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This column is devoted to mathematics 

for fun. What better purpose is there 

for mathematics? To appear here, 

a theorem or problem or remark does 

not need to be profound (but it is 

allowed to be); it may not be directed 

only at specialists; it must attract 

and fascinate. 

We welcome, encourage, and 

frequently publish contributions 

from readers---either new notes, or 

replies to past columns. 

Please send all submissions to the 

Mathematical Entertainments Editor, 

Alexander Shen, Institute for Problems of 

Information Transmission, Ermolovoi 19, 

K-51 Moscow GSP-4, 101447 Russia; 

e-mail:shen@landau.ac.ru 

An Unfair Game 
In this  game, our probabi l i s t ic  intui t ion 
(at  least  mine) fails drast ical ly.  I 
l ea rned  it f rom A. L. Brudno.  

Alice and Bob toss  a fair coin. 

Before they  start,  each of  them selects  
a three-bi t  string, l ike 010 or  111. A 
p laye r  wins when these  bi ts  appea r  (as 

consecut ive  bits), assuming  that  the  
opponen t  has  not  won  earlier.  Bob po- 

l i tely suggests  Alice choose  her  string 
first. As he explains,  it gives her  more  
f reedom: she may choose  any str ing 
she wishes,  and he has  to  res t r ic t  him- 

se l f  to the  remaining seven str ings (it 
is not  a l lowed to have the same  str ing 
for  both  players  for evident  reasons) .  

Should Alice bel ieve  him? Stop 
reading here  and th ink a minute  about  
this  game. Unless you do the compu-  

tat ions,  you may  be su rpr i sed  to  know 
how b iased  the game is. In fact, Bob 's  
chances  are  (at  least)  twice  as  good if 
he is c lever  enough. F o r  example ,  i f A  

chooses  010, then B can choose  001 
and win with probabi l i ty  2/3. 

Let us check  that. P0o, P01, Pl0 and 
P l l  denote  the  probabi l i t i es  that  A 
wins, assuming that  the  las t  two bi ts  
a re  given and nobody  has  won  earlier.  
The equat ions are  

P00 = P00/2, 
P01 = 1/2 + P11/2, 

Pie  = P00/2 + Pol/2, 
P u  = P10/2 + Pll/2. 

F o r  example ,  the  second  equat ion says  
that  a f t e r . . .  01, the two events  0 ( then 
A wins  for sure)  and 1 ( then A wins 

wi th  probabi l i ty  P l l )  are  equally prob-  
able. The first  equat ion impl ies  that  

P00 = 0, and it is easy  to  see  why it is. 
Indeed,  after  00, the only chance  for  
Alice is never  get 1, and  this  event  has  
zero probabil i ty .  

The only solut ion for  this  sys tem of  

l inear  equat ions is P00 -- 0, P01 = 2/3, 
Plo = P l l  = 1/3. The average  of  these  
four  probabi l i t ies  ( that  is, the proba-  
bi l i ty  for A to win the  game from the 
beginning) is 1/3. 

Some o the r  str ings are  even worse  
for  her. F o r  example ,  string 000 wins  

against  100 only with probabi l i ty  1/7. 
(If Alice has  no luck in the  first  th ree  
rounds,  she cannot  win at  all!) 

Colorings and Coverings 
We cont inue  our  col lec t ion o f  prob-  
lems with unexpec ted  solutions.  

Cons ider  a convex po lyhed ron  
whose  faces  are  all tr iangles.  We wan t  
to co lo r  i ts ver t ices  in three  co lors  

such that  each  tr iangle has ver t ices  of  
three  different  colors. 

An evident  necessa ry  condi t ion  is 
that  each  ver tex  is incident  to  an even 

number  of  faces: the  colors  a round  a 
ver tex  al ternate ,  and  if the n u m b e r  of  
faces  is odd,  there  is no co lor  for  the  
last  ve r t ex  (Fig. 1). 

C 
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Problem:  Prove that  this  condi t ion  
is also sufficient.  

It is a wel l -known p rob lem but  I do 
not  know its origin. The fol lowing 
solut ion was  sugges ted  by  Maxim 
Kontsevieh. 

Cons ider  six copies  of  each tr iangle 
face of  the  polyhedron;  each  copy  car- 
r ies one of  the  six poss ib le  color ings  
of  th ree  i ts vert ices.  Now we glue the  
neighbor ing tr iangles together,  taking 
into account  the coloring: two copies  

are g lued only if both  c o m m o n  ver t ices  
have the  same  color. (This p r o c e d u r e  
may  encoun te r  difficulties ff done  in 

three-d imens ional  space,  s ince  differ- 
ent  layers  in tersec t  each other.)  

