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Chapter 1

Preface

1.0.1 What version is this, and how stable is it?

The version you are looking at right now is a β-release resulting from the major revision
on Kistrand, Northern Norway in June 2012. The last stable manuscript: August 2007. If
you have any comments or suggestion, I will be more than happy to hear from you so that
the next stable release of these notes will be maximally helpful.

The plan is to keep the text available on the net, also in the future, and I have occa-
sionally allowed myself to provide links to interesting sites. If any of these links are dead,
please inform me so that I can change them in the next edition.

1.0.2 Acknowledgments

First and foremost, I am indebted to the students who have used these notes and given
me invaluable feedback. Special thanks go to Håvard Berland, Elise Klaveness and Karen
Sofie Ronæss. I owe a couple of anonymous referees much for their diligent reading and
many helpful comments. I am also grateful to the Department of Mathematics for allowing
me to do the 2012 revision in an inspiring environment.

1.0.3 The history of manifolds

Although a fairly young branch of mathematics, the history behind the theory of manifolds
is rich and fascinating. The reader should take the opportunity to check up some of the
biographies at The MacTutor History of Mathematics archive or at the Wikipedia of the
mathematicians that actually are mentioned by name in the text (I have occasionally pro-
vided direct links). There is also a page called History Topics: Geometry and Topology Index
which is worthwhile spending some time with. Of printed books, I have found Jean
Dieudonné’s book [4] especially helpful (although it is mainly concerned with topics beyond
the scope of this book).
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http://www-groups.dcs.st-and.ac.uk/~history/index.html
http://www-groups.dcs.st-and.ac.uk/~history/index.html
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http://www-groups.dcs.st-and.ac.uk/~history/Indexes/Geometry_Topology.html
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1.0.4 Notation

We let N = {0, 1, 2, . . .}, Z = {. . . ,−1, 0, 1, . . .}, Q, R and C be the sets of natural
numbers, integers, rational numbers, real numbers and complex numbers. If X and Y are
two sets, X×Y is the set of ordered pairs (x, y) with x an element in X and y an element in
Y . If n is a natural number, we let Rn and Cn be the vector space of ordered n-tuples of real
or complex numbers. Occasionally we may identify Cn with R2n. If x = (x1, . . . , xn) ∈ Rn,

we let |x| be the norm
√
x2

1 + · · ·+ x2
n. The sphere of dimension n is the subset Sn ⊆ Rn+1

of all x = (x0, . . . , xn) ∈ Rn+1 with |x| = 1 (so that S0 = {−1, 1} ⊆ R, and S1 can be
viewed as all the complex numbers eiθ of unit length). Given functions f : X → Y and
g : Y → Z, we write gf for the composite, and g ◦ f only if the notation is cluttered and
the ◦ improves readability. The constellation g · f will occur in the situation where f and
g are functions with the same source and target, and where multiplication makes sense in
the target.

1.0.5 How to start reading

The text proper starts with chapter 3 on smooth manifolds. If you are weak on point
set topology, you will probably want to read the appendix 10 in parallel with chapter 3.
The introduction 2 is not strictly necessary for highly motivated readers who can not wait
to get to the theory, but provides some informal examples and discussions that may put
the theme of these notes in some perspective. You should also be aware of the fact that
chapter 6 and 5 are largely independent, and apart from a few exercises can be read in
any order. Also, at the cost of removing some exercises and examples, the section on
derivations 4.4, the section on the cotangent space/bundle 4.3/6.6 can be removed from
the curriculum without disrupting the logical development of ideas.

Do the exercises, and only peek at the hints if you really need to.
Kistranda January 10, 2013



Chapter 2

Introduction

The earth is round. This may at one point have been hard to believe, but
we have grown accustomed to it even though our everyday experience is
that the earth is (fairly) flat. Still, the most effective way to illustrate
it is by means of maps: a globe is a very neat device, but its global(!)
character makes it less than practical if you want to represent fine details.

A globe

This phenomenon is quite common: locally you can represent things by means of
“charts”, but the global character can’t be represented by one single chart. You need
an entire atlas, and you need to know how the charts are to be assembled, or even better:
the charts overlap so that we know how they all fit together. The mathematical framework
for working with such situations is manifold theory. These notes are about manifold the-
ory, but before we start off with the details, let us take an informal look at some examples
illustrating the basic structure.

2.1 A robot’s arm:

To illustrate a few points which will be important later on, we discuss a concrete situation
in some detail. The features that appear are special cases of general phenomena, and
hopefully the example will provide the reader with some deja vue experiences later on,
when things are somewhat more obscure.

Consider a robot’s arm. For simplicity, assume that it moves in the plane, has three
joints, with a telescopic middle arm (see figure).

9
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Call the vector defining the inner arm x, the second arm y and the third arm z. Assume
|x| = |z| = 1 and |y| ∈ [1, 5]. Then the robot can reach anywhere inside a circle of radius
7. But most of these positions can be reached in several different ways.

In order to control the robot optimally, we need to understand the various configura-
tions, and how they relate to each other.

As an example, place the robot in the origin and consider all the possible positions
of the arm that reach the point P = (3, 0) ∈ R2, i.e., look at the set T of all triples
(x, y, z) ∈ R2 ×R2 ×R2 such that

x+ y + z = (3, 0), |x| = |z| = 1, and |y| ∈ [1, 5].

We see that, under the restriction |x| = |z| = 1, x and z can be chosen arbitrarily, and
determine y uniquely. So T is “the same as” the set

{(x, z) ∈ R2 ×R2 | |x| = |z| = 1}.
Seemingly, our space T of configurations resides in four-dimensional space R2×R2 ∼= R4,
but that is an illusion – the space is two-dimensional and turns out to be a familiar shape.
We can parametrize x and z by angles if we remember to identify the angles 0 and 2π. So
T is what you get if you consider the square [0, 2π] × [0, 2π] and identify the edges as in
the picture below.

A

A

B B
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See

http://www.it.brighton.ac.uk/staff/jt40/MapleAnimations/Torus.html

for a nice animation of how the plane model gets glued.
In other words: The set T of all positions such that the robot reaches P = (3, 0) may

be identified with the torus.

This is also true topologically in the sense that “close configurations” of the robot’s arm
correspond to points close to each other on the torus.

2.1.1 Question

What would the space S of positions look like if the telescope got stuck at |y| = 2?
Partial answer to the question: since y = (3, 0)− x − z we could try to get an idea of

what points of T satisfy |y| = 2 by means of inspection of the graph of |y|. Below is an
illustration showing |y| as a function of T given as a graph over [0, 2π]× [0, 2π], and also
the plane |y| = 2.
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The desired set S should then be the intersection:

0

1

2

3

4

5

6

t

0 1 2 3 4 5 6
s

It looks a bit weird before we remember that the edges of [0, 2π]×[0, 2π] should be identified.
On the torus it looks perfectly fine; and we can see this if we change our perspective a bit.
In order to view T we chose [0, 2π]× [0, 2π] with identifications along the boundary. We
could just as well have chosen [−π, π] × [−π, π], and then the picture would have looked
like the following:

It does not touch the boundary, so we do not need to worry about the identifications. As
a matter of fact, S is homeomorphic to the circle (homeomorphic means that there is a
bijection between the two sets, and both the map from the circle to S and its inverse are
continuous. See 10.2.8).

2.1.2 Dependence on the telescope’s length

Even more is true: we notice that S looks like a smooth and nice picture. This will not
happen for all values of |y|. The exceptions are |y| = 1, |y| = 3 and |y| = 5. The values 1
and 5 correspond to one-point solutions. When |y| = 3 we get a picture like the one below
(it really ought to touch the boundary):
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In the course we will learn to distinguish between such circumstances. They are qualita-
tively different in many aspects, one of which becomes apparent if we view the example
with |y| = 3 with one of the angles varying in [0, 2π] while the other varies in [−π, π]:
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With this “cross” there is no way our solution space is homeomorphic to the circle. You
can give an interpretation of the picture above: the straight line is the movement you get
if you let x = z (like two wheels of equal radius connected by a coupling rod y on an old
fashioned train), while on the other x and z rotates in opposite directions (very unhealthy
for wheels on a train).

Actually, this cross comes from a “saddle point” in the graph of |y| as a function of T :
it is a “critical” value where all sorts of bad things can happen.

2.1.3 Moral

The configuration space T is smooth and nice, and we get different views on it by changing
our “coordinates”. By considering a function on T (in our case the length of y) and restrict-
ing to the subset of T corresponding to a given value of our function, we get qualitatively
different situations according to what values we are looking at. However, away from the
“critical values” we get smooth and nice subspaces, see in particular 5.4.3.
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2.2 The configuration space of two electrons

Consider the situation where two electrons (with the same spin) are lonesome in space.
To simplify matters, place the origin at the center of mass. The Pauli exclusion principle
dictates that the two electrons can not be at the same place, so the electrons are somewhere
outside the origin diametrically opposite of each other (assume they are point particles).
However, you can’t distinguish the two electrons, so the only thing you can tell is what
line they are on, and how far they are from the origin (you can’t give a vector v saying
that this points at a chosen electron: −v is just as good).

Disregarding the information telling you how far the electrons are from each other
(which anyhow is just a matter of scale) we get that the space of possible positions may
be identified with the space of all lines through the origin in R3. This space is called the
(real) projective plane RP2. A line intersects the unit sphere S2 = {p ∈ R3 | |p| = 1} in
exactly two (antipodal) points, and so we get that RP2 can be viewed as the sphere S2

but with p ∈ S2 identified with −p. A point in RP2 represented by p ∈ S2 (and −p) is
written [p].

The projective plane is obviously a “manifold” (i.e., can be described by means of
charts), since a neighborhood around [p] can be identified with a neighborhood around
p ∈ S2 – as long as they are small enough to fit on one hemisphere. However, I can not
draw a picture of it in R3 without cheating.

On the other hand, there is a rather concrete representation of this space: it is what
you get if you take a Möbius band and a disk, and glue them together along their boundary
(both the Möbius band and the disk have boundaries a copy of the circle). You are asked
to perform this identification in exercise 2.4.6.

A Möbius band: note that its

boundary is a circle.
A disk: note that its boundary is a

circle.

2.2.1 Moral

The moral in this subsection is this: configuration spaces are oftentimes manifolds that do
not in any natural way live in Euclidean space. From a technical point of view they often
are what called quotient spaces (although this example was a rather innocent one in this
respect).
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2.3 State spaces and fiber bundles

The following example illustrates a phenomenon often encountered in physics, and a tool
of vital importance for many applications. It is also an illustration of a key result which
we will work our way towards: Ehresmann’s fibration theorem 9.5.6.

It is slightly more involved than the previous example, since it points forward to many
concepts and results we will discuss more deeply later, so if you find the going a bit rough,
I advice you not to worry too much about details right now, but come back to them when
you are ready.

2.3.1 Qbits

In quantum computing one often talks about qbits. As opposed to an ordinary bit, which
takes either the value 0 or 1 (representing “false” and “true” respectively), a qbit, or
quantum bit, is represented by a complex linear combination (“superposition” in the physics
parlance) of two states. The two possible states of a bit are then often called |0〉 and |1〉,
and so a qbit is represented by the “pure qbit state” α|0〉+β|1〉 where α, and β are complex
numbers where |α|2 + |β|2 = 1 (since the total probability is 1: the numbers |α|2 and |β|2
are interpreted as the probabilities that a measurement of the qbit will yield |0〉 and |1〉
respectively).

Note that the set of pairs (α, β) ∈ C2 satisfying |α|2 +
|β|2 = 1 is just another description of the sphere S3 ⊆
R4 = C2. In other words, a pure qbit state is a point
(α, β) on the sphere S3.
However, for various reasons phase changes are not
important. A phase change is the result of multiplying
(α, β) ∈ S3 with a unit length complex number. That
is, if z = eiθ ∈ S1 ⊆ C, the pure qbit state (zα, zβ) is
a phase shift of (α, β), and these should be identified.
The state space is what you get when you identify each
pure qbit state with the other pure qbits states you get
by phase change.

The state space S2

So, what is the relation between the space S3 of pure qbits states and the state space?
It turns out that the state space may be identified with the two-dimensional sphere S2,
and the projection down to state space η : S3 → S2 may be given by

η(α, β) = (|α|2 − |β|2, 2αβ̄) ∈ S2 ⊆ R3 = R ×C.

Note that η(α, β) = η(zα, zβ) if z ∈ S1, and so η sends all the phase shifts of a given qbit
to the same point in state space, and conversely, any qbit is represented by a point in state
space.

Given a point in state space p ∈ S2, the space of pure qbit states representing p can be
identified with S1 ⊆ C: choose a pure qbit state (α, β) representing p, and note that any
other pure qbit state representing p is of the form (zα, zβ) for some unique z ∈ S1.
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So, can a pure qbit be given uniquely by its associated qbit and some point on the circle,
i.e., is the space of pure qbit states really S2 × S1 (and not S3 as I previously claimed)?
Without more work it is not at all clear how these copies of S1 lying over each point in S2

are to be glued together: how does this “circle’s worth” of pure qbit states change when
we vary the position in state space slightly?

