Prop. (a) If h: DK -> Sn is an Mar 4 Applications of Homology embedding then 1) Jordan curve thm. $\tilde{H}_i(S_n \setminus h(D^k)) = O \forall c,$ Thm. Let $h: S' \rightarrow \mathbb{R}^2$ (b) If $S^k \rightarrow S^n$ is embedd. Ken be an embedding (injective) $\widetilde{H}_{i}(S^{n}-h(S^{k})) = \begin{cases} 72 & i=n-k-1 \\ 0 & o.w. \end{cases}$ Then $\mathbb{R}^2 \setminus h(S^1)$ has exactly 2 connected components. (b) implies any Sⁿ⁻¹ in Sⁿ divides (b) also implies H1 (S³ \ knot)=Z Osgood Sn into 2 components, each with the homology of a pt. for n=2: Jordan cure for n=3: It is possible for one component to not be simply conn. comes...

Prop. (a) II h: DK -> Sn is an embedding then $\tilde{H}_i(S_n \setminus h(D^k)) = O \forall c$ (b) If $S^k \rightarrow S^n$ is embedd. Ken $\widetilde{H}_{i}\left(S^{n}-h(S^{k})\right)=\begin{cases}72 \ i=n-k-1\\0 \ o.w.\end{cases}$ @ Induct on k. $K=o: S^n - h(D^k) \in \mathbb{R}^n$ Replace DK with IK half-Let $A = S^{n} - h(I^{k-1} \times [0, \frac{1}{2}])$ $\mathcal{B} = S^n - h(\mathcal{I}^{k-1} \times [v_2, 1])$

 $AUB = S^{n} - h(I^{k-1} \times \{\frac{1}{2}\})$ Induction $\implies \widetilde{H}_i(AvB) = 0$. Mayor-Vieton's • Hi (AnB) = Hi (A) • Hi (B) Sr-h(I^k) Assume for contrad [\$\alphi] \$\overline\$ In \$\text{H}_i(AnB)\$ To \$\overline\$ of \$\alpha\$ Then $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \neq 0$ in $\widehat{H}_i(A) \quad A = S^n - half \\ cube \\ But \quad \alpha = 0$ in $\widehat{H}_i(A \cap B) = 0$, report. But $x = \frac{1}{2} = \frac{1}{2$ X

Prop. (a) If h: DK -> Sn is an embedding then $\widetilde{H}_i(S_n \setminus h(D^k)) = O \forall L,$ (b) If $S^k \rightarrow S^n$ is embedd. K<n $\widetilde{H}_{i}(s^{n}-h(s^{k})) = \begin{cases} 5\pi & i=n-k-1 \\ 0 & o.w. \end{cases}$

Proof of (b) Induct on K. & MV. Exercuise. The case k=n. $\sim 5^{\circ}$ cannot embed in \mathbb{R}^{n} \mathbb{R}^{m} cannot embed in \mathbb{R}^{n} m>n.

(2) Invariance of domain Thm. U open in R $h: \mathcal{U} \to \mathbb{R}^n$ embedding \rightarrow h(U) open in \mathbb{R}^n . Cor M = compact n-manifold N = connected n-man Any embedding $M \rightarrow N$ is surjective, hence a homeo.

Thm. U open in R $h: \mathcal{U} \to \mathbb{R}^n$ embedding \rightarrow h(U) open in \mathbb{R}^n . If Think of IR" as S" 1 pt Enough to show h(u) open in Sn Let x ∈ U, Dⁿ = disk about × in U Suffices to show h(int D") open in Sⁿ, $\operatorname{Prop}(b) \Rightarrow 5^{n} \setminus h(\partial D^{n}) has 2$ path comp.

The two components are: you: $h(int D^n)$ justify $S^n \setminus h(D^n)$ h(dD") is closed (compart in Hausdorff) ⇒ Sr (h(∂Dr) open. ⇒ path components are the conn. components. (true in a loc. comp.) Fact. An open set with finitely space) many components has each component as an open subspace. \implies h(int D^n) open in S^n (h(∂D^n) \Rightarrow open in Sⁿ.