Equivalence of spaces

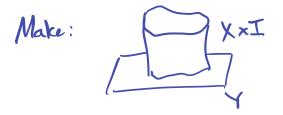
Intuition: Two spaces are some if one can be deformed to the

other :

 $(\stackrel{\circ}{\wedge}) \sim \mathcal{A} \sim \mathbb{Q} \sim \mathbb{O}$

Jan 14 Special case. A deformation retraction $X \longrightarrow A$ is a continuous family $\{t^{\mathfrak{h}}; X \longrightarrow X \mid f \in \mathfrak{I}\}$ s.t. $f_0 = id$ $f_{1}(x) = A$ ft | A = id for all t. Continuous means $X \times T \rightarrow X$ $(x,t) \mapsto f_t(x)$ is continuous.

Example Given f: X - Y the mapping cylinder is $W^{t} = (X \times I) \prod A \setminus ^{\sim}$ $(x,1) \sim f(x)$ So: Given) +



e.g. is Mf for X = 🕥 boundary Y = A $f: X \rightarrow Y$ given by Fact. Mf def. retracts to Y

Homotopy equivalence A homotopy is a continuous $\{ f_t : X \to Y : t \in I \}$ examples () def. retr. (2) t=1 t=0 $\chi=T$ t=.2 $\gamma=R^2$ $\chi = 5^1$ Say to, fi are homotopic maps.

A map $f: X \rightarrow Y$ is a homotopy equivalence if there is a $g: Y \rightarrow X \quad s.t.$ $f \cdot g \simeq id \simeq g \cdot f$ L'homotopic. Say X, Y homotopy equivalent. or: same homotopy type. or: $\chi \simeq \gamma$ exercise: This is an equiv. relation. Fact. If A is a def. retr. of X then $A \simeq X$.

Exercise :

Exercise: $\mathbb{R}^n \cong *$ pt. (def retr.) Say: R° is contractible. Read: House with two rooms.

Two Criteria for Homotopy
Equivalence
(i.e. A is a)
(
$$X,A$$
) = CW-pair (i.e. A is a)
A contractible
 $X \simeq X/A$ (subcomplex)
 $X \simeq X/A$ (subcomplex)
 $X \simeq X/A$ (subcomplex)
 $X \simeq X/A$ (subcomplex)
 $X = graph$
 $A = any edge connecting
distinct vertices.$
Thus: any graph \simeq