Homotopy Invariance
Goal:
$$f: X \rightarrow Y \rightarrow f_{*}: Hn(X) \rightarrow Hn(Y)$$

& $f a hom. eq. \Rightarrow f_{*} an isom.$
First: $f \sim f_{*}: Cn(X) \rightarrow Cn(Y)$
 $T \mapsto f \circ T$
Have: $f_{*} \partial = \partial f_{*}$
 $\cdots \rightarrow Cn(X) \stackrel{2}{\rightarrow} Cn(X) \stackrel{2}{\rightarrow} Cn-1(X) \stackrel{2}{\rightarrow} \cdots$
 $f_{*}: Cn(X) \stackrel{2}{\rightarrow} Cn(X) \stackrel{2}{\rightarrow} Cn-1(X) \stackrel{2}{\rightarrow} \cdots$
 $f_{*}: Cn(Y) \stackrel{2}{\rightarrow} Cn(Y) \stackrel{2}{\rightarrow} Cn-1(Y) \rightarrow \cdots$
 $f_{*}: Called a chain map. H takes cycles to
 $f_{*}: Called a chain map. Cycles, \partial to \partial$$

Feb 23 ~ induced map $f^*: H^n(X) \rightarrow H^n(X)$ Facts. (fg)* = f* 9* id* = id Thm. F,g: X -> Y homotopic $\Rightarrow f_* = g_*$ Cor. f: X -> Y hom eq. \Rightarrow f_* is \cong

Thm. F,g: X -> Y homotopic Pf. For I any singular n-simplex in X. The homotopy gives a $\Rightarrow f_* = g_*$ prism in Y vo V_2 9# 0 W_0 V_1 V_2 9# 0 W_0 V_1 V_2 9# 0 $[dea, X=S^1 Y=M_2]$ Label the vertices on top by Vo,..., Vn f(x) = q(x)bot by Wo,..., Wn $f_{*} = g_{*}$ means $f_{*}(S^{1}) - g_{*}(S^{1})$ △ × I decomposes as sum of is a boundary. In the example, it is the boundary of a cylinder. > [No,..., Vi, Wi,..., Wn] Call this Check $\partial(\Delta^n \times I) = top - botton.$ sum P(J)

Algebraically: We just defined a map $P: C_n(X) \rightarrow C_{n+1}(Y)$ $\sigma \rightarrow P(\sigma)$ with $\partial P = g_{\#} - f_{\#} - P\partial$ $C_{top} T_{bot} T_{sides}$

 $\begin{array}{c} & & \\ & &$

2 Chain homotopy.

The thm follows: If $\alpha \in C_n(X)$ is a cycle then $g_{\#}(\alpha) - f_{\#}(\alpha) = \partial P(\alpha) + P \partial(\alpha)$ \implies (g* - f*)(d) is a ∂ $\Rightarrow 9_*(\alpha) = f_*(\alpha)$. tour goals () Contracting subcomplex (1) Long ex seq for a pair 2 Excision

3 Mayer-Vietons.

Application

Browner Fixed Pt Thm Any map $f: D^n \rightarrow D^n$ has a fixed pt PF. Assume f has no fixed pt

 $S^{n-1} \xrightarrow{i} D^n \xrightarrow{r} S^{n-1}$ compose is > r, ix = id. but $\widetilde{H}_{n-1}(D^n) = O$ contrad.

retraction means:

Will prove an attemate version of the theorem first : (1) Relative Homology $A \subseteq X \longrightarrow C_n(X,A) = C_n(X)/C_n(A)$ Since 2 tates Cn(A) to Cn-1 (A) have: \longrightarrow $C_n(X,A) \longrightarrow C_{n-1}(X,A) \longrightarrow \cdots$ ~ relative homology gps Hn(X,A). Elts of Hn(X,A) are relative cycles: A do do X cycle.

Will show: $H_n(X,A) \cong H_n(X/A)$ Thm 1'. Long ex. seq. $\cdots \rightarrow H_n(A) \rightarrow H_n(X) \rightarrow H_n(X,A)$ \rightarrow Hn-1(A) \rightarrow · · · Proof is "diagram chasing"

Thm 1'. Long ex. seq. $\xrightarrow{} H_n(A) \xrightarrow{i_*} H_n(X) \xrightarrow{q_*} H_n(X,A)$ $\xrightarrow{} H_{n-1}(A) \xrightarrow{} \cdots$

