

Identity: 11111 Mar 11 Inverse: Mirror vertically,

Generators: i iti A map Bn ->> Sn. Kernel: PBn pure braid group.



 $\begin{aligned} \pi_{i}(C_{n}) &\cong B_{n} \\ \pi_{i}(U_{n}) &\cong PB_{n} \\ \end{aligned} \quad \begin{array}{c} 3^{re} & interp \\ B_{n} &\cong & \sqrt{2} \\ Homeo(D_{n}, \partial D_{n}), \end{array} \end{aligned}$ A loop in C3: homotopy time | time

So Bn encodes motions of pts (robotics, Cn = Polyn = space of square free polynomials

Bn n>3 even more complicated... Some braid gps A K(G, I)space is a  $B_1 = 1$ space with Thm. Bn is torsion free. M, = G & B2 ≈ 7∠ contractille univ. (Only ett of finite order is id). Cover B3 more complicated. B is central in B3. braid relation L (exercise). 2n-dim SL272 -Pf outline () Cn is a K(Bn, 1) 2×2 7L matrices of det 1 71 =  $J_2 J_1 J_2$ 2) IF G has torsion, any  $T_1 T_2 T_1$ K(G,1) is oo dim. but B3/center = PSL272

(1) Cn is a K(Bn,1) Whitehead's Thm X CW complex First  $U_n \rightarrow C_n$  is the Then  $\tilde{X}$  contractible iff  $\pi_i(x) = 0$  i>1 We have:  $\mathbb{R}^2 - \tilde{\mathbb{I}}_{pts}^{n-1}$  Un graph  $\cong X_{n-1}$  Un Un-1 Un-1 covering space. carr to FBn. To see this: Sn CrUn. Un/Sn=Cn  $\mathcal{T}_{i}(X_{n-1}) \rightarrow \mathcal{T}_{i}(U_{n}) \rightarrow \mathcal{T}_{i}(U_{n-1}) \rightarrow \mathcal{T}_{$ This is a covering sp action. O OxeUn (exorcise) 00  $\mathfrak{R}_{i-1}(\mathbf{X}_{n-1})\mathbf{O}$ So: Un & Cn have same univ cover.  $\Rightarrow \pi_i(u_n) = 0.$ So: Will show Un is contractible.

(2) G has torsion ⇒ Any K(G,1)  
is ∞ dim.  
We'll  
Show any K(74/2,1) is ∞ -dim  
Our fave K(74/2,1) is ∞ -dim  

$$K(74/n,1)$$
 is a  
 $Cur fave K(74/2,1) : 5^{∞}/(74/2) = IRP^{∞}$ .  
The chain complex for  $H_{x}(RP^{∞})$   
The chain complex for  $H_{x}(RP^{∞})$   
 $The chain  $K(TH_{x},1)$  findim  $Complex$   
 $The chain  $K(TH_{x},1)$  is  $OO$  dim.$$$$$$$$$$$$$$$$$$$$$ 

•



