

Lifting Properties Special cases () Y= pt. ~ ft = path 2) Y = interval ~ ft = homotopy of paths $p: \widetilde{X} \to X$ cov sp. A litt of $t: A \longrightarrow X$ Pf. Same as S'. is an $\tilde{f}: Y \to \tilde{X}$ Cor. $p_*: \pi_1(\tilde{X}) \to \pi_1(X)$ injective. s.t. p. I= f (like lifting paths from S1 to IR). $\underline{\pi}$ $\text{IF } \rho_{*}(\alpha) = 1 \in \pi_{1}(x) \longrightarrow$ Prop 1. (Homotopy lifting property) homotopy in X to const. Given a homotopy ft: Y -> X Lift the homotopy $\Rightarrow \alpha = 1$. and fo: Y - X lifting fo Note. $P*(T_1(\tilde{X}))$ is exactly the subgp 7! It lifting ft. of Tri(X) consisting of loops that lift to loops.

Degree of a cover If hg is another rep of Hg then hg [p-'(x)] is locally const (as a fin of x \(X \) hence const. This "number" is the degree of P. Cor. X, X path conn. In first graph example, deg $p = [\pi_i(x) : p * \pi_i(\tilde{x})]$ coset reps are: topology group theory. Pf Let H= P* M(X) So: $\langle a, b^2, bab^1 \rangle \leq F_2$ Define {cosets of H} -> p'(x0) Index is 2, b is a coset rep. Key pt: well def. $\widetilde{g}(1)$