples: cylinder, Möbius band are [0,1]-bundles over S^{1}.

Definition. $B=$ connected space,$b_{0} \in B$ base point A continuous map $\pi: E \rightarrow B$ is a fiber bundle with fiber F if $\forall x \in B \exists$ open nod $U \& \psi_{u}$ as follows:

$$
\begin{aligned}
& \pi^{-1}(u) \xrightarrow{\psi u} u \times F= \\
& \pi \\
& u
\end{aligned}
$$

Write: $\begin{aligned} & \text { fiber } \\ & \\ & \begin{array}{l}\text { total } \\ \text { t. } \\ \text { space }\end{array} \\ &\end{aligned}$

Examples
0. Trivial bundle $E=F \times B$.

1. Covering spaces. $F=$ discrete set.
2. Cylinder \& Mobius band. $F=I, B=S^{\prime}$
3. Torus \& Klein bottle $F=S^{\prime}, B=S^{\prime}$
4. Vector bundles, e.g. tangent bundle
5. Sphere bundles, e.g. unit tangent bundle.

Hop fibration $\rightarrow \pi_{3}\left(S^{2}\right) \neq 0$.
6. Mapping torus $B=S^{1}$.
7. Lie groups. $G=$ Lie group, $H=$ compact subgroup

$$
\begin{aligned}
H \rightarrow & G \\
& \downarrow \\
& G / H
\end{aligned}
$$

In fact this is a principal H-bundle: H acts in a fiberwise way on $E=G$.
8. More Lie groups. $E=$ smooth manifold.
$G=$ compact Lie gp
GOE freely, smoothly

$$
\leadsto E \rightarrow E / G
$$

Basic problems: classify bundles, understand sections (Hairy ball theorem is a section problem.)

Unitary Groups

Inner product on $\mathbb{C}^{n}:\langle u, v\rangle=\sum u_{i} \bar{v}_{i}$

$$
\begin{aligned}
& U(n)=\left\{M \in G L_{n} \mathbb{C}: M \text { preserves }\langle,\rangle\right\} \\
& \operatorname{sU}(n)=\{M \in U(n): \operatorname{det}(M)=1\}
\end{aligned}
$$

Prop. We have a fiber bundle $S U(n-1) \rightarrow S U(n)$

Proof \#1. SU(n-1) compact subgp of Lie g $S U(n)$
So suffices to show $S U(n) / S U(n-1) \cong S^{2 n-1}$. SU(n) acts transitively on unit sphere in \mathbb{C}^{n}, namely, $S^{2 n-1}$. Stabilizer of a point is $U(n-1)$, e.g. stabilizer of e_{n} is

$$
\left(\begin{array}{cc}
A & 0 \\
0 & 1
\end{array}\right) \quad A \in \operatorname{SU}(n-1)
$$

Proof \#2. Stereographic projection is conformal.
$(O(n)$ version) So the inverse maps the trivial $S O(n-1)$-bundle over \mathbb{R}^{n-1} to the trivial $S O(n-1)$-bundle over $S^{n-1} \backslash$ north pole.

$$
\begin{aligned}
& \text { For } n=3: \begin{array}{c}
\operatorname{su}(1) \\
11 \\
\{1\}
\end{array} \longrightarrow \operatorname{su}(2) \\
& \Longrightarrow \operatorname{su}(2) \cong S^{3}
\end{aligned}
$$

Another way to see this:

$$
\operatorname{SU}(2)=\left\{\left(\begin{array}{cc}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right):|\alpha|^{2}+|\beta|^{2}=1\right\}
$$

The equation $|\alpha|^{2}+|\beta|^{2}=1$ gives unit sphere in \mathbb{C}^{2}.
Also, $S U(2)=\{$ unit quaternions $\}$

$$
i=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \quad j=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad k=\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right)
$$

We will use the Serve spectral sequence to compute $H_{*}(S U(n))$ for $n=3,4$. (Note $H_{*}(S O(n)$) is already computed in Sec. 3D of Hatcher, using an explicit cell decomposition.)