The answer comes through Ehresmann’s fibration theorem 9.5.6. It turns out that
η : S3 → S2 is a locally trivial fibration, which means that in a small neighborhood U
around any given point in state space, the space of pure qbit states does look like U × S1.
On the other hand, the global structure is different. In fact, η : S3 → S2 is an important
mathematical object for many reasons, and is known as the Hopf fibration.

The pure qbit states represented in a small open neighborhood U in state space form

a cylinder U × S1 (dimension reduced by one in the picture).

The input to Ehresmann’s theorem comes in two types. First we have some point
set information, which in our case is handled by the fact that S3 is “compact” 10.7.1.
Secondly there is a condition which only sees the linear approximations, and which in our
case boils down to the fact that any “infinitesimal” movement on S2 is the shadow of an
“infinitesimal” movement in S3. This is a question which is settled through a quick and
concrete calculation of differentials. We’ll be more precise about this later, but let saying
that these conditions are easily checked given the right language it suffice for now (this is
exercise 9.5.11).

2.3.2 Moral

The idea is the important thing: if you want to understand some complicated model
through some simplification, it is often so that the complicated model locally (in the simple
model) can be built out of the simple model through multiplying with some fixed space.
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How these local pictures are glued together to give the global picture is another matter,
and often requires other tools, for instance form algebraic topology. In the S3 → S2 case,
we see that S3 and S2 × S1 can not be identified since S3 is simply connected (meaning
that any closed loop in S3 can be deformed continuously to a point) and S2 × S1 is not.

An important class of examples (of which the above is an example) of locally trivial
fibrations arise from symmetries: if M is some (configuration) space and you have a “group
of symmetries” G (e.g., rotations) acting on M , then you can consider the space M/G of
points in M where you have identified two points in M if they can be obtained from
each other by letting G act (e.g., one is a rotated copy of the other). Under favorable
circumstances M/G will be a manifold and the projection M → M/G will be a locally
trivial fibration, so that M is built up of neighborhoods in M/G times G glued together
appropriately.

2.4 Further examples

A short bestiary of manifolds available to us at the moment might look like this:

—The surface of the earth, S2, and higher dimensional spheres, see 3.1.4;

—Space-time is a four dimensional manifold. It is not flat, and its curvature is
determined by the mass distribution;

—Configuration spaces in physics (e.g., robot example 2.1, the two electrons of ex-
ample 2.2 or the more abstract considerations at the very end of 2.3.2 above);

—If f : Rn → R is a map and y a real number, then the inverse image

f−1(y) = {x ∈ Rn|f(x) = y}

is often a manifold. For instance, if f : R2 → R is the norm function f(x) = |x|,
then f−1(1) is the unit circle S1 (c.f. the submanifold chapter 5);

—The torus (c.f. the robot example 2.1);

—“The real projective plane” RP2 = {All lines in R3 through the origin} (see the
two-electron example 2.2, but also exercise 2.4.6);

—The Klein bottle (see 2.4.3).

We end this introduction by studying surfaces a bit closer (since they are concrete, and
drives home the familiar notion of charts in more exotic situations), and also come with
some inadequate words about higher dimensional manifolds in general.

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Klein.html
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2.4.1 Charts

The space-time manifold brings home the fact that manifolds must be represented intrin-
sically: the surface of the earth is seen as a sphere “in space”, but there is no space which
should naturally harbor the universe, except the universe itself. This opens up the question
of how one can determine the shape of the space in which we live.

One way of representing the surface of the earth as the two-dimensional space it is (not
referring to some ambient three-dimensional space), is through an atlas. The shape of the
earth’s surface is then determined by how each map in the atlas is to be glued to the other
maps in order to represent the entire surface.

Just like the surface of the earth is covered by maps, the torus in the robot’s arm was
viewed through flat representations. In the technical sense of the word, the representation
was not a “chart” (see 3.1.1) since some points were covered twice (just as Siberia and
Alaska have a tendency to show up twice on some European maps). It is allowed to have
many charts covering Fairbanks in our atlas, but on each single chart it should show up at
most once. We may fix this problem at the cost of having to use more overlapping charts.
Also, in the robot example (as well as the two-electron and qbit examples) we saw that it
was advantageous to operate with more charts.

Example 2.4.2 To drive home this point, please play Jeff Weeks’ “Torus Games” on

http://www.geometrygames.org/TorusGames/

for a while.

2.4.3 Compact surfaces

This section is rather autonomous, and may be read at leisure at a later stage to fill in the
intuition on manifolds.

The Klein Bottle

To simplify we could imagine that we were two dimensional beings living in a static closed
surface. The sphere and the torus are familiar surfaces, but there are many more. If you
did example 2.4.2, you were exposed to another surface, namely the Klein bottle. This has
a plane representation very similar to the Torus: just reverse the orientation of a single
edge.

http://www.geometrygames.org/TorusGames/
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a a

b

b

A plane repre-

sentation of the

Klein bottle:

identify along

the edges in

the direction

indicated.

A picture of the Klein bottle forced into our three-

dimensional space: it is really just a shadow since it

has self intersections. If you insist on putting this two-

dimensional manifold into a flat space, you got to have

at least four dimensions available.

Although this is an easy surface to describe (but frustrating to play chess on), it is
too complicated to fit inside our three-dimensional space: again a manifold is not a space
inside a flat space. It is a locally Euclidean space. The best we can do is to give an
“immersed” (i.e., allowing self-intersections) picture.

Speaking of pictures: the Klein bottle makes a surprising entré in image analysis. When
analyzing the 9-dimensional space of all configuration of 3 by 3 gray-scale pixels, it is of
importance – for instance if you want to implement some compression technique – to know
what configurations occur most commonly. Carlsson, Ishkhanov, de Silva and Zomorodian
show in the preprint http://math.stanford.edu/comptop/preprints/mumford.pdf that
the subspace of “most common pixel configurations” actually “is” a Klein bottle (follow
the url for a more precise description). Their results are currently being used in developing
a compression algorithm based on a “Klein bottle dictionary”.

Classification of compact surfaces

As a matter of fact, it turns out that we can write down a list of all compact surfaces
(compact is defined in appendix 10, but informally should be thought of as “closed and of
bounded size”). First of all, surfaces may be divided into those that are orientable and
those that are not. Orientable means that there are no loops by which two dimensional
beings living in the surface can travel and return home as their mirror images (is the
universe non-orientable? is that why some people are left-handed?).

http://math.stanford.edu/comptop/preprints/mumford.pdf
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All connected compact orientable surfaces
can be obtained by attaching a finite num-
ber of handles to a sphere. The number of
handles attached is referred to as the genus
of the surface.
A handle is a torus with a small disk removed
(see the figure). Note that the boundary of
the holes on the sphere and the boundary of
the hole on each handle are all circles, so we
glue the surfaces together in a smooth manner
along their common boundary (the result of
such a gluing process is called the connected
sum, and some care is required).

A handle: ready to be attached to

another 2-manifold with a small disk

removed.

Thus all orientable compact surfaces are surfaces of pretzels with many holes.

An orientable surface of genus g is obtained by gluing g handles (the smoothening

out has yet to be performed in these pictures)

There are nonorientable surfaces too (e.g.,
the Klein bottle). To make them, consider
a Möbius band. Its boundary is a circle,
and so cutting a hole in a surface you may
glue in a Möbius band. If you do this on a
sphere you get the projective plane (this is
exercise 2.4.6). If you do it twice you get
the Klein bottle. Any nonorientable compact
surface can be obtained by cutting a finite
number of holes in a sphere and gluing in the
corresponding number of Möbius bands.

A Möbius band: note that its

boundary is a circle.

The reader might wonder what happens if we mix handles and Möbius bands, and it
is a strange fact that if you glue g handles and h > 0 Möbius bands you get the same as
if you had glued h + 2g Möbius bands! For instance, the projective plane with a handle
attached is the same as the Klein bottle with a Möbius band glued onto it. But fortunately

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Mobius.html
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this is it; there are no more identifications among the surfaces.

So, any (connected compact) surface can be obtained by cutting g holes in S2 and either
gluing in g handles or gluing in g Möbius bands. For a detailed discussion the reader may
turn to Hirsch’s book [5], chapter 9.

Plane models

If you find such descriptions elusive, you may find com-
fort in the fact that all compact surfaces can be de-
scribed similarly to the way we described the torus.
If we cut a hole in the torus we get a handle. This
may be represented by plane models as to the right:
identify the edges as indicated.
If you want more handles you just glue many of these
together, so that a g-holed torus can be represented by
a 4g-gon where two and two edges are identified (see
below for the case g = 2, the general case is similar.
See also

www.rogmann.org/math/tori/torus2en.html

for instruction on how to sew your own two and tree-
holed torus).

a

a

b

b

the boundary

a a

b

b

Two versions of a plane

model for the handle:

identify the edges as indi-

cated to get a torus with a

hole in.

a

a’

a

a’

b

b

b’

b’

A plane model of the orientable surface of genus two. Glue corresponding edges

together. The dotted line splits the surface up into two handles.

http://www.rogmann.org/math/tori/torus2en.html
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It is important to have in mind that the points on the
edges in the plane models are in no way special: if we
change our point of view slightly we can get them to
be in the interior.
We have plane models for gluing in Möbius bands too
(see picture to the right). So a surface obtained by
gluing h Möbius bands to h holes on a sphere can be
represented by a 2h-gon, where two and two edges are
identified.

Example 2.4.4 If you glue two plane models of the
Möbius band along their boundaries you get the pic-
ture to the right. This represent the Klein bottle, but
it is not exactly the same plane representation we used
earlier.
To see that the two plane models give the same sur-
face, cut along the line c in the figure to the left be-
low. Then take the two copies of the line a and glue
them together in accordance with their orientations
(this requires that you flip one of your triangles). The
resulting figure which is shown to the right below, is
(a rotated and slanted version of) the plane model we
used before for the Klein bottle.

a a

the boundary

A plane model for the

Möbius band: identify the

edges as indicated. When

gluing it onto something

else, use the boundary.

a a

a’a’

Gluing two flat Möbius

bands together. The dot-

ted line marks where the

bands were glued together.

a a

a’a’

c a

a’

a’

c

c

Cutting along c shows that two Möbius bands glued together is the Klein bottle.

Exercise 2.4.5 Prove by a direct cut and paste argument that what you get by adding a
handle to the projective plane is the same as what you get if you add a Möbius band to
the Klein bottle.
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Exercise 2.4.6 Prove that the real projective plane

RP2 = {All lines in R3 through the origin}

is the same as what you get by gluing a Möbius band to a sphere.

Exercise 2.4.7 See if you can find out what the “Euler number” (or Euler characteristic)
is. Then calculate it for various surfaces using the plane models. Can you see that both the
torus and the Klein bottle have Euler characteristic zero? The sphere has Euler number 2
(which leads to the famous theorem V −E+F = 2 for all surfaces bounding a “ball”) and
the projective plane has Euler number 1. The surface of exercise 2.4.5 has Euler number
−1. In general, adding a handle reduces the Euler number by two, and adding a Möbius
band reduces it by one.

Exercise 2.4.8 If you did exercise 2.4.7, design an (immensely expensive) experiment
that could be performed by two-dimensional beings living in a compact orientable surface,
determining the shape of their universe.

2.4.9 The Poincaré conjecture and Thurston’s geometrization

conjecture

In dimension tree, the last few years have seen a fascinating development. In 1904
H. Poincaré conjectured that any simply connected compact and closed 3-manifold is home-
omorphic to the 3-sphere. This problem remained open for almost a hundred years, al-
though the corresponding problem was resolved in higher dimensions by S. Smale (1961
for dimensions greater than 4) and M. Freedman (1982 in dimension 4).

In the academic year 2002/2003 G. Perelman posted a series of papers building on
previous work by R. Hamilton, which by now are widely regarded as the core of a proof of
the Poincaré conjecture. The proof relies on an analysis of the “Ricci flow” deforming the
curvature of a manifold in a manner somehow analogous to the heat equation, smoothing
out irregularities. Our encounter with flows will be much more elementary, but still prove
essential in the proof of Ehresmann’s fibration theorem 9.5.6.

Perelman was offered the Fields medal for his work in 2006, but spectacularly refused
it. In this way he created much more publicity for the problem, mathematics and himself
than would have otherwise been thinkable. It remains to be seen what he will do if offered a
share in USD1M by the Clay Mathematics Institute. In 2006 several more thorough write-
ups of the argument appeared (see e.g., the Wikipedia entry on the Poincaré conjecture
for an updated account).

Of far greater consequence is Thurston’s geometrization conjecture. This conjecture
was proposed by W. Thurston in 1982. Any 3-manifold can be decomposed into prime
manifolds, and the conjecture says that any prime manifold can be cut along tori, so
that the interior of each of the resulting manifolds has one of eight geometric structures
with finite volume. See e.g., the Wikipedia page for further discussion and references.

