Fundamental groups $\pi_1(X, x_0) = \{ loops in X at X_0 \} / \sim$ Trop, X path conn. X0,X, E X $\implies \pi_{i}(\chi,\chi_{o}) \stackrel{\scriptscriptstyle \sim}{\scriptstyle\sim} \pi_{i}(\chi,\chi_{i})$ The = given by any path Xo to X. Jan b X1 X0 S_0 : the \cong is not canonical: different paths give diff \cong 's.

Jan 24 Say X is simply connected if $\pi_i(X) = 1$ Same as: given 2 pts, any two paths between are homotopic. (d)Fact. X contractible \Rightarrow X simply CW complex. com. Use: 3 strong def ret. to a pt when X is contract. CW Complex (uses HEP).

Given a loop $f: \mathbf{I} \to S^1$ want to Find a lift ç̃: I→R So pof=f & f(0)=0. Then the map $\mathcal{W}_1(S^1) \to \mathbb{Z}$ is $[t] \mapsto \tilde{f}(1)$. Well-def. existence/uniqueness of lifts. Multiplicativity easy. Multiplicativity. easy. Injectivity. Homotopy in TR ~ homotopy in S' via p. Surjectivity. easy.

Remains: lifting paths/homotopies Proof (y={y,} case) in S' to R. Cover S' by {Ux} s.t. You dea: Given a path/homotopy, p-'(U2) is a disjoint union of cut it into small pieces, lift them one by one, open intervals, each homes to Ua Lemma. Given $F: Y \times I \rightarrow S^1$ F contin, I compact -> can choose $0 = t_0 < \cdots < t_m = 1$ s.t. $\tilde{F}: \Upsilon \times \{\sigma\} \longrightarrow \mathbb{R}$ Vi F([ti,ti+1]) C Ud some d. a lift of Flyx for $\exists ! \tilde{F} : Y \times I \rightarrow \mathbb{R}$ lifting F, Induct: if F defined on [o,ti] 8. $\widetilde{F}(t_i) \in \widetilde{U}_i$ use the homeo $\widetilde{U}_i \rightarrow U_k$ extending Flyx 803. F= poF Define F on [ti,ti+1] via Path lifting : V = pt. h'oFl Etistin] Homotopy lifting: Y=I

Prop. X, Y path conn. $\pi_{i}(X \times Y) \cong \pi_{i}(X) \times \pi_{i}(Y)$ Cor. $\pi_1(T^2) = \mathbb{Z}^2$. Induced homomorphisms $\varphi \colon (\chi, \chi_{\circ}) \longrightarrow (Y, y_{\circ})$ $\sim \varphi_* : \pi_i(\chi,\chi_o) \rightarrow \pi_i(\chi,\chi_o)$ $[t] \mapsto [c \circ t]$

"Functoriality" :

()
$$(\psi)_{*} = \psi_{*} \psi_{*}$$

() $id_{*} = id_{*}$

Fact.
$$\varphi$$
 a homeo $\Rightarrow \varphi_*$ is \cong .
Pf. $\varphi_*^{\circ}(\varphi^{-1})_*^{(1)}(\varphi_*^{\circ(1)})_* = \operatorname{id}_*^{(2)}(\varphi_*^{\circ(1)})_*$