Part of the point is to show off spectral sequences as a microwave oven - often you can get something useful out with little effort or deep knowledge of the inner workings.

Serve SpectralSequinke
The. Let $E \rightarrow B$ be a fiber bundle with fiber F. Then there is a spectral sequence $E_{p q}^{r}$ with $E_{p q}^{2}=H_{p}\left(B ;\left\{H_{q}\left(E_{x}\right)\right\}\right)$
and converging to:

$$
E_{p q}^{\infty} G_{p} H_{p+q}(E)
$$

for some filtration on $H_{*}(E)$.

Note: The coefficients here are local. Local coefficients are the same as constant coefficients when $\pi_{1}(B)=1$.

Local Coefficients. $\pi=\pi_{1}(x), \quad M=\mathbb{Z}[\pi]$-module

$$
\tilde{x}=\text { universal cover. }
$$

Then $H_{*}(X ;\{M\})$ is the homology of

$$
C_{n}(\tilde{X}) \otimes_{\pi} M
$$

really this $\mathbb{Z}[\pi]$ but we emphasize the π

For two left modules A, B over a ring $R, A \otimes_{R} B$ is the abelian group gen by $\{a \otimes b\}$ subject to distributivity and: $a \otimes b=r a \otimes r b$ (ie factor out by R-action).

Application to sunn)

$$
\Rightarrow H_{k}(S U(3))= \begin{cases}\mathbb{Q} & k=0,3,5,8 \\ 0 & \text { otherwise } .\end{cases}
$$

$$
\ldots \text { And } H_{*}(\operatorname{Su}(4)) \quad=H_{k}\left(S^{3} \times S^{5}\right)
$$

su(3)

8		
5	\mathbb{Q}	\mathbb{Q}
\mathbb{Q}	$\operatorname{su}(3) \longrightarrow$	such)
		\downarrow
		S^{7}

$$
E^{2}=E^{\infty}
$$

$$
\begin{aligned}
\Rightarrow H_{k}(S U(4)) & = \begin{cases}\mathbb{Q} & k=0,3,5,8,10,12,15 \\
0 & \text { otherwise }\end{cases} \\
& =H_{k}\left(S^{3} \times S^{5} \times S^{7}\right)
\end{aligned}
$$

Unfortunately for SU(5) there are differentials to consider.

But they turn out to be zero!
The. $H_{*}(S U(n))=H_{*}\left(S^{3} \times S^{5} \times \cdots \times S^{2 n-1}\right)$
These spaces are not homotopy equivalent!

An Example with Nontrivial Coefficients
Lets compute H_{*} of $X=$ Klein bottle with Serve:
$B=S^{1} \quad F=S^{1}$, coefficients $M=\mathbb{Z}$ or $\mathbb{Z} / 2$

$$
\begin{aligned}
& F_{\uparrow} \uparrow \begin{array}{ll}
H_{0}\left(B ; H_{1}(F ; M)\right) & H_{1}\left(B ; H_{1}(F ; M)\right) \\
H_{0}\left(B ; H_{0}(F ; M)\right) & H_{1}\left(B ; H_{0}(F ; M)\right) \\
B
\end{array}
\end{aligned}
$$

The spectral seq. is degenerate, so it remains to compute the homology gps (and save the extension problem).

Denote generators for $\pi_{1}(B) \& H_{1}(F ; M)$ by b, f. The action $\pi_{1}(B) \cup H_{k}(F)$ is trivial for $k=0$ and given by $b \cdot F=-f$.
So bottom row has trivial (not local) coefficients.
Let's compute $H_{*}\left(B ; H_{1}(F ; M)\right)$.