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Euler.html
http://en.wikipedia.org/wiki/Euler_characteristic
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Poincare.html
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Smale.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Freedman.html
http://en.wikipedia.org/wiki/Grigori_Perelman
http://en.wikipedia.org/wiki/Richard_Hamilton_(mathematician)
http://www.claymath.org/
http://en.wikipedia.org/wiki/Poincare_conjecture
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Thurston.html
http://en.wikipedia.org/wiki/William_Thurston
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On the same page you will find asserted the belief that Perelman’s work also implies the
geometrization conjecture.

2.4.10 Higher dimensions

Although surfaces are fun and concrete, next to no real-life applications are 2 or 3-
dimensional. Usually there are zillions of variables at play, and so our manifolds will
be correspondingly complex. This means that we can’t continue to be vague (the previ-
ous section indicated that even in three dimensions things become nasty). We need strict
definitions to keep track of all the structure.

However, let it be mentioned at the informal level that we must not expect to have
such a nice list of higher dimensional manifolds as we had for compact surfaces.

Classification problems for higher dimensional manifolds is an extremely complex and
interesting business we will not have occasion to delve into. This study opens new fields of
research using methods both from algebra and analysis that go far beyond the ambitions
of this text.



Chapter 3

Smooth manifolds

3.1 Topological manifolds

Let us get straight to our object of study. The terms used in the definition are explained
immediately below the box. If words like “open” and “topology” are new to you, you are
advised to read the appendix 10 on point set topology in parallel with this chapter.

Definition 3.1.1 An n-dimensional topological manifold M is

a Hausdorff topological space with a countable basis for the topology which is

locally homeomorphic to Rn.

The last point (locally homeomorphic to Rn – im-
plicitly with the metric topology – also known as
Euclidean space 10.1.10) means that for every point
p ∈M there is

an open neighborhood U of p in M ,

an open set U ′ ⊆ Rn and

a homeomorphism (10.2.5) x : U → U ′.

We call such an x : U → U ′ a chart and U a chart
domain.
A collection of charts {xα : Uα → U ′

α} covering M (i.e.,
such that the union

⋃
Uα of the chart domains is M)

is called an atlas.

Note 3.1.2 The conditions that M should be “Hausdorff” (10.4.1) and have a “countable
basis for its topology” (??) will not play an important rôle for us for quite a while. It is
tempting to just skip these conditions, and come back to them later when they actually

25
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are important. As a matter of fact, on a first reading I suggest you actually do this. Rest
assured that all subsets of Euclidean spaces satisfy these conditions (see 10.5.6).

The conditions are there in order to exclude some pathological creatures that are locally
homeomorphic to Rn, but are so weird that we do not want to consider them. We include
the conditions at once so as not to need to change our definition in the course of the book,
and also to conform with usual language.

Example 3.1.3 Let U ⊆ Rn be an open subset. Then U is an n-manifold. Its atlas needs
only have one chart, namely the identity map id : U = U . As a sub-example we have the
open n-disk

En = {p ∈ Rn| |p| < 1}.

Example 3.1.4 The n-sphere

Sn = {p ∈ Rn+1| |p| = 1}

is an n-dimensional manifold.

To see that Sn is locally homeomorphic to Rn

we may proceed as follows. Write a point in
Rn+1 as an n + 1 tuple indexed from 0 to n:
p = (p0, p1, . . . , pn). To give an atlas for Sn,
consider the open sets

Uk,0 ={p ∈ Sn|pk > 0},
Uk,1 ={p ∈ Sn|pk < 0}

UU

U U

0,0 0,1

1,0 1,1

for k = 0, . . . , n, and let

xk,i : Uk,i → En

be the projection to the open n-disk En given
by deleting the k-th coordinate:

(p0, . . . , pn) 7→(p0, . . . , p̂k, . . . , pn)

=(p0, . . . , pk−1, pk+1, . . . , pn)

(the “hat” in p̂k is a common way to indicate
that this coordinate should be deleted).

U

D1

1,0

[The n-sphere is Hausdorff and has a countable basis for its topology by corollary 10.5.6
simply because it is a subspace of Rn+1.]
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Exercise 3.1.5 Check that the proposed charts xk,i for Sn in the previous example really
are homeomorphisms.

Exercise 3.1.6 We shall later see that an atlas with two charts suffice on the sphere. Why
is there no atlas for Sn with only one chart?

Example 3.1.7 The real projective n-space RPn is the set of all straight lines through
the origin in Rn+1. As a topological space, it is the quotient space (see 10.6)

RPn = (Rn+1 \ {0})/ ∼

where the equivalence relation is given by p ∼ q if there is a nonzero real number λ such
that p = λq. Since each line through the origin intersects the unit sphere in two (antipodal)
points, RPn can alternatively be described as

Sn/ ∼

where the equivalence relation is p ∼ −p. The real projective n-space is an n-dimensional
manifold, as we shall see below. If p = (p0, . . . , pn) ∈ Rn+1 \ {0} we write [p] for its
equivalence class considered as a point in RPn.

For 0 ≤ k ≤ n, let
Uk = {[p] ∈ RPn|pk 6= 0}.

Varying k, this gives an open cover of RPn (why is Uk open in RPn?). Note that the
projection Sn → RPn when restricted to Uk,0 ∪Uk,1 = {p ∈ Sn|pk 6= 0} gives a two-to-one
correspondence between Uk,0∪Uk,1 and Uk. In fact, when restricted to Uk,0 the projection
Sn → RPn yields a homeomorphism Uk,0 ∼= Uk.

The homeomorphism Uk,0 ∼= Uk together with the homeomorphism

xk,0 : Uk,0 → En = {p ∈ Rn| |p| < 1}

of example 3.1.4 gives a chart Uk → En (the explicit formula is given by sending [p] ∈ Uk

to |pk|
pk|p| (p0, . . . , p̂k, . . . , pn)). Letting k vary, we get an atlas for n.
We can simplify this somewhat: the following atlas will be referred to as the standard

atlas for RPn. Let

xk : Uk →Rn

[p] 7→ 1

pk
(p0, . . . , p̂k, . . . , pn) .

Note that this is a well defined (since 1
pk

(p0, . . . , p̂k, . . . , pn) = 1
λpk

(λp0, . . . , λ̂pk, . . . , λpn)).

Furthermore xk is a bijective function with inverse given by

(
xk
)−1

(p0, . . . , p̂k, . . . , pn) = [p0, . . . , 1, . . . , pn]

(note the convenient cheating in indexing the points in Rn).
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In fact, xk is a homeomorphism: xk is continuous since the composite Uk,0 ∼= Uk → Rn

is; and
(
xk
)−1

is continuous since it is the composite Rn → {p ∈ Rn+1|pk 6= 0} → Uk

where the first map is given by (p0, . . . , p̂k, . . . , pn) 7→ (p0, . . . , 1, . . . , pn) and the second is
the projection.

[That RPn is Hausdorff and has a countable basis for its topology is exercise 10.7.5.]

Note 3.1.8 It is not obvious at this point that RPn can be realized as a subspace of an
Euclidean space (we will show it can in theorem 9.2.6).

Note 3.1.9 We will try to be consistent in letting the charts have names like x and y.
This is sound practice since it reminds us that what charts are good for is to give “local
coordinates” on our manifold: a point p ∈M corresponds to a point

x(p) = (x1(p), . . . , xn(p)) ∈ Rn.

The general philosophy when studying manifolds is to refer back to properties of Eu-
clidean space by means of charts. In this manner a successful theory is built up: whenever
a definition is needed, we take the Euclidean version and require that the correspond-
ing property for manifolds is the one you get by saying that it must hold true in “local
coordinates”.

Example 3.1.10 As we defined it, a topological manifold is a topological space with
certain properties. We could have gone about this differently, minimizing the rôle of the
space at the expense of talking more about the atlas.

For instance, given a set M a collection {Uα}α∈A of subsets of M such that
⋃
α∈A Uα =

M (we say that {Uα}α∈A covers M) and a collection of injections (one-to-one functions)
{xα : Uα → Rn}α∈A, assume that if α, β ∈ A then the bijection xα(Uα∩Uβ)→ xβ(Uα∩Uβ)
sending q to xβxα

−1(q) is a continuous map between open subsets of Rn.
The declaration that U ⊂M is open if for all α ∈ A we have that xα(U ∩ Uα) ⊆ Rn is

open, determines a topology on M . If this topology is Hausdorff and has a countable basis
for its topology, then M is a topological manifold. This can be achieved if, for instance,
we have that

1. for p, q ∈ M , either there is an α ∈ A such that p, q ∈ Uα or there are α, β ∈ A such
that Uα and Uβ are disjoint with p ∈ Uα and q ∈ Uβ and

2. there is a countable subset B ⊆ A such that
⋃
β∈B Uβ = M .

3.2 Smooth structures

We will have to wait until 3.3.5 for the official definition of a smooth manifold. The idea is
simple enough: in order to do differential topology we need that the charts of the manifolds
are glued smoothly together, so that we do not get different answers in different charts.
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Again “smoothly” must be borrowed from the Euclidean world. We proceed to make this
precise.

Let M be a topological manifold, and let x1 : U1 → U ′
1 and x2 : U2 → U ′

2 be two charts
on M with U ′

1 and U ′
2 open subsets of Rn. Assume that U12 = U1 ∩ U2 is nonempty.

Then we may define a chart transformation

x12 : x1(U12)→ x2(U12)

by sending q ∈ x1(U12) to

x12(q) = x2x
−1
1 (q)

(in function notation we get that

x12 = (x2|U12) ◦ (x1|U12)−1 : x1(U12)→ x2(U12),

where we recall that “|U12” means simply “restrict the domain of definition to U12”). The
picture of the chart transformation above will usually be recorded more succinctly as

U12
x1|U12

zzvvv
vv

vv
vv x2|U12

$$H
HH

HH
HH

HH

x1(U12) x2(U12)

This makes things easier to remember than the occasionally awkward formulae.
The chart transformation x12 is a function from an open subset of Rn to another, and

it makes sense to ask whether it is smooth or not.

Definition 3.2.1 An atlas on a manifold is smooth (or C∞) if all the chart transformations
are smooth (i.e., all the higher order partial derivatives exist and are continuous).
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Definition 3.2.2 A smooth map f between open subsets of Rn is said to be a diffeomor-
phism if it has a smooth inverse f−1.

Note 3.2.3 Note that if x12 is a chart transformation associated to a pair of charts in an
atlas, then x12

−1 is also a chart transformation. Hence, saying that an atlas is smooth is
the same as saying that all the chart transformations are diffeomorphisms.

Note 3.2.4 We are only interested in the infinitely differentiable case, but in some situa-
tion it is sensible to ask for less. For instance, that all chart transformations are C1 (all the
single partial differentials exist and are continuous). For a further discussion, see note 3.3.7
below.

One could also ask for more, for instance that all chart transformations are analytic
functions. However, the difference between smooth and analytic is substantial as can be
seen from Exercise 3.2.13.

Example 3.2.5 Let U ⊆ Rn be an open subset. Then the atlas whose only chart is the
identity id : U = U is smooth.

Example 3.2.6 The atlas

U = {(xk,i, Uk,i)|0 ≤ k ≤ n, 0 ≤ i ≤ 1}

we gave on the n-sphere Sn is a smooth atlas. To see this, look at the example U =
U0,0 ∩ U1,1 and consider the associated chart transformation

(
x1,1|U

)
◦
(
x0,0|U

)−1
: x0,0(U)→ x1,1(U).

First we calculate the inverse of x0,0: Let p =
(p1, . . . , pn) be a point in the open disk En,
then

(
x0,0

)−1
(p) =

(√
1− |p|2, p1, . . . , pn

)

(we choose the positive square root, since we
consider x0,0). Furthermore,

x0,0(U) = {(p1, . . . , pn) ∈ En|p1 < 0}

Finally we get that if p ∈ x0,0(U) then

x1,1
(
x0,0

)−1
(p) =

(√
1− |p|2, p̂1, p2, . . . , pn

)

This is a smooth map, and generalizing to
other indices we get that we have a smooth
atlas for Sn.

How the point p in x0,0(U) is

mapped to x1,1(x0,0)−1(p).
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Example 3.2.7 There is another useful smooth atlas on Sn, given by stereographic pro-
jection. It has only two charts.

The chart domains are

U+ ={p ∈ Sn|p0 > −1}
U− ={p ∈ Sn|p0 < 1}

and x+ is given by sending a point on Sn to the intersection of the plane

Rn = {(0, p1, . . . , pn) ∈ Rn+1}

and the straight line through the South pole S = (−1, 0, . . . , 0) and the point.
Similarly for x−, using the North pole instead. Note that both maps are homeomor-

phisms onto all of Rn

S

p

x (p)+

(p  ,...,p  )1 n

p
0

p

(p  ,...,p  )1 n

p
0

x (p)-

N

To check that there are no unpleasant surprises, one should write down the formulae:

x+(p) =
1

1 + p0
(p1, . . . , pn)

x−(p) =
1

1− p0
(p1, . . . , pn).

We observe that this defines homeomorphisms U± ∼= Rn. We need to check that the
chart transformations are smooth. Consider the chart transformation x+ (x−)

−1
defined

on x−(U− ∩ U+) = Rn \ {0}. A small calculation gives that if q ∈ Rn then

(
x−
)−1

(q) =
1

1 + |q|2 (|q|2 − 1, 2q)
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(solve the equation x−(p) = q with respect to p), and so

x+
(
x−
)−1

(q) =
1

|q|2 q

which is smooth. A similar calculation for the other chart transformation yields that
{x−, x+} is a smooth atlas.

