Applications of PD

PD: modulo torsion, have. H^k(M) ≈ Hn·k(M) ¹¹² UCT Hk(M)

(1) Euler characteristic.

Prop. dim
$$M$$
 odd \Rightarrow
 $\mathcal{X}(M) = O$.
Pf. $\mathcal{X}(M) \cong \widehat{\Xi}(-1)^{k} \operatorname{rk} H_{k}(M;\mathbb{Z})$
 $\overset{K=0}{\operatorname{Apply}} \operatorname{PD} \Box$

2 Intersection Forms F= field. e.g. Q. $H_k(M; \mathbb{Q}) = H_k(M; \mathbb{Z})/torsion \otimes \mathbb{Q}$. Have: $\langle , \rangle : H_k(M) \times H_{n-k}(M) \xrightarrow{\smile} F$ "intersection form" Prop. Int. form is nonsingular. i.e. $\forall \alpha \neq 0, \langle \alpha, \cdot \rangle \neq 0.$ i.e. & to in Hom(Hn-k, F). $\underline{Pf} : H_k(M) \xrightarrow{PD} H^{n-k}(M) \xrightarrow{u \in \mathcal{F}} H_{om}(H_{n-k}, \mathcal{F})$ \xrightarrow{PD} Hom (Hr, F). These are all I

Now say dim M=n=2k even. \rightarrow int. form on $H_k(M)$. \rightarrow $H_k(M) \times H_k(M) \rightarrow \mathbb{Z}$ I tors. free part of Z homd. ~> 7/2-matrix <xi, xj> Prop. This matrix/int. form is unimodular, i.e. det 1. Pf Let dr,..., de basis. BI, ..., Be dual basis (by prev. Prop) $\rightarrow \langle \alpha_i, \beta_j \rangle = \delta_{ij}$ Change of basis has det 1

Let Λ_d^{50} = cobordism group of d-dim. If n= 4k, int. pairing compact oriented manifolds is symmetric. aug=(-1)^{kl} Bud M-N $M \sim N$ if $(M) = \partial W$ ⇒ eigenvals <u>real</u>. addition: disjoint union. id: Ø. b2k, b2k # of pos, neg eigenvals. <u>These</u> $\Omega_d^{so} = 0 d \leq 3$ (easyish for $d \leq 2$) $T(M) = b_{2k} - b_{2k}$ The (Thom). In dim 4, τ is a cobordism. invt. $\Rightarrow -24^{\circ}$ has \mathbb{Z} -many "signature" elts. ~> Fields modal

Alexander duality

Thm. K compact, locally compact, nonempty subspace of Sn $\Rightarrow \widetilde{H}_{i}(S^{n}-K;\mathbb{Z}) \cong \widetilde{H}^{n-i-1}(K;\mathbb{Z})$ ¥ί. Surphisingly: LHS does not depend on the embedding. application. H1 (S3 \ knot) = 72. Gordon - Luecke: TT, (S3 \ knot) determines the knot.

Cor. $X \subseteq \mathbb{R}^n$ compact, loc comp. \Rightarrow Hi(X;Z)=0 $i \ge n$ = torsion free i=n-1, n-2. $\widetilde{H}^{*}, \widetilde{H}^{1}$ always torsion free Application. Klein bottle does Not embed in \mathbb{R}^3 or S^3 . H2(K.B.) has torsion.