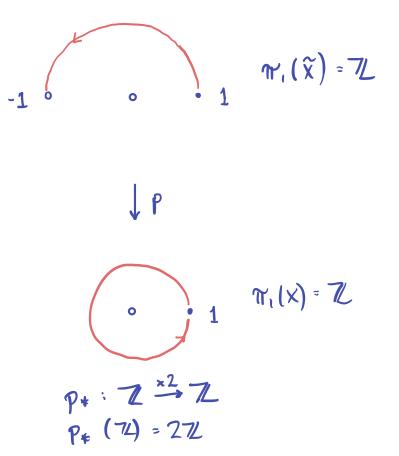
Covening spaces connected A covening space of X is a connected space. X with a map $p: \widetilde{X} \longrightarrow X$ satisfying: 3 open cover {Ua} of X s.t. each $p^{-1}(U_{\alpha})$ is a disjoint union of open sets, each homeomorphic to Ux. $p^{-1}(U_{\alpha}) \left\{ \underbrace{\Longrightarrow}_{\chi} X \right\}$ V X

Lifting Properties Feb 7 A lift of $f: Y \rightarrow X$ is an $\tilde{f}: Y \rightarrow \tilde{X}$ s.t. $p \circ \tilde{f} = f$ Prop1. (Nomotopy lifting property) Given a homotopy $f_t: Y \rightarrow X$ and $\tilde{f}_{\sigma}: Y \longrightarrow \widetilde{X}$ lifting f_{σ} 3! Ft lifting ft. Special cases: paths, homotopy of paths Cor. $p_*: \pi_1(\tilde{X}) \rightarrow \pi_1(X)$ injective. Cor. X, X path conn. deg $p = [\pi_i(x) : p * \pi_i(\tilde{x})]$

- An important covering space $p: \mathbb{C} \setminus 0 \longrightarrow \mathbb{C} \setminus 0$ $z \longmapsto z^2$
 - Non-uniqueness of square roots corresponds to the fact that this is a nontrivial cover.



 $\underline{\mathcal{P}}$ \Longrightarrow f exists \Longrightarrow $p \circ f \circ f$ Prop 2. (Lifting criterion) Y connected, $\Rightarrow p_* \circ f_* = f_*$ locally path conn. We can lift $f:(Y, Y_0) \rightarrow (X, X_0)$ to € Suppose Im f* ⊆ Im p* Want to build F. f(d) Let y & Y Choose path 7, 40 to Y $\widetilde{f}: (X, Y_0) \longrightarrow (\widetilde{X}, \widetilde{X}_0) \quad \text{iff}$ $f_*(\pi_i(X)) \leq \mathcal{P}_* \, \pi_i(\widetilde{X}).$ Define $\tilde{F}(y) = endpt of f(y)$ ξ--> χ β $\lambda \xrightarrow{t} \chi$ Already know we can lift when Y = I, I * I (special case). (Nell Another path 7 ~ loop in Y ~ loop in X loop in X (by hypothesis!)

Prop 3 (Uniqueness of lifts) Let $f: Y \rightarrow X$, Y conn. If lifts \tilde{f}_1, \tilde{f}_2 agree at one pt, they are equal. Already know the case $Y = I, I \times I$

Pf. Will show $A = \{y \in Y : \tilde{f}_1(y) = \tilde{f}_2(y)\}$ is open & closed in Y. $(\Longrightarrow A = Y)$. Not $A \neq \emptyset$ by assumption.

let yeV U= open nbd of f(y) as in defn of Cov space. Let \widetilde{U}_1 , \widetilde{U}_2 components of p'(U) U_1 $\widehat{\varphi}_1(U)$ containing $\widetilde{f}_1(U)$, $\widetilde{f}_2(U)$. (χ) (n) (h) (h)• $\tilde{f}_1(y) \neq \tilde{f}_2(y) \Rightarrow \tilde{U}_1 \neq \tilde{U}_2$ \Rightarrow open nod of y not $A \Rightarrow A$ closed. • Similarly, $\tilde{f}_1(u) = \tilde{f}_2(u) \Rightarrow \tilde{u}_1 = \tilde{u}_2$ $\Rightarrow A \text{ open}$

Pf. We construct
$$\tilde{X}$$
 directly.
Define
 $\tilde{X} = \{ [j] : j \in A \text{ path in } X \text{ at } X_0 \}$
 $P: \tilde{X} \rightarrow X$
 $[j] \mapsto f(1)$
Topology on $\tilde{X}:$
 $U = \{ U \subseteq X : U \text{ path conn, open, } \\ Ti(U) \rightarrow Ti(X) \text{ trivial} \}$
For $U \in U$, $J \text{ with } J(1) \in U$
set $U [j] = \{ [j : n] : n \text{ path in } U, \}$
 $n(o) = J(1)$
Open nbd of [J] in \tilde{X} .

-

-

PF. We construct X directly. Define $\tilde{X} = \{ [j] : j \in [j] \}$ $\begin{array}{cccc} p: \widetilde{X} \longrightarrow X \\ & & & \\ & & \\ & & \\ \hline \\ \\ & & \\ \hline \\ \\ & & \\ \hline \\ \\ \hline \\ & & \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\$ U={U⊆X: U path conn, open, 7 $\pi_{i}(u) \rightarrow \pi_{i}(x)$ trivial) For U e U, J with J (1) e U set $U_{[]} = \{[\eta \cdot \eta] : \eta \text{ path in } \|, \}$ $\eta(0) = \{1\}$ Open nod of [7] in X.

Check properties of cov Sp. · continuity · path connectivity. . IF [3'] & U[3] then $U_{[2^{\prime}]} = U_{[2]}$ Thus, for fixed UEU the U[1] partition p-'(U) & p: U[] - U is a homed. Next time: X simply connected.