Exercise 3.2.8 Verify that the claims and formulae in the stereographic projection exam-
ple are correct.

Note 3.2.9 The last two examples may be somewhat worrisome: the sphere is the sphere,
and these two atlases are two manifestations of the “same” sphere, are they not? We
address this kind of questions in the next chapter: “when do two different atlases describe
the same smooth manifold?” You should, however, be aware that there are “exotic” smooth
structures on spheres, i.e., smooth atlases on the topological manifold Sn which describe
smooth structures essentially different from the one(s?) we have described (but only in
high dimensions). See in particular exercise 3.3.9 and the note 3.3.6. Furthermore, there
are topological manifolds which can not be given smooth structures.

Example 3.2.10 The atlas we gave the real projective space was smooth. As an example
consider the chart transformation x2 (x0)

−1
: if p2 6= 0 then

x2
(
x0
)−1

(p1, . . . , pn) =
1

p2
(1, p1, p3, . . . , pn)

Exercise 3.2.11 Show in all detail that the complex projective n-space

CPn = (Cn+1 \ {0})/ ∼

where z ∼ w if there exists a λ ∈ C \ {0} such that z = λw, is a compact 2n-dimensional
manifold.

Exercise 3.2.12 Give the boundary of the square the structure of a smooth manifold.

Exercise 3.2.13 Let λ : R→ R be defined by

λ(t) =

{
0 for t ≤ 0

e−1/t for t > 0

This is a smooth function (note that all derivatives in zero are zero: the McLaurin series fails
miserably and λ is definitely not analytic) with values between zero and one. Consequently,
t 7→ sgn(t)λ(|t|) gives a non-analytic diffeomorphism R → (−1, 1).
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3.3 Maximal atlases

We easily see that some manifolds can be equipped with many different smooth atlases.
An example is the circle. Stereographic projection gives a different atlas than what you get
if you for instance parametrize by means of the angle. But we do not want to distinguish
between these two “smooth structures”, and in order to systematize this we introduce the
concept of a maximal atlas.

Definition 3.3.1 Let M be a manifold and A a smooth atlas on M . Then we define D(A)
as the following set of charts on M :

D(A) =





charts y : V → V ′ on M

∣∣∣∣∣∣∣

for all charts (x, U) in A, the composite
x|W (y|W )−1 : y(W )→ x(W )

is a diffeomorphism, where W = U ∩ V




.

Lemma 3.3.2 Let M be a manifold and A a smooth atlas on M . Then D(A) is a smooth
atlas.

Proof: Let y : V → V ′ and z : W →W ′ be two charts in D(A). We have to show that

z|V ∩W ◦ (y|V∩W )−1

is smooth. Let q be any point in y(V ∩ W ). We prove that z ◦ y−1 is smooth in a
neighborhood of q. Choose a chart x : U → U ′ in A with y−1(q) ∈ U .

Letting O = U ∩ V ∩W , we get that

z|O ◦ (y|O)−1 =z|O ◦ ((x|O)−1 ◦ x|O) ◦ (y|O)−1

=
(
z|O ◦ (x|O)−1

)
◦
(
x|O ◦ (y|O)−1)

)

Since y and z are in D(A) and x is in A we have by definition that both the maps in the
composite above are smooth, and we are done. �
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The crucial equation can be visualized by the following diagram

O
y|O
{{vvvvvvvvv

x|O
��

z|O
##H

HHHHH
HHH

y(O) x(O) z(O)

Going up and down with x|O in the middle leaves everything fixed so the two functions
from y(O) to z(O) are equal.

Definition 3.3.3 A smooth atlas is maximal if there is no strictly bigger smooth atlas
containing it.

Exercise 3.3.4 Given a smooth atlas A, prove that D(A) is maximal. Hence any smooth
atlas is a subset of a unique maximal smooth atlas.

Definition 3.3.5 A smooth structure on a topological manifold is a maximal smooth atlas.
A smooth manifold (M,A) is a topological manifold M equipped with a smooth structure
A. A smooth manifold is a topological manifold for which there exists a smooth structure.

Note 3.3.6 The following words are synonymous: smooth, differential and C∞.
Many authors let the term “differentiable manifold” mean what we call a “smooth

manifold”, i.e., a topological manifold with a chosen smooth structure. The distinction
between differentiable and smooth is not always relevant, but the reader may find pleasure
in knowing that the topological manifold S7 has 28 different smooth structures [7], and R4

has uncountably many.
As a side remark, one should notice that most physical situations involve differential

equations of some sort, and so depend on the smooth structure, and not only on the
underlying topological manifold. For instance, Baez remarks in This Week’s Finds in
Mathematical Physics (Week 141) that all of the 992 smooth structures on the 11-sphere
are relevant to string-theory.

Note 3.3.7 We are only interested in the smooth (infinitely differentiable) case, but in
some situation it is sensible to ask for less. For instance, that all chart transformations are
C1 (all the single partial differentials exist and are continuous). However, the distinction
is not really important since having an atlas with C1 chart transformations implies that
there is a unique maximal smooth atlas such that the mixed chart transformations are C1

(see e.g., [?, Theorem 2.9]).

Note 3.3.8 In practice we do not give the maximal atlas, but only a small practical
smooth atlas and apply D to it. Often we write just M instead of (M,A) if A is clear from
the context. To check that two smooth atlases A and B give the same smooth structure
on M (i.e., that D(A) = D(B)) it is enough to verify that for each p ∈M there are charts
(x, U) ∈ A) and (y, V ) ∈ B with p ∈W = U ∩ V such that x|W (y|W )−1 : y(W )→ x(W ) is
a diffeomorphism.

http://www.lns.cornell.edu/spr/1999-12/msg0019934.html


3.3. MAXIMAL ATLASES 35

Exercise 3.3.9 Show that the two smooth structures we have defined on Sn (the standard
atlas in Example 3.1.4 and the stereographic projections of Example 3.2.7) are contained
in a common maximal atlas. Hence they define the same smooth manifold, which we will
simply call the (standard smooth) sphere.

Exercise 3.3.10 Choose your favorite diffeomorphism x : Rn → Rn. Why is the smooth
structure generated by x equal to the smooth structure generated by the identity? What
does the maximal atlas for this smooth structure (the only one we’ll ever consider) on Rn

look like?

Exercise 3.3.11 Prove that any smooth manifold (M,A) has a countable smooth atlas
V (so that D(V) = A).

Following up Example 3.1.10 we see that we can construct smooth manifolds from
scratch, without worrying too much about the topology:

Lemma 3.3.12 Given

1. a set M ,

2. a collection A of subsets of M and

3. an injection xU : U → Rn for each U ∈ A,

such that

1. there is a countable subcollection of A which covers M

2. for p, q ∈ M , either there is a U ∈ A such that p, q ∈ U or there are U, V ∈ A such
that U and V are disjoint with p ∈ U and q ∈ V , and

3. if U, V ∈ A then the bijection xU (U ∩ V )→ xV (U ∩ V ) sending q to xV xU−1(q) is a
smooth map between open subsets of Rn.

Then there is a unique topology on M such that (M,D({(xU , U)}U∈A)) is a smooth mani-
fold.

Proof: For the xUs to be homeomorphisms we must have that a subset W ⊆ M is open
if and only if for all U ∈ A the set xU (U ∩W ) is an open subset of Rn. As before, M is a
topological manifold, and by the last condition {(xU , U)}U∈A is a smooth atlas.

Example 3.3.13 As an example of how to construct smooth manifolds using Lemma 3.3.12,
we define a family of very important smooth manifolds called the Grassmann manifolds.
These manifolds show up in a number of applications, and are important to the theory
of vector bundles. The details in the construction below consists mostly of some rather
tedious linear algebra, and may well be deferred to a second reading (at which time you
should take the opportunity to check the assertions that are not immediate).
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For 0 < n ≤ k, let Gk
n = Gn(Rk) be the set of all n-dimensional subspaces of Rk. Note

that Gn+1
1 is nothing but the projective space RPn. We will equip Gk

n with the structure
of a (k − n)n-dimensional smooth manifold, the Grassmann manifold.

If V,W ⊆ Rk are subspaces, we let prV : Rk → V be the orthogonal projection to V
(with the usual inner product) and prVW : W → V the restriction of prV to W . We let
Hom(V,W ) be the vector space of all linear maps from V to W . Concretely, and for the
sake of the smoothness arguments below, using the standard basis for Rk we may identify
Hom(V,W ) with the dim(V ) ·dim(W )-dimensional subspace of the space of k×k-matrices
A with the property that if v ∈ V and v′ ∈ V ⊥, then Av ∈W and Av′ = 0.

If V ∈ Gk
n let UV be the set {W ∈ Gk

n|W ∩ V ⊥ = 0}, and let A = {UV }V ∈Gk
n
.

Another characterization of UV is as the set of all W ∈ Gk
n such that prVW : W → V is

an isomorphism. The vector space Hom(V, V ⊥) of all linear transformations V → V ⊥ is
isomorphic to the vector space of all (k − n) × n-matrices (make a choice of bases for V
and V ⊥), which again is isomorphic to R(k−n)n. Let xV : UV → Hom(V, V ⊥) send W ∈ UV
to the composite

xV (W ) : V
(prV

W
)−1

−−−−−→ W
prV ⊥

W−−−→ V ⊥.

Notice that xV is a bijection, with inverse sending f ∈ Hom(V, V ⊥) to the graph Γ(f) =
{v + f(v) ∈ Rk|v ∈ V } ⊆ Rk.

If V,W ∈ Gk
n, then xV (UV ∩ UW ) = {f ∈ Hom(V, V ⊥) |Γ(f) ∩W⊥ = 0}. We must

check that the chart transformation

xV (UV ∩ UW )
xV

−1
// UV ∩ UW

xW // xW (UV ∩ UW )

sending f : V → V ⊥ to

W
(prW

Γ(f)
)−1

// Γ(f)
prW

Γ(f) //W⊥

is smooth. For ease of notation we write gf = xWxV
−1(f) = prWΓ(f)(pr

W
Γ(f))

−1 for this map.

Now, if x ∈ V , then (prVΓ(f))
−1(x) = x+ f(x), and so the composite isomorphism

Af = prWΓ(f)(pr
V
Γ(f))

−1 : V →W,

sending x to Af (x) = prWx + prWf(x) depends smoothly on f . By Cramer’s rule, the
inverse Bf = A−1

f also depends smoothly on f .
Finally, if y ∈ W , then (prWΓ(f))

−1(y) = y + gf(y) is equal to (prVΓ(f))
−1(Bf(y)) =

Bf(y) + f(Bf(y)), and so
gf = Bf + fBf − 1

depends smoothly on f
The point-set conditions are satisfied by the following purely linear algebraic assertions.

For a subset S ⊆ {1, . . . , k} of cardinality n, let VS ∈ Gk
n be the subspace of all vectors

v ∈ Rk with vj = 0 for all j ∈ S. The finite subcollection of A consisting of the UVS
as S

varies covers Gk
n. If W1,W2 ∈ Gk

n there is a V ∈ Gk
n such that W1,W2 ∈ Gk

n.
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3.4 Smooth maps

Having defined smooth manifolds, we need to define smooth maps between them. No
surprise: smoothness is a local question, so we may fetch the notion from Euclidean space
by means of charts.

Definition 3.4.1 Let (M,A) and (N,B) be smooth manifolds and p ∈ M . A continuous
map f : M → N is smooth at p (or differentiable at p) if for any chart x : U → U ′ ∈ A with
p ∈ U and any chart y : V → V ′ ∈ B with f(p) ∈ V the map

y ◦ f |U∩f−1(V ) ◦ (x|U∩f−1(V ))
−1 : x(U ∩ f−1(V ))→ V ′

is smooth at x(p).

We say that f is a smooth map if it is smooth at all points of M .

The picture above will often find a less typographically challenging expression: “go up,
over and down in the picture

W
f |W−−−→ V

x|W
y y

y
x(W ) V ′

where W = U ∩ f−1(V ), and see whether you have a smooth map of open subsets of
Euclidean spaces”. Note that x(W ) = x(f−1(V )).

Note 3.4.2 To see whether f in the definition 3.4.1 above is smooth at p ∈M you do not
actually have to check all charts! We formulate this as a lemma: its proof can be viewed
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as a worked exercise.

Lemma 3.4.3 Let (M,A) and (N,B) be smooth manifolds. A function f : M → N is
smooth if (and only if) for all p ∈ M there exist charts (x, U) ∈ A and (y, V ) ∈ B with
p ∈W = U ∩ f−1(V ) such that the composite

y ◦ f |W ◦ (x|W )−1 : x(W )→ y(V )

is smooth.

Proof: Given such charts we prove that f is smooth at p. This implies that f is smooth
since p is arbitrary.