$$
\cdots \cdot V_{-1} \cdot V_{0} \cdot V_{1} \cdot \tilde{B}
$$

First, $C_{0}(\tilde{B}) \otimes H_{1}(F ; M)$ is gen. by $v_{i} \otimes f$
subject to $v_{i} \otimes f=b v_{i} \otimes b \cdot f=v_{i+1} \otimes-f=-v_{i+1} \otimes f$
\leadsto it is gen. by $v_{0} \otimes f$
Similarly, $C_{1}(\tilde{B}) \otimes H_{1}(F ; M)$ is gen by $e_{0} \otimes f$
\leadsto chain complex

$$
\begin{aligned}
O \longrightarrow C_{1}(\tilde{B}) \otimes H_{1}(F ; M) \xrightarrow{\partial \otimes 1} & C_{0}(\tilde{B}) \otimes H_{1}(F ; M) \longrightarrow 0 \\
e_{1} \otimes f \longmapsto & \left(v_{1}-v_{0}\right) \otimes f \\
& =v_{1} \otimes f-v_{0} \otimes f \\
& =-2 v_{0} \otimes f
\end{aligned}
$$

$$
\begin{aligned}
\Longrightarrow & H_{1}\left(B ; H_{1}(F ; \mathbb{Z})\right)=0 & & H_{0}\left(B ; H_{1}(F ; \mathbb{Z})\right)=\mathbb{Z} / 2 \\
& H_{1}\left(B ; H_{1}(F ; \mathbb{Z} / 2)\right)=\mathbb{Z} / 2 & & H_{0}\left(B ; H_{1}(F ; \mathbb{Z} / 2)\right)=\mathbb{Z} / 2 .
\end{aligned}
$$

This agrees with what we know:

$$
H_{k}(X ; \mathbb{Z})=\left\{\begin{array}{ll}
\mathbb{Z} & k=0 \\
\mathbb{Z} \oplus \mathbb{Z} / 2 & k=1 \\
0 & k>1
\end{array} \quad H_{k}(X ; \mathbb{Z} / 2)=\left\{\begin{array}{cl}
\mathbb{Z} / 2 & k=0,2 \\
(\mathbb{Z} / 2)^{2} & k=1 \\
0 & k>2
\end{array}\right.\right.
$$

For $H_{1}(X ; \mathbb{Z})$ have: $0 \rightarrow \mathbb{Z} \longrightarrow H_{1}(X ; \mathbb{Z}) \rightarrow \mathbb{Z} / 2 \rightarrow 0$.
Need to verify this is the trivial extension.
$I_{\text {nide the }}$ Serve S.S.
Let $B^{P}=p$-skeleton of B.
$F_{p} C_{*}(E)=$ singular chains supported in $\pi^{-1}\left(B^{P}\right)$.
$\leadsto G_{p} C_{*}(E)=C_{*}\left(\pi^{-1}\left(B^{p}\right), \pi^{-1}\left(B^{p-1}\right)\right)$

$$
\leadsto E_{p q}^{\prime}=H_{p+q}\left(\pi^{-1}\left(B^{p}\right), \pi^{-1}\left(B^{p-1}\right)\right)
$$

Can calculate as a direct sum over p-cells $\sigma: D^{p} \rightarrow B$ of H_{p+q} of pullback bundle:

$$
\begin{aligned}
& E_{p q}^{1}=\underset{\sigma}{\oplus} H_{p+q}\left(\sigma^{*} E,\left(\sigma^{*} \mid s^{p-1}\right)^{*} E\right) \\
& \text { < pullback } \\
& \text { bundles } \\
& =\bigoplus_{\sigma} H_{p+q}\left(D^{p} \times F, S^{p-1} \times F\right) \text { bundles over simply } \\
& \text { connected spaces } \\
& =\underset{\sigma}{(}) \mathrm{H}_{q}(F) \text { See Fomenko p. } 140 \text {. are trivial. }
\end{aligned}
$$

Claim. The latter is $C_{p}^{\text {cell }}\left(B ; H_{q}(F)\right)$
Pf. $C_{p}^{\text {cell }}\left(B ; H_{q}(F)\right)=H_{p}\left(B^{p}, B^{p-1} ; H_{q}(F)\right)$ defn.

$$
\begin{aligned}
\text { cell ls of }_{p-d_{i}} & =\oplus H_{p}\left(\sigma, \partial \sigma ; H_{q}(F)\right) \\
& =\oplus H_{p}\left(\sigma / \partial \sigma ; H_{q}(F)\right) \\
& =\oplus \mathrm{H}_{q}(F) .
\end{aligned}
$$

We now have E^{1}. Sere's theorem follows.