Let us  look  what  happens  a round  
any vertex.  If the  number  of  ad jacen t  
t r iangles  is odd, we get three  two-shee t  
cover ings  (each  s imilar  to the  Riemann 
surface for  V~z near  the  poin t  z = 0). 

However,  if the  number  is even, we get  
a regular  covering with six sheets.  But 
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the surface  of  the po lyhedron  is a topo- 
logical  sphere,  so its fundamenta l  
group is trivial, and  this covering is 

spl i t  into six copies  of  the  polyhedron,  
each  proper ly  colored.  That ' s  all! 

For  the torus, the  s i tuat ion is dif- 

ferent: some  tr iangulat ions a l low 3-col- 
or ings whereas  o thers  don't .  Indeed,  if 

we  color  ver t ices  along a fundamenta l  
cycle, at  the  end we may  get  a color- 
ing which is inconsis tent  wi th  the ini- 

t ial  one. In this case  the  t r iangulat ion 
does  not  a l low 3-coloring. And if this 

does  not  happen  for e i ther  fundamen-  
tal  cycle, a 3-coloring exists.  

Tilings and Polyhedra Revisited 
Since the  first 1997 issue  of  The 
Mathematical Intelligencer appeared ,  

I 've rece ived  many commen t s  about  
the  Enter ta inments  column, and some 
need  answering.  

First ,  about  the cube and te trahe-  
dron  of  equal volume that  cannot  be 
spl i t  into equal parts .  Several  readers ,  

including C. Kenneth Fan,  Pe t e r  Freud,  
John Stillwell, and Wim Veldman, 
made  impor tan t  comments :  I did not  
ment ion  that  it is a famous  Hilbert  

p rob lem [included in his list of  mos t  
impor tan t  mathemat ica l  p rob lems  

(1900)] and was so lved  by  M. Dehn 
(1900). The solut ion I exp la ined  is due 
to Hadwiger  (1948). This informat ion 
can  be  found in the survey wr i t t en  by 
V. G. Boltianskii,  who  also wro te  a pop- 

ular  book  on the subjec t  (Hilbert's 
Third Problem, Washington,  1978). 

Another  impor tant  r emark  is about  

the  use of  the  ax iom of  choice.  Let me 
quote a le t ter  from Pierre Deligne: 

. . .  the use of  Dehn's  invar iant  to 
show that  one cannot  go f rom a 

cube to a regular  t e t r ahedron  by 
cutt ing and past ing does  not  in fact 
require  the  axiom of  choice.  The ar- 
gument  gives a cu t  and  pas t e  in- 
var iant  in 

D := ~ | 

which is 0 for the cube and of  the 
form ~ | a for the te trahedron,  where 

a is the dihedral  angle and ~ r 0. If 
you wanted  to show the exis tence  

of  a morph i sm m from D to Q - -  or  
R - -  with m(t? | a)  r 0, I expec t  you 
would  indeed need  the ax iom of  

choice.  However,  you only need  to 
prove  that  g | a r 0. F o r  this, it suf- 

f ices to  check  that  a ~ 2~ /27r ;2 .  
Indeed,  ~ | is, essent ial ly  
by  definit ion,  the  inductive l imit  of  
t h e X |  Y f o r X  C ~ and Y C  ~U27r;2 
finitely genera ted  subgroups .  It 
hence  suffices to check that  for  all 

f initely genera ted  X and Y such that  
e E X a n d  a E  Y, e | a i n X |  
not  O. This does  not  require the  ax- 
iom of  choice!  Otherwise said: if a 

cut t ing and past ing t rans forms  the 
cube into the  te t rahedron,  it will  in- 
volve only finitely many  lengths and 
angles. Let X and Y be the  subgroup  

of  ~ (resp.,  R/;2) genera ted  by  those  
lengths  (resp., angles). Then Dehn's  

p r o o f  gives ~ | a = 0 in X | Y. 

� 9  The ax iom of  choice  is no t  used,  
but  as  I p r e sen t ed  the  argument ,  

tert ium non datur is: to  c la im tha t  
a f ini te ly genera ted  subgroup  X of  

is i somorph ic  to ;2n for  some  n, 
o r  for  the  resul t ing c la im that ,  if  
e E X ,  there  is m: X---)7/ wi th  
m(~)  r 0. This makes  the  p r o o f  
noncons t ruc t ive :  as  often, i t  is a 

use  of  tertium non datur, r a the r  
than  a use  of  the  ax iom of  choice,  
which  th rea t ens  const ruct iv i ty .  