The function f |W is continuous since y ◦ f |W ◦ (x|W )−1 is smooth (and so continuous),
and x and y are homeomorphisms. We must show that given any charts (x̃, Ũ) ∈ A) and
(ỹ, Ṽ ) ∈ B with p ∈ W̃ = Ũ ∩ f−1(Ṽ ) we have that ỹf |W̃ (x̃|W̃ )−1 is smooth at p. Now, for
q ∈ W ∩ W̃ we can rewrite the function in question as a composition

ỹf x̃−1(q) = (ỹy−1)(yfx−1)(xx̃−1)(q),

of smooth functions defined on Euclidean spaces: xx̃−1 and yỹ−1 are smooth since A and
B are smooth atlases. �

Exercise 3.4.4 The map R→ S1 sending p ∈ R to eip = (cos p, sin p) ∈ S1 is smooth.

Exercise 3.4.5 Show that the map g : S2 → R4 given by

g(p0, p1, p2) = (p1p2, p0p2, p0p1, p
2
0 + 2p2

1 + 3p2
2)

defines a smooth injective map
g̃ : RP2 → R4

via the formula g̃([p]) = g(p).

Exercise 3.4.6 Show that a map f : RPn → M is smooth iff the composite

Sn
g→ RPn f→M

is smooth, where g is the projection.

Definition 3.4.7 A smooth map f : M → N is a diffeomorphism if it is a bijection,
and the inverse is smooth too. Two smooth manifolds are diffeomorphic if there exists a
diffeomorphism between them.

Note 3.4.8 Note that this use of the word diffeomorphism coincides with the one used
earlier for open subsets of Rn.
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Example 3.4.9 The smooth map R → R sending p ∈ R to p3 is a smooth homeomor-
phism, but it is not a diffeomorphism: the inverse is not smooth at 0 ∈ R. The problem
is that the derivative is zero at 0 ∈ R: if a smooth map f : R → R has nowhere vanish-
ing derivative, then it is a diffeomorphism. The inverse function theorem 5.2.1 gives the
corresponding criterion for (local) smooth invertibility also in higher dimensions.

Example 3.4.10 If a < b ∈ R, then the straight line f(t) = (b − a)t + a gives a diffeo-
morphism f : (0, 1)→ (a, b) with inverse given by f−1(t) = (t− a)/(b− a). Note that

tan: (−π/2, π/2)→ R

is a diffeomorphism. Hence all open intervals are diffeomorphic to the entire real line.

Exercise 3.4.11 Show that RP1 and S1 are diffeomorphic.

Exercise 3.4.12 Show that CP1 and S2 are diffeomorphic.

Lemma 3.4.13 If f : (M,U) → (N,V) and g : (N,V) → (P,W) are smooth, then the
composite gf : (M,U)→ (P,W) is smooth too.

Proof: This is true for maps between Euclidean spaces, and we lift this fact to smooth
manifolds. Let p ∈M and choose appropriate charts

x : U → U ′ ∈ U , such that p ∈ U ,

y : V → V ′ ∈ V, such that f(p) ∈ V ,

z : W → W ′ ∈ W, such that gf(p) ∈ W .

Then T = U ∩ f−1(V ∩ g−1(W )) is an open set containing p, and we have that

zgfx−1|x(T ) = (zgy−1)(yfx−1)|x(T )

which is a composite of smooth maps of Euclidean spaces, and hence smooth. �

In a picture, if S = V ∩ g−1(W ) and T = U ∩ f−1(S):

T

x|T
��

f |T // S

y|S
��

g|S //W

z|W
��

x(T ) y(S) z(W )

Going up and down with y does not matter.

Exercise 3.4.14 Let f : M → N be a homeomorphism of topological spaces. If M is a
smooth manifold then there is a unique smooth structure on N that makes f a diffeomor-
phism.
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Definition 3.4.15 Let (M,U) and (N,V) be smooth manifolds. Then we let

C∞(M,N) = {smooth maps M → N}

and

C∞(M) = C∞(M,R).

Note 3.4.16 A small digression, which may be disregarded by the categorically illiterate.
The outcome of the discussion above is that we have a category C∞ of smooth manifolds:
the objects are the smooth manifolds, and if M and N are smooth, then

C∞(M,N)

is the set of morphisms. The statement that C∞ is a category uses that the identity map
is smooth (check), and that the composition of smooth functions is smooth, giving the
composition in C∞:

C∞(N,P )× C∞(M,N)→ C∞(M,P )

The diffeomorphisms are the isomorphisms in this category.

Definition 3.4.17 A smooth map f : M → N is a local diffeomorphism if for each p ∈M
there is an open set U ⊆M containing p such that f(U) is an open subset of N and

f |U : U → f(U)

is a diffeomorphism.

Example 3.4.18 The projection Sn → RPn

is a local diffeomorphism.
Here is a more general example: let M be a
smooth manifold, and

i : M →M

a diffeomorphism with the property that
i(p) 6= p, but i(i(p)) = p for all p ∈ M (such
an animal is called a fixed point free involu-
tion).
The quotient space M/i gotten by identify-
ing p and i(p) has a smooth structure, such
that the projection f : M → M/i is a local
diffeomorphism.
We leave the proof of this claim as an exercise:

Small open sets in RP2 correspond

to unions U ∪ (−U) where U ⊆ S2 is

an open set totally contained in one

hemisphere.
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Exercise 3.4.19 Show that M/i has a smooth structure such that the projection f : M →
M/i is a local diffeomorphism.

Exercise 3.4.20 If (M,U) is a smooth n-dimensional manifold and p ∈ M , then there is
a chart x : U → Rn such that x(p) = 0.

Note 3.4.21 In differential topology we consider two smooth manifolds to be the same if
they are diffeomorphic, and all properties one studies are unaffected by diffeomorphisms.

Is it possible to give a classification of manifolds? That is, can we list all the smooth
manifolds? On the face of it this is a totally over-ambitious question, but actually quite a
lot is known.

The circle is the only compact (10.7.1) connected (10.9.1) smooth 1-manifold.
In dimension two it is only slightly more interesting. As we discussed in 2.4.3, you can

obtain any compact (smooth) connected 2-manifold by punching g holes in the sphere S2

and glue onto this either g handles or g Möbius bands.
In dimension four and up total chaos reigns (and so it is here all the interesting stuff is).

Well, actually only the part within the parentheses is true in the last sentence: there is a
lot of structure, much of it well understood. However all of it is beyond the scope of these
notes. It involves quite a lot of manifold theory, but also algebraic topology and a subject
called surgery which in spirit is not so distant from the cutting and pasting techniques we
used on surfaces in 2.4.3. For dimension three, the reader may refer back to section 2.4.9.

3.5 Submanifolds

We give a slightly unorthodox definition of submanifolds. The “real” definition will appear
only very much later, and then in the form of a theorem! This approach makes it possible to
discuss this important concept before we have developed the proper machinery to express
the “real” definition. (This is really not all that unorthodox, since it is done in the same
way in for instance both [3] and [5]).

Definition 3.5.1 Let (M,U) be a smooth n + k-dimensional smooth manifold.

An n-dimensional (smooth) submanifold inM
is a subset N ⊆ M such that for each p ∈ N
there is a chart x : U → U ′ in U with p ∈ U
such that

x(U ∩N) = U ′ ∩ (Rn × {0}) ⊆ Rn ×Rk.
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In this definition we identify Rn+k with Rn ×Rk. We often write Rn ⊆ Rn ×Rk instead
of Rn×{0} ⊆ Rn×Rk to signify the subset of all points with the k last coordinates equal
to zero.

Note 3.5.2 The language of the definition really makes some sense: if (M,U) is a smooth
manifold and N ⊆M a submanifold, then we give N the smooth structure

U|N = {(x|U∩N , U ∩N)|(x, U) ∈ U}

Note that the inclusion N → M is smooth.

Example 3.5.3 Let n be a natural number. Then Kn = {(p, pn)} ⊆ R2 is a differential
submanifold.

We define a smooth chart

x : R2 → R2, (p, q) 7→ (p, q − pn)

Note that as required, x is smooth with smooth inverse given by

(p, q) 7→ (p, q + pn)

and that x(Kn) = R1 × {0}.

Exercise 3.5.4 Prove that S1 ⊂ R2 is a submanifold. More generally: prove that Sn ⊂
Rn+1 is a submanifold.

Exercise 3.5.5 Show that the subset C ⊆ Rn+1 given by

C = {(a0, . . . , an−1, t) ∈ Rn+1 | tn + an−1t
n−1 + · · ·+ a1t+ a0 = 0},

a part of which is illustrated for n = 2 in the picture below, is a smooth submanifold.

–2

–1

0

1

2

a0

–2

–1

0

1

2

a1

–2

–1

0

1

2

Exercise 3.5.6 The subset K = {(p, |p|) | p ∈ R} ⊆ R2 is not a smooth submanifold.
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Note 3.5.7 If dim(M) = dim(N) then N ⊂M is an open subset (called an open subman-
ifold. Otherwise dim(M) > dim(N).

Example 3.5.8 Let MnR be the set of n× n matrices. This is a smooth manifold since
it is homeomorphic to Rn2

. The subset GLn(R) ⊆ MnR of invertible matrices is an open
submanifold. (since the determinant function is continuous, so the inverse image of the
open set R \ {0} is open)

Exercise 3.5.9 If V is an n-dimensional vector space, let GL(V ) be the set of linear iso-
morphisms α : V ∼= V . By representing any linear isomorphism of Rn in terms of the
standard basis, we may identify GL(Rn) and GLn(R). Any linear isomorphism f : V ∼= W
gives a bijection GL(f) : GL(V ) ∼= GL(W ) sending α : V ∼= V to fαf−1 : W ∼= W .
Hence, any linear isomorphism f : V ∼= Rn (i.e., a choice of basis) gives a bijection
GL(f) : GL(V ) ∼= GLnR, and so a smooth manifold structure on GL(V ) (with a dif-
feomorphism to the open subset GLnR of Euclidean n2-space).

Prove that the smooth structure on GL(V ) does not depend on the choice of f : V ∼= Rn.
If h : V ∼= W is a linear isomorphism, prove that GL(h) : GL(V ) ∼= GL(W ) is a diffeo-

morphism respecting composition and the identity element.

Example 3.5.10 Let Mm×nR be the set of m × n matrices (if m = n we write Mn(R)
instead of Mn×n(R). This is a smooth manifold since it is homeomorphic to Rmn. Let
0 ≤ r ≤ min(m,n). That a matrix has rank r means that it has an r × r invertible
submatrix, but no larger invertible submatrices.

The subset M r
m×n(R) ⊆Mm×nR of matrices of rank r is a submanifold of codimension

(n− r)(m− r). Since some of the ideas will be valuable later on, we spell out a proof.
For the sake of simplicity, we treat the case where our matrices have an invertible r× r

submatrices in the upper left-hand corner. The other cases are covered in a similar manner,
taking care of indices (or by composing the chart we give below with a diffeomorphism on
Mm×nR given by multiplying with permutation matrices so that the invertible submatrix
is moved to the upper left-hand corner).

So, consider the open set U of matrices

X =

[
A B
C D

]

with A ∈ Mr(R), B ∈ Mr×(n−r)(R), C ∈ M(m−r)×r(R) and D ∈ M(m−r)×(n−r)(R) such
that det(A) 6= 0 (i.e., such that A ∈ GLr(R)). The matrix X has rank exactly r if and
only if the last n − r columns are in the span of the first r. Writing this out, this means
that X is of rank r if and only if there is an r × (n− r)-matrix T such that

[
B
D

]
=

[
A
C

]
T,

which is equivalent to T = A−1B and D = CA−1B. Hence

U ∩M r
m×n(R) =

{[
A B
C D

]
∈ U

∣∣∣∣∣D − CA
−1B = 0

}
.
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The map

U →GLr(R)×Mr×(n−r)(R)×M(m−r)×r(R)×M(m−r)×(n−r)(R)
[
A B
C D

]
7→(A,B,C,D − CA−1B)

is a diffeomorphism onto an open subset of Mr(R) × Mr×(n−r)(R) × M(m−r)×r(R) ×
M(m−r)×(n−r)(R) ∼= Rmn, and therefore gives a chart having the desired property that
U ∩M r

m×n(R) is the set of points such that the last (m− r)(n− r) coordinates vanish.

Definition 3.5.11 A smooth map f : N →M is an imbedding if

the image f(N) ⊆M is a submanifold, and

the induced map
N → f(N)

is a diffeomorphism.

Exercise 3.5.12 The map

f : RPn →RPn+1

[p] = [p0, . . . , pn] 7→[p, 0] = [p0, . . . , pn, 0]

is an imbedding.

Note 3.5.13 Later we will give a very efficient way of creating smooth submanifolds,
getting rid of all the troubles of finding actual charts that make the subset look like Rn in
Rn+k. We shall see that if f : M → N is a smooth map and q ∈ N then more often than
not the inverse image

f−1(q) = {p ∈M | f(p) = q}

is a submanifold of M . Examples of such submanifolds are the sphere and the space of
orthogonal matrices (the inverse image of the identity matrix under the map sending a
matrix A to AtA).