The Cere S.S. via Cubes

Let $C_{*}(E)$ be the cubical singular chain complex. $F_{p} C_{p+q}(E)=$ span of the singular cubes $\sigma: I^{p+q} \longrightarrow E$ s.t. $\pi \circ \sigma$ is indep. of the last q coords.
Such a cube gives a horizontal p-cube σ_{h} and, by restricting to the center of σ_{h}, a vertical q-cube σ_{v} :

$F_{1} C_{3}$

$F_{2} C_{3}$

$$
\begin{aligned}
\longrightarrow F_{p} C_{p+q}(E) & \longrightarrow \oplus_{\sigma_{h}: I^{p} \rightarrow B} C_{q}\left(E_{\text {center }\left(\sigma_{h}\right)}\right) \\
\sigma & \longmapsto\left(\sigma_{h}, \sigma_{v}\right)
\end{aligned}
$$

We then mod out by degenerate σ_{h}, the ones indep of the last coordinate, and obtain

The differential ∂_{0} only considers the vertical boundary, i.e. faces obtained by forgetting one of the last q cords:

So if $\Phi_{0}(\sigma)=\left(\sigma_{h}, \sigma_{v}\right)$ then:

$$
\Phi_{0}(\partial \sigma)=(-1)^{q}\left(\sigma_{h}, \partial \sigma_{v}\right)
$$

ie. fiberwise boundary.
So Φ_{0} induces a map on homology:

$$
\Phi_{1}: E_{p q}^{\prime} \longrightarrow \underset{\substack{\sigma_{h}: I^{p} \rightarrow B \\ \text { nondegen }}}{(H)} H_{q}\left(E_{\text {center }\left(\sigma_{h}\right)}\right)=C_{p}\left(B ;\left\{H_{q}\left(E_{x}\right)\right\}\right)
$$

Homotopy lifting property for cubes $\Longrightarrow \Phi_{1}$, has an inverse (given $\left(\sigma_{h}, \sigma_{v}\right)$, homotope it around to get the original σ).
∂_{1} is the horizontal boundary. Need to use parallel transport to show this agrees with the differential on $C_{p}\left(B_{;}\left\{H_{q}\left(E_{x}\right)\right\}\right)$

$$
\Longrightarrow E_{p q}^{2}=H_{p}\left(B ;\left\{H_{q}\left(E_{x}\right)\right\}\right)
$$

Other Spectral Sequences
Lyndon-Hochschild-Serre: Given $1 \rightarrow K \rightarrow G \rightarrow Q \rightarrow 1$ there is a spectral sequence with

$$
E_{p q}^{2}=H_{p}\left(Q ;\left\{H_{q}(K)\right\}\right) \Rightarrow H_{p+q}(G)
$$

Cartan-Leray: Given GGX free and proper

$$
E_{p q}^{2}=H_{p}\left(G ; H_{q}(X)\right) \Longrightarrow H_{p+q}(X / G)
$$

Or: GaX cellularly \& who rotations, $X \simeq *$

$$
\begin{aligned}
& E_{p q}^{\prime}=\left\{\begin{array}{cc}
\underset{\sigma \in X_{p}}{\oplus} H_{q}\left(G_{\sigma}\right) & p, q \geqslant 0 \\
0 & \text { otherwise }
\end{array} \Rightarrow H_{p+q}(G)\right. \\
& X_{p}=\{p-c e l l s\}, G_{\sigma}=\text { stabilizer of } \sigma .
\end{aligned}
$$

... and many more (a spectral sequence for every occasion).