Here,  the  r e m e d y  is s imple:  def ine  
X not  as  a subgroup  of  ~ bu t  as  ab- 
s t rac t ly  gene ra t ed  by  the segmen t s  
occur r ing  in a cut t ing and  past ing,  

and  re l a t ed  by  the re la t ions  among  
length  of  segments  needed.  Other-  
wise  said:  the  invariant  l ives in the  
induct ive  l imit  o f  the  X | Y, for  X 

(resp. ,  Y) in the  fi l tering ca tegory  
of  ;2-modules effect ively f ini te ly 

p r e s e n t e d  (cokerne l  of  some  map  
7/p ---) 7/q), given with a map  to 

(resp.,  ~/7/). 

Now abou t  the tilings p rob lem (a 

rectangle  that  can be t i led by  rectan-  
gles each  having at least  one in teger  
side, has  an integer  side). It is a shame  
that  I d idn ' t  know about  the exce l len t  
ar t ic le  by  Stan Wagon "Four teen  

proofs  of  a resul t  about  til ing a rec- 
tangle" [American Mathematical 
Monthly 94 (1987), 601-617]. Several  
r eade r s  to ld  me of  this article,  and  I 
s t rongly  r e c o m m e n d  it for  the  nice 
proofs  expla ined  in a very c lear  way. 

(Some of  them were  independent ly  
found by column readers!)  The a l ready  
ci ted le t ter  from P. Deligne gives one 

more: 

. . .  A similar  r emark  appl ies  to the  

semi-integral  rec tangles  you con- 
sider  in the first  par t  of  the article. 

Here, to  a rec tangle  A with s ides  
paral le l  to the  axes:  A = [x0, xl] • 

[Y0, Yl], one a t t aches  

c(A) = (~(xl)  - 6(x0)) | 

(8(yl)  - ~(Y0)) 

in 77 (~/~) | 77 (n/~). This invariant  has  

the vir tues tha t  (i) it vanishes  if 

x l  - x0 or  Yl - Y0 is integral, i.e., if 
A is semi-integral ,  (ii) if a rectangle  

A is d i s sec ted  into rec tangles  Ai,  
then c(A) = Z c(A~). In addition, the  
converse  of  (i) is true. As before,  it  

suffices to check  this for D~/?/ re- 
p laced  by  a finite subset ,  in which  
case it is trivial. Nothing more  is re- 

quired for  your  proof.  
By the way, this  vers ion  of  the ar- 

gument  works  as  well  with 7/ re- 

p laced  by  any subgroup  of  E (and a 
different  subgroup  for each  axis is 

al lowed).  

Let me repea t  this  nice p roof  with- 

out  ment ioning t enso r  p roduc ts  ex- 
plicitly. Fo r  any rectangle  R cons ider  
its "imprint" i(R), defined as a formal  
l inear  combina t ion  of  its four  vert ices:  

two oppos i te  corners  (nor theas t  and  
southwes t )  are  t aken  with plus  signs, 

the two o thers  wi th  minus  signs. If a 
rectangle  R is t i led by  smal ler  rectan-  

gles R1, �9 �9 �9 Rn, then 

i(R) = i(R1) + --- + i(Rn). 

This can be seen  by  looking at all pos-  

sible junc t ion  types:  

_ l §  - 
+ 

+ - 

- + 

+ - 

Now we identify po in ts  whose  coordi-  

na tes  differ by integers  

(x, y) -- (x + m, y + n) 

for any integers  m and n. After  that, 
the imprint  of  any semi- integer  rectan- 
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gle becomes  zero (.plus ver t ices  are  

canceled  out  by  minus  vert ices) .  
Therefore,  if all R i  are semi-integer  
rectangles,  thei r  imprints  vanish and 

the imprint  of  the  rectangle  R should  
vanish also. But this  means  that  it is a 
semi-integer  rectangle,  too. (End of  

proof.)  
Let me ment ion  two o ther  p rob lems  

connec ted  with  tilings. The first  is well  
known: if a unit  square is t i led by  

squares,  thei r  s ides  are  rationals.  (The 
solut ion I know involves l inear  a lgebra  

and even a bi t  of  mathemat ica l  logic!) 
The o ther  was  submi t ted  by  David 

Gale: 
Another Euler-type equation. In 

a t i l i ng  of a rec tangle  by rectangles,  
the  horizontal  (vert ical)  edges of  the 
t i les are par t i t ioned  into disjoint  hori- 

zontal  (vert ical)  segmen t s ,  as shown 
below. A cross  is a ver tex  which is 

common  to four  tiles: 

5 Horizontal Segments 

10 Tiles 

() 
() 

2 Crosses 

6 Vertical Segments  

Prove that  in any such  tiling 

#Segments  - #Tiles + #Crosses  = 3. 
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