Example 3.5.14 An example where we have the opportunity to use a bit of topology.
Let f : M → N be an imbedding, where M is a (non-empty) compact n-dimensional
smooth manifold and N is a connected n-dimensional smooth manifold. Then f is a
diffeomorphism. This is so because f(M) is compact, and hence closed, and open since it
is a codimension zero submanifold. Hence f(M) = N since N is connected. But since f is
an imbedding, the map M → f(M) = N is – by definition – a diffeomorphism.
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Exercise 3.5.15 (important exercise. Do it: you will need the result several times).
Let i1 : N1 → M1 and i2 : N2 → M2 be smooth imbeddings and let f : N1 → N2 and
g : M1 →M2 be continuous maps such that i2f = gi1 (i.e., the diagram

N1
f−−−→ N2

i1

y i2

y

M1
g−−−→ M2

commutes). Show that if g is smooth, then f is smooth.

Exercise 3.5.16 Show that the composite of imbeddings is an imbedding.

3.6 Products and sums

Definition 3.6.1 Let (M,U) and (N,V) be smooth manifolds. The (smooth) product is
the smooth manifold you get by giving the product M ×N the smooth structure given by
the charts

x× y : U × V →U ′ × V ′

(p, q) 7→(x(p), y(q))

where (x, U) ∈ U and (y, V ) ∈ V.

Exercise 3.6.2 Check that this definition makes sense.

Note 3.6.3 Even if the atlases we start with are maximal, the charts of the form x × y
do not form a maximal atlas on the product, but as always we can consider the associated
maximal atlas.

Example 3.6.4 We know a product manifold already: the torus S1 × S1.

The torus is a product. The bolder curves in the illustration try to indicate the

submanifolds {1} × S1 and S1 × {1}.
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Exercise 3.6.5 Show that the projection

pr1 : M ×N →M
(p, q) 7→p

is a smooth map. Choose a point p ∈M . Show that the map

ip : N →M ×N
q 7→(p, q)

is an imbedding.

Exercise 3.6.6 Show that giving a smooth map Z →M ×N is the same as giving a pair
of smooth maps Z →M and Z → N . Hence we have a bijection

C∞(Z,M ×N) ∼= C∞(Z,M)× C∞(Z,N).

Exercise 3.6.7 Show that the infinite cylinder R1 × S1 is diffeomorphic to R2 \ {0}.

Looking down into the infinite cylinder.

More generally: R1 × Sn is diffeomorphic to Rn+1 \ {0}.

Exercise 3.6.8 Let f : M →M ′ and g : N → N ′ be imbeddings. Then

f × g : M ×N → M ′ ×N ′

is an imbedding.

Exercise 3.6.9 Show that there exists an imbedding Sn1 × · · · × Snk → R1+
∑k

i=1
ni.

Exercise 3.6.10 Why is the multiplication of matrices

GLn(R)×GLn(R)→ GLn(R), (A,B) 7→ A · B

a smooth map? This, together with the existence of inverses, makes GLn(R) a “Lie group”.
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For the record: a Lie group is a smooth manifold M with a smooth “multiplication”
M ×M → M that is associative, has a neutral element and all inverses (in GLn(R) the
neutral element is the identity matrix).

Exercise 3.6.11 Why is the multiplication

S1 × S1 → S1, (eiθ, eiτ ) 7→ eiθ · eiτ = ei(θ+τ)

a smooth map? This is our second example of a Lie Group.

Definition 3.6.12 Let (M,U) and (N,V) be smooth manifolds. The (smooth) disjoint
union (or sum) is the smooth manifold you get by giving the disjoint union M

∐
N the

smooth structure given by U ∪ V.

The disjoint union of two tori (imbedded in R3).

Exercise 3.6.13 Check that this definition makes sense.

Note 3.6.14 As for the product, the atlas we give the sum is not maximal (a chart may
have disconnected source and target). There is nothing a priori wrong with taking the
disjoint union of an m-dimensional manifold with an n-dimensional manifold. The result
will of course neither be m nor n-dimensional. Such examples will not be important to us,
and you will find that we in arguments may talk about a smooth manifold, and without
hesitation later on start talking about its dimension. This is justified since we can consider
one component at a time, and each component will have a well defined dimension.

Example 3.6.15 The Borromean rings
gives an interesting example showing that
the imbedding in Euclidean space is ir-
relevant to the manifold: the Borromean
rings is the disjoint union of three circles
S1∐S1∐S1. Don’t get confused: it is the
imbedding in R3 that makes your mind spin:
the manifold itself is just three copies of
the circle! Moral: an imbedded manifold is
something more than just a manifold that
can be imbedded.
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Exercise 3.6.16 Prove that the inclusion

inc1 : M ⊂M
∐
N

is an imbedding.

Exercise 3.6.17 Show that giving a smooth map M
∐
N → Z is the same as giving a

pair of smooth maps M → Z and N → Z. Hence we have a bijection

C∞(M
∐
N,Z) ∼= C∞(M,Z)× C∞(N,Z).



Chapter 4

The tangent space

In this chapter we will study linearizations. You have seen this many times before as
tangent lines and tangent planes (for curves and surfaces in euclidean space), and the main
difficulty you will encounter is that the linearizations must be defined intrinsically – i.e.,
in terms of the manifold at hand – and not with reference to some big ambient space. We
will shortly (in 4.0.6) give a simple and perfectly fine technical definition of the tangent
space, but for future convenience we will use the concept of germs in our final definition.
This concept makes notation and bookkeeping easy and is good for all things local (in the
end it will turn out that due to the existence of so-called smooth bump functions 4.1.13
we could have stayed global in our definitions).

An important feature of the tangent space is that it is a vector space, and a smooth
map of manifolds gives a linear map of vector spaces. Eventually, the chain rule expresses
the fact that the tangent space is a “natural” construction (which actually is a very precise
statement that will reappear several times in different contexts. It is the hope of the author
that the reader, through the many examples, in the end will appreciate the importance of
being natural – as well as earnest).

Beside the tangent space, we will also briefly discuss its sibling, the cotangent space,
which is concerned with linearizing the space of real valued functions, and which is the
relevant linearization for many applications.

Another interpretation of the tangent space is as the space of derivations, and we will
discuss these briefly since they figure prominently in many expositions. They are more
abstract and less geometric than the path we have chosen – as a matter of fact, in our
presentation derivations are viewed as a “double dualization” of the tangent space.

4.0.1 The idea of the tangent space of a submanifold of euclidean
space

Given a submanifold M of euclidean space Rn, it is fairly obvious what we should mean
by the “tangent space” of M at a point p ∈M .

In purely physical terms, the tangent space should be the following subspace of Rn:
If a particle moves on some curve in M and at p suddenly “loses the grip on M” it will

49
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continue out in the ambient space along a straight line (its “tangent”). This straight line
is determined by its velocity vector at the point where it flies out into space. The tangent
space should be the linear subspace of Rn containing all these vectors.

A particle loses its grip on M and
flies out on a tangent A part of the space of all tangents

When talking about manifolds it is important to remember that there is no ambient
space to fly out into, but we still may talk about a tangent space.

4.0.2 Partial derivatives

The tangent space is all about the linearization in Euclidean space. To fix notation we
repeat some multivariable calculus.

Definition 4.0.3 Let f : U → R be a function where U is an open subset of Rn containing
p = (p1, . . . pn). The ith partial derivative of f at p is the number (if it exists)

Dif(p) = Di|p f = lim
h→0

1

h
(f(p+ hei)− f(p)) ,

where ei is the ith unit vector ei = (0, . . . , 0, 1, 0, . . . , 0) (with a 1 in the ith coordinate).
We collect the partial derivatives in an 1× n-matrix

Df(p) = D|pf = (D1f(p), . . . , Dnf(p)).

Definition 4.0.4 If f = (f1, . . . , fm) : U → Rm is a function where U is an open subset
of Rn containing p = (p1, . . . pn), then the Jacobian matrix is the m× n-matrix

Df(p) = D|p(f) =




Df1(p)
...

Dfm(p)


 .

In particular, if g = (g1, . . . gn) : (a, b) → Rm the Jacobian is an n × 1-matrix, or element
in Rn, which we write as

g′(c) = Dg(c) =




g′
1(c)
...

g′
n(c)


 ∈ Rn.
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Note 4.0.5 When considered as a vector space, we insist that the elements in Rn are
standing vectors (so that linear maps can be represented by multiplication by matrices from
the left), when considered as a manifold the distinction between lying and standing vectors
is not important, and we use either convention as may be typographically convenient.

It is a standard fact from multivariable calculus (see e.g., [11, 2-8]) that if f : U → Rm

is continuously differentiable at p (all the partial derivatives exist and are continuous at
p), where U is an open subset of Rn, then the Jacobian is the matrix associated (in the
standard bases) with the unique linear transformation L : Rn → Rm such that

lim
h→0

1

h
(f(p+ h)− f(p)− L(h)) = 0.

4.0.6 Predefinition of the tangent space

Let M be a smooth manifold, and let p ∈ M . Consider the set of all curves γ : R → M
with γ(0) = p. On this set we define the following equivalence relation: given two curves
γ : R → M and γ1 : R → M with γ(0) = γ1(0) = p we say that γ and γ1 are equivalent if
for all charts x : U → U ′ with p ∈ U we have an equality of vectors

(xγ)′(0) = (xγ1)
′(0).

Then the tangent space of M at p is the set of all equivalence classes.
There is nothing wrong with this definition, in the sense that it is naturally isomorphic

to the one we are going to give in a short while (see 4.2.1). However, in order to work
efficiently with our tangent space, it is fruitful to introduce some language. It is really not
necessary for our curves to be defined on all of R, but on the other hand it is not important
to know the domain of definition as long as it contains a neighborhood around the origin.

4.1 Germs

Whatever ones point of view on tangent vectors is, it is a local concept. The tangent of
a curve passing through a given point p is only dependent upon the behavior of the curve
close to the point. Hence it makes sense to divide out by the equivalence relation which
says that all curves that are equal on some neighborhood of the point are equivalent. This
is the concept of germs.

Definition 4.1.1 Let M and N be smooth manifolds, and let p ∈M . On the set

{f |f : Uf → N is smooth, and Uf an open neighborhood of p}

we define an equivalence relation where f is equivalent to g, written f ∼ g, if there is an
open neighborhood Vfg ⊆ Uf ∩ Ug of p such that

f(q) = g(q), for all q ∈ Vfg
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Such an equivalence class is called a germ, and we write

f̄ : (M, p)→ (N, f(p))

for the germ associated to f : Uf → N . We also say that f represents f̄ .

Definition 4.1.2 Let M be a smooth manifold and p a point in M . A function germ at
p is a germ φ̄ : (M, p)→ (R, φ(p)). Let

OM,p = Op

be the set of function germs at p.

Example 4.1.3 In ORn,0 there are some very special function germs, namely those asso-
ciated to the standard coordinate functions pri sending p = (p1, . . . , pn) to pri(p) = pi for
i = 1, . . . , n.

Note 4.1.4 Germs are quite natural things. Most of the properties we need about germs
are “obvious” if you do not think too hard about them, so it is a good idea to skip the
rest of the section which spells out these details before you know what they are good for.
Come back later if you need anything precise.

Exercise 4.1.5 Show that the relation ∼ actually is an equivalence relation as claimed in
Definition 4.1.1.

The only thing that is slightly ticklish with the definition of germs is the transitivity
of the equivalence relation: assume

f : Uf → N, g : Ug → N, and h : Uh → N

and f ∼ g and g ∼ h. Writing out the definitions, we see that f = g = h on the open set
Vfg ∩ Vgh, which contains p.
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Let

f̄ : (M, p)→ (N, f(p))

and

ḡ : (N, f(p))→ (L, g(f(p)))

be two germs represented by
the functions f : Uf → N and
g : Ug → L. Then we define the
composite

ḡ f̄ : (M, p)→ (L, g(f(p)))

as the germ associated to the
composite

f−1(Ug)
f |

f−1(Ug)−−−−−→ Ug
g−−−→ L
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The composite of two germs: just remember to
restrict the domain of the representatives.

(which makes sense since f−1(Ug) ⊆M is an open set containing p).

Exercise 4.1.6 Show that the composition ḡf̄ of germs is well defined in the sense that
it does not depend on the chosen representatives g and f . Also, show “associativity”:
h̄(ḡf̄) = (h̄ḡ)f̄ , and that if h̄ and f̄ are represented by identity functions, then h̄ḡ = ḡ = ḡf̄ .

We occasionally write gf instead of ḡf̄ for the composite, even though the pedants will
point out that we have to adjust the domains before composing representatives.

Also, we will be cavalier about the range of germs, in the sense that if q ∈ V ⊆ N we
will sometimes not distinguish notationally between a germ (M, p)→ (V, q) and the germ
(M, p)→ (N, q) given by composition with the inclusion.

A germ f̄ : (M, p) → (N, q) is invertible if (and only if) there is a germ ḡ : (N, q) →
(M, p) such that the composites f̄ ḡ and ḡf̄ are represented by identity maps.

Lemma 4.1.7 A germ f̄ : (M, p) → (N, q) represented by f : Uf → N is invertible if and
only if there is a diffeomorphism φ : U → V with U ⊆ Uf a neighborhood of p and V a
neighborhood of q such that f(t) = φ(t) for all t ∈ U .

Proof: If φ : U → V is a diffeomorphism such that f(t) = φ(t) for all t ∈ U , then φ−1

represents an inverse to f̄ . Conversely, let g : Vg → M represent an inverse to f̄ . Then
there is a neighborhood p ∈ Ugf such that u = gf(u) for all u ∈ Ugf ⊆ Uf ∩ f−1(Vg)
and a neighborhood q ∈ Vfg ⊆ g−1(Uf) ∩ Vg such that v = fg(v) for all v ∈ Vfg. Letting
U = Ugf ∩ f−1(Vgf) and V = g−1(Ugf ) ∩ Vgf , the restriction of f to U defines the desired
diffeomorphism φ : U → V .
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Note 4.1.8 The set OM,p of function germs forms a vector space by pointwise addition
and multiplication by real numbers:

φ̄+ ψ̄ = φ+ ψ where (φ+ ψ)(q) = φ(q) + ψ(q) for q ∈ Uφ ∩ Uψ
k · φ̄ = k · φ where (k · φ)(q) = k · φ(q) for q ∈ Uφ

0̄ where 0(q) = 0 for q ∈M

It furthermore has the pointwise multiplication, making it what is called a “commutative
R-algebra”:

φ̄ · ψ̄ = φ · ψ where (φ · ψ)(q) = φ(q) · ψ(q) for q ∈ Uφ ∩ Uψ
1̄ where 1(q) = 1 for q ∈M

That these structures obey the usual rules follows by the same rules on R.
Since we both multiply and compose germs, we should perhaps be careful in distin-

guishing the two operations by remembering to write ◦ whenever we compose, and · when
we multiply. We will be sloppy about this, and the ◦ will mostly be invisible. We try to
remember to write the ·, though.

Definition 4.1.9 A germ f̄ : (M, p)→ (N, f(p)) defines a function

f ∗ : Of(p) → Op
by sending a function germ φ̄ : (N, f(p))→ (R, φf(p)) to

φf : (M, p)→ (R, φf(p))

(“precomposition”).

Note that f ∗ preserves addition and multiplication.

Lemma 4.1.10 If f̄ : (M, p)→ (N, f(p)) and ḡ : (N, f(p))→ (L, g(f(p))) then

f ∗g∗ = (gf)∗ : OL,g(f(p)) → OM,p

Proof: Both sides send ψ̄ : (L, g(f(p)))→ (R, ψ(g(f(p)))) to the composite

(M, p)
f̄−−−→ (N, f(p))

ḡ−−−→ (L, g(f(p)))

ψ̄

y
(R, ψ(g(f(p)))),

i.e., f ∗g∗(ψ̄) = f ∗(ψg) = (ψg)f̄ = ψ̄(gf) = (gf)∗(ψ̄).
The superscript ∗ may help you remember that this construction reverses the order,

since it may remind you of transposition of matrices.
Since manifolds are locally Euclidean spaces, it is hardly surprising that on the level of

function germs, there is no difference between (Rn, 0) and (M, p).
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Lemma 4.1.11 There are isomorphisms OM,p
∼= ORn,0 preserving all algebraic structure.

Proof: Pick a chart x : U → U ′ with p ∈ U and x(p) = 0 (if x(p) 6= 0, just translate the
chart). Then

x∗ : ORn,0 → OM,p

is invertible with inverse (x−1)∗ (note that idU = idM since they agree on an open subset
(namely U) containing p).

Note 4.1.12 So is this the end of the subject? Could we just as well study Rn? No!
these isomorphisms depend on a choice of charts. This is OK if you just look at one
point at a time, but as soon as things get a bit messier, this is every bit as bad as choosing
particular coordinates in vector spaces.

4.1.13 Smooth bump functions

Germs allow us to talk easily about local phenomena. There is another way of focusing our
attention on neighborhoods of a point p in a smooth manifold M , namely by using bump
functions. Their importance lies in the fact that they focus the attention on a neighborhood
of p, ignoring everything “far away”. The existence of smooth bump functions is a true
luxury about smooth manifolds, which makes the smooth case much more flexible than the
analytic case. We will return to this topic when we define partitions of unity.

Definition 4.1.14 Let X be a space and p a point in X. A bump function around p is
a map φ : X → R, which takes values in the closed interval [0, 1] only, which takes the
constant value 1 in (the closure of) a neighborhood of p, and takes the constant value 0
outside some bigger neighborhood.

We will only be interested in smooth bump functions.

Definition 4.1.15 Let X be a space. The support of a function f : X → R is the closure
of the subset of X with nonzero values, i.e.,

supp(f) = {x ∈ X|f(x) 6= 0}
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Lemma 4.1.16 Given r, ǫ > 0,
there is a smooth bump function

γr,ǫ : Rn → R

with γr,ǫ(t) = 1 for |t| ≤ r and
γr,ǫ(t) = 0 for |t| ≥ r + ǫ.
More generally, if M is a manifold
and p ∈ M , then there exist smooth
bump functions around p.
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Proof: Let βǫ : R → R be any smooth function with non-negative values and support
[0, ǫ] (for instance, you may use the βǫ(t) = λ(t) · λ(t − ǫ) where λ is the function of
Exercise 3.2.13).
Since βǫ is smooth, it is integrable
with

∫ ǫ
0 βǫ(x) dx > 0, and we may

define the smooth step function αǫ :
R → R which ascends from zero to
one smoothly between zero and ǫ by
means of

αǫ(t) =

∫ t
0 βǫ(x) dx
∫ ǫ

0 βǫ(x) dx
.

Finally, γ(r,ǫ) : Rn → R is given by

γ(r,ǫ)(x) = 1− αǫ(|x| − r).
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As to the more general case, choose a chart (x, U) for the smooth manifold M with
p ∈ U . By translating, we may assume that x(p) = 0. Since x(U) ⊆ Rn is open, there
are r, ǫ > 0 such that the open ball of radius r + 2ǫ is contained in x(U). The function
given by sending q ∈M to γ(r,ǫ)x(q) if q ∈ U and to 0 if q 6= U is a smooth bump function
around p.

Example 4.1.17 Smooth bump functions are very handy, for instance if you want to join
curves in a smooth fashion (for instance if you want to design smooth highways!) They
also allow you to drive smoothly on a road with corners: the curve γ : R → R2 given by
γ(t) = (te−1/t2 , |te−1/t2 |) is smooth, although its image is not.

Exercise 4.1.18 Given ǫ > 0, prove that there is a diffeomorphism f : (−ǫ, ǫ) → R such
that f(t) = t for |t| small. Conclude that any germ γ̄ : (R, 0) → (M, p) is represented by
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a “globally defined” curve γ : R→ M .

Exercise 4.1.19 Show that any function germ φ̄ : (M, p) → (R, φ(p)) has a smooth rep-
resentative φ : M → R.

Exercise 4.1.20 Let M and N be smooth manifolds and f : M → N a continuous map.
Show that f is smooth if for all smooth φ : N → R the composite φf : M → R is smooth.

4.2 The tangent space

Note that if γ̄ : (R, 0) → (Rn, γ(0)) is some germ into Euclidean space, the derivative at
zero does not depend on a choice of representative (i.e., if γ and γ1 are two representatives
for γ̄, then γ′(0) = γ′

1(0)), and we write γ′(0) without ambiguity.

Definition 4.2.1 Let (M,A) be a smooth n-dimensional manifold. Let p ∈M and let

Wp = {germs γ̄ : (R, 0)→ (M, p)}.

Two germs γ̄, γ̄1 ∈ Wp are said to be equivalent, written γ̄ ≈ γ̄1, if for all function germs
φ̄ : (M, p) → (R, φ(p)) we have that (φγ)′(0) = (φγ1)

′(0). We define the tangent space of
M at p to be the set of equivalence classes

TpM = Wp/ ≈ .

We write [γ̄] (or simply [γ]) for the ≈-equivalence class of γ̄. This definition is essen-
tially the same as the one we gave in section 4.0.6 (see Lemma 4.2.11 below). So for the
definition of the tangent space, it is not necessary to involve the definition of germs, but it
is convenient when working with the definition since we are freed from specifying domains
of definition all the time.

As always, it is not the objects, but the maps comparing them that are important, and
so we need to address how the tangent space construction is to act on smooth maps and
germs

Definition 4.2.2 Let f̄ : (M, p)→ (N, f(p)) be a germ. Then we define

Tpf : TpM → Tf(p)N

by

Tpf([γ]) = [fγ].

Exercise 4.2.3 This is well defined.

Anybody recognize the next lemma? It is the chain rule!
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Lemma 4.2.4 If f̄ : (M, p)→ (N, f(p)) and ḡ : (N, f(p))→ (L, g(f(p))) are germs, then

Tf(p)g Tpf = Tp(gf).

Proof: Let γ̄ : (R, 0)→ (M, p), then

Tf(p)g(Tpf([γ])) = Tf(p)g([fγ]) = [gfγ] = Tp(gf)([γ])

That’s the ultimate proof of the chain rule! The ultimate way to remember it is: the
two ways around the triangle

TpM
Tpf //

Tp(gf) $$I
IIII

II
II

Tf(p)N

Tf(p)g

��
Tgf(p)L

.

are the same (“the diagram commutes”).

Note 4.2.5 For the categorists: the tangent space is an assignment from pointed manifolds
to vector spaces, and the chain rule states that it is a “functor”.

Exercise 4.2.6 Show that if the germ f̄ : (M, p) → (N, (f(p)) is invertible (i.e., there is
a germ ḡ : (N, (f(p)) → (M, p) such that ḡf̄ is the identity germ on (M, p) and f̄ ḡ is the
identity germ on (N, f(p))), then Tpf is a bijection with inverse Tf(p)g. In particular, the
tangent space construction sends diffeomorphisms to bijections.

4.2.7 The vector space structure

The “flat chain rule” 4.2.8 from multivariable calculus will be used to show that the tangent
spaces are vector spaces and that Tpf is a linear map, but if we were content with working
with sets only, the one line proof of the chain rule in 4.2.4 would be all we’d ever need.
For convenience, we cite the flat chain rule below. For a proof, see e.g., [11, 2-9], or any
decent book on multi-variable calculus.

Lemma 4.2.8 (The flat chain rule) Let g : (a, b)→ U and f : U → R be smooth functions
where U is an open subset of Rn and c ∈ (a, b). Then

(fg)′(c) =D(f)(g(c)) · g′(c)

=
n∑

j=1

Djf(g(c)) · g′
j(c)

Exercise 4.2.9 Show that the equivalence relation on Wp in Definition 4.2.1 could equally
well be described as follows: Two germs γ̄, γ̄1 ∈Wp are said to be equivalent, if for all charts
(x, U) ∈ A with p ∈ U we have that (xγ)′(0) = (xγ1)

′(0).
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Exercise 4.2.10 Show that for two germs γ̄, γ̄1 : (R, 0)→ (M, p) to define the same tan-
gent vector, it is enough that (xγ)′(0) = (xγ1)′(0) for some chart (x, U).

Summing up, the predefinition of the tangent space given in section 4.0.6 agrees with
the official definition (we allow ourselves to make the conclusion of exercises official when
full solutions are provided):

Proposition 4.2.11 The tangent space at a point p is the set of all (germs of) curves
sending 0 to p, modulo the identification of all curves having equal derivatives at 0 in some
chart.

Proof: This is the contents of the Exer-
cises 4.2.9 and 4.2.10, and since by Exer-
cise 4.1.18 all germs of curves have represen-
tatives defined on all of R, the parenthesis
could really be removed.
In particular if M = Rn, then two curves
γ1, γ2 : (R, 0)→ (Rn, p) define the same tan-
gent vector if and only if the derivatives are
equal:

γ′
1(0) = γ′

2(0)

(using the identity chart). Hence, a tangent
vector in R is uniquely determined by (p and)
its derivative at 0, and so TpR

n may be iden-
tified with Rn:

-1

0

1

2

3

-1 0 1 2 3 4
x

Many curves give rise to the same
tangent.

Lemma 4.2.12 A germ γ̄ : (R, 0)→ (Rn, p) is ≈-equivalent to the germ represented by

t 7→ p+ γ′(0)t.

That is, all elements in TpR
n are represented by linear curves, giving a bijection

TpR
n ∼= Rn, [γ] 7→ γ′(0).

More generally, if M is an n-dimensional smooth manifold, p a point in M and (x, U) a
chart with p ∈ U , then the map

Ax : TpM → Rn, Ax([γ]) = (xγ)′(0)

is a bijection with inverse Ax−1(v) = [Bv
x] where Bv

x(t) = x−1(x(p) + tv).

Proof: It is enough to check that the purported formula for the inverse actually works. We
check both composites, using that xBv

x(t) = x(p)+tv, and so (xBv
x)

′(0) = v: Ax
−1Ax([γ]) =

[B(xγ)′(0)
x ] = [γ] and AxAx

−1(v) = (xBv
x)

′(0) = v.
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Note 4.2.13 The tangent space is a vector space, and like always we fetch the structure
locally by means of charts. Visually it goes like this:

Two curves on
M is sent by a
chart x to

Rn, where they
are added, and
the sum

is sent back to
M with x−1.

Explicitly, if [γ1], [γ2] ∈ TpM and a, b ∈ R we define

a[γ1] + b[γ2] = Ax
−1 (aAx[γ1] + bAx[γ2]) .

This is all well and fine, but would have been quite worthless if the vector space structure
depended on a choice of chart. Of course, it does not.

Lemma 4.2.14 The above formula for a vector space structure on TpM is independent of
the choice of chart.

Proof: If (y, V ) is another chart on M with p ∈ V , then we must show that

Ax
−1 (aAx[γ1] + bAx[γ2]) = Ay

−1 (aAy[γ1] + bAy[γ2]) ,

or alternatively, that

aAx[γ1] + bAx[γ2] = AxAy
−1 (aAy[γ1] + bAy[γ2]) .

Spelling this out, we see that the question is whether the vectors a(xγ1)′(0) + b(xγ2)′(0)

and d
dt

∣∣∣
t=0

(xy−1 (y(p) + t(a(yγ1)
′(0) + b(yγ2)

′(0))) are equal. The flat chain rule gives that

the last expression is equal to D(xy−1)(y(p)) · (a(yγ1)
′(0) + b(yγ2)

′(0)) , which, by linearity
of matrix multiplication, is equal to

aD(xy−1)(y(p)) · (yγ1)
′(0) + bD(xy−1)(y(p)) · (yγ2)

′(0).

A final application of the flat chain rule on each of the summands ends the proof.
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Proposition 4.2.15 Let f̄ : (M, p)→ (N, f(p)) be a germ, then the tangent map Tpf : TpM →
Tf(p)N is linear. If (x, U) is a chart in M with p ∈ U and (y, V ) a chart in N with f(p) ∈ V ,
then the diagram

TpM
Tpf−−−→ Tf(p)N

∼=
yAx

∼=
yAy

Rm D(yfx−1)(x(p))·−−−−−−−−−→ Rn

commutes, where the bottom horizontal map is the linear map given by multiplication with
the Jacobi matrix D(yfx−1)(x(p)).

Proof: That Tpf is linear follows from the commutativity of the diagram: Tpf is the result
of composing three linear maps (the last is Ay

−1). To show that the diagram commutes,
start with a [γ] ∈ TpM . Going down and right we get D(yfx−1)(x(p)) · (xγ)′(0) and
going right and down we get (yfγ)′(0). That these two expressions agree is the chain rule:
(yfγ)′(0) = (yfx−1xγ)′(0) = D(yfx−1)(x(p)) · (xγ)′(0).

Proposition 4.2.15 is extremely useful, not only because it proves that Tpf is linear, but
also because it gives us a concrete way of calculating the tangent map. Many questions
can be traced back to a question of whether Tpf is onto (“p is a regular point”), and we
see that Proposition 4.2.15 translates this to the question of whether the Jacobi matrix
D(yfx−1)(x(p)) has rank equal to the dimension of N .

Example 4.2.16 Consider the map det : M2(R)→ R sending the matrix

A =

[
a11 a12

a21 a22

]

to its determinant det(A) = a11a22 − a12a21. Using the chart x : M2(R)→ R4 with

x(A) =




a11

a12

a21

a22




(and the identity chart on R) we have that the Jacobi matrix is the 1× 4-matrix

D(det x−1)(x(A)) = [a22,−a21,−a12, a11]

(check this!). Thus we see that the rank of D(det x−1)(x(A)) is 0 if A = 0 and 1 if A 6= 0.
Hence TA det : TAM2(R)→ TdetAR is onto if and only if A 6= 0 (and T0 det = 0).

Exercise 4.2.17 Consider the determinant map det : Mn(R) → R for n > 1. Show that
TA det is onto if the rank of the n × n-matrix A is greater than n − 2 and TA det = 0 if
rkA < n− 1.

Exercise 4.2.18 Let L : Rn → Rm be a linear transformation. Show that DL(p) is the
matrix associated with L in the standard basis (and so independent of the point p).
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4.3 The cotangent space

Although the tangent space has a clear physical interpretation as the space of all possible
velocities at a certain point of a manifold, it turns out that for many applications – including
mechanics – the cotangent space is even more fundamental.

As opposed to the tangent space, which is defined in terms of maps from the real line
to the manifold, the cotangent space is defined in turn of maps to the real line. We are
really having a glimpse of a standard mathematical technique: if you want to understand
an object, a good way is to understand the maps to or from something you think you
understand (in this case the real line). The real line is the “yardstick” for spaces.

Recall from 4.1.2 thatOM,p denotes the algebra of function germs φ̄ : (M, p)→ (R, φ(p)).
If W is a subspace of a vector space V , then the quotient space V/W is the vector space you
get from V by dividing out by the equivalence relation v ∼ v + w for v ∈ V and w ∈ W .
The vector space structure on V/W is defined by demanding that the map V → V/W
sending a vector to its equivalence class is linear.

Definition 4.3.1 Let M be a smooth manifold, and let p ∈M . Let J = JpM ⊆ OM,p be
the vector space of all smooth function germs φ̄ : (M, p)→ (R, 0) (i.e., such that φ(p) = 0),
and let J2 be the sub-vector space spanned by all products φ̄ · ψ̄ where φ̄ and ψ̄ are in J .
The cotangent space, T ∗

pM , of M at p is the quotient space J/J2. The elements of T ∗
pM

are referred to as cotangent vectors.
Let f̄ : (M, p)→ (N, f(p)) be a smooth germ. Then T ∗f = T ∗

p f : T ∗
f(p)N → T ∗

pM is the
linear transformation given by sending the sending the cotangent vector represented by the
function germ ψ̄ : (N, f(p))→ (R, 0) to the cotangent vector represented by ψ̄f̄ : (M, p)→
(N, f(p))→ (R, 0).

Lemma 4.3.2 If f̄ : (M, g(p))→ (N, fg(p)) and ḡ : (L, p)→ (M, g(p)) are smooth germs,
then T ∗(fg) = T ∗gT ∗f , i.e.,

T ∗
fg(p)N

T ∗f //

T ∗(fg) %%JJ
JJJ

JJ
JJ

J
T ∗
g(p)M

T ∗g

��
T ∗
pL

commutes.

Proof: There is only one way to compose the ingredients, and the lemma follows since
composition is associative: ψ(fg) = (ψf)g.

Exercise 4.3.3 Prove that if f̄ is an invertible germ, then f ∗ is an isomorphism.

Note 4.3.4 In the classical literature there is frequently some magic about “contravariant
and covariant tensors” transforming this or that way. To some of us this is impossible to
remember, but it is possible to remember whether our construction turns arrows around
or not.
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The tangent space keeps the direction: a germ f̄ : (M, p)→ (N, q) gives a map Tf : TpM →
TqN , and the chain rule tells us that composition is OK – T (fg) = TfTg. The cotangent
construction turns around the arrows: we get a map T ∗f : T ∗

qN → T ∗
pM and the “cochain

rule” 4.3.2 says that composition follows suit – T ∗(fg) = T ∗gT ∗f .

Definition 4.3.5 The linear map d : OM,p → T ∗
p (M) given by sending φ̄ : M → R to the

class dφ ∈ Jp/J2
p represented by φ̄−φ(p) = [q 7→ φ(q)−φ(p)] ∈ Jp is called the differential.

The differential is obviously a surjection, and when we pick an arbitrary element from
the cotangent space, it is often convenient to let it be on the form dφ. We note that
T ∗f(dφ) = d(φf).

Exercise 4.3.6 The differential d : OM,p → T ∗
p (M) is natural, i.e., if f̄ : (M, p) → (N, q)

is a smooth germ, then

ON,q f∗

−−−→ OM,p

d

y d

y

T ∗
qN

T ∗f−−−→ T ∗
pM

,

where f ∗(φ̄) = φ̄f̄ , commutes.

Lemma 4.3.7 The differential d : OM,p → T ∗
p (M) is a derivation, i.e., is is a linear map

of real vector spaces satisfying the Leibniz condition:

d(φ · ψ) = dφ · ψ + φ · dψ,

where φ · dψ = dψ · φ is the cotangent vector represented by q 7→ φ(q) · (ψ(q)− ψ(p)).

Proof: We want to show that dφ ·ψ(p) +φ(p) · dψ− d(φ ·ψ) vanishes. It is represented by
(φ̄− φ(p)) · ψ̄ + φ̄ · (ψ̄ − ψ(p))− (φ̄ · ψ̄− φ(p) · ψ(p)) ∈ Jp, which, upon collecting terms, is
equal to (φ̄− φ(p)) · (ψ̄ − ψ(p)) ∈ J2

p , and hence represents zero in T ∗
pM = Jp/J

2
p .

In order to relate the tangent and cotangent spaces, we need to understand the situation
(Rn, 0). The corollary of the following lemma pins down the rôle of J2

Rn,0.

Lemma 4.3.8 Let φ : U → R be a smooth map where U is an open ball in Rn containing
the origin. Then

φ(p) = φ(0) +
n∑

i=1

pi · φi(p), where φi(p) =
∫ 1

0
Diφ(t · p) dt.

Note that φi(0) = Diφ(0).

Proof: For p ∈ U and t ∈ [0, 1], let F (t) = φ(t · p). Then φ(p) − φ(0) = F (1) − F (0) =∫ 1
0 F

′(t) dt by the fundamental theorem of calculus, and F ′(t) =
∑n
i=1 piDiφ(t · p) by the

chain rule.
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Corollary 4.3.9 The map JRn,0 →M1×n(R) sending φ̄ to Dφ(0) has kernel J2
Rn,0.

Proof: The Leibniz rule implies that J2
Rn,0 is in the kernel {φ̄ ∈ JRn,0|Dφ(0) = 0}: If

φ(p) = ψ(p) = 0, then D(φ ·ψ)(0) = φ(0) ·Dψ(0)+Dφ(0) ·ψ(0) = 0. Conversely, assuming
that φ(0) = 0 and Dφ(0) = 0, the decomposition φ = 0 +

∑n
j=1 prjφj of Lemma 4.3.8

(where prj : Rn → R is the jth projection, which obviously gives an element in JRn,0)

expresses φ̄ as an element of J2
Rn,0, since φj(0) = Djφ(0) = 0.

Definition 4.3.10 Let V be a real vector space. The dual of V , written V ∗, is the vector
space HomR(V,R) of all linear maps V → R. Addition and multiplication by scalars are
performed pointwise, in the sense that if a, b ∈ R and f, g ∈ V ∗, then af + bg is the linear
map sending v ∈ V to af(v) + bg(v) ∈ R.

If f : V →W is linear, then the dual linear map f ∗ : W ∗ → V ∗indexf@f ∗ : W ∗ → V ∗ is
defined by sending h : W → R to the composite hf : V →W → R.

Notice that (gf)∗ = f ∗g∗.

Example 4.3.11 If V = Rn, then any linear transformation V → R is uniquely repre-
sented by a 1× n-matrix, and we get an isomorphism

(Rn)∗ ∼= M1×n(R) = {vt|v ∈ Rn}.

If f : Rn → Rm is represented by the m × n-matrix A, then f ∗ : (Rm)∗ → (R)∗ is rep-
resented by the transpose At of A in the sense that if h ∈ (Rm)∗ corresponds to vt, then
f ∗(h) = hf ∈ (Rn)∗ corresponds to vtA = (Atv)t.

This means that if V is a finite dimensional vector space, then V and V ∗ are isomorphic
(they have the same dimension), but there is no preferred choice of isomorphism.

The promised natural isomorphism between the cotangent space and the dual of the tangent
space is given by the following proposition.

Proposition 4.3.12 Consider the assignment

α = αM,p : T ∗
pM → (TpM)∗, dφ 7→ {[γ] 7→ (φγ)′(0)}.

1. αM,p is a well defined linear map.

2. αM,p is natural in (M, p), in the sense that if f̄ : (M, p)→ (N, q) is a germ, then the
diagram

T ∗
qN

T ∗f−−−→ T ∗
pM

αN,q

y αM,p

y

(TqN)∗ (Tf)∗

−−−→ (TpM)∗

commutes.
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3. Let (x, U) be a chart for M with p ∈ U , and Ax : TpM → Rm the isomorphism of
Lemma 4.2.12 given by Ax[γ] = (xγ)′(0). Then the composite

T ∗
pM

αM,p−−−→ (TpM)∗ (Ax
−1)∗

−−−−−→∼=
(Rm)∗

sends the cotangent vector dφ to (the linear transformation Rm → R given by mul-
tiplication with) the Jacobi matrix D(φx−1)(x(p)).

4. αM,p is an isomorphism.

Proof:

1. We show that J2
p is in the kernel of the (obviously well defined) linear transformation

Jp(M) → (TpM)∗ sending φ̄ to the linear transformation [γ] 7→ (φγ)′(0). If φ(p) =
ψ(p) = 0, then the Leibniz rule gives

((φ · ψ)γ)′(0) = ((φγ) · (ψγ))′(0) = (φγ)(0) · (ψγ)′(0) + (φγ)′(0) · (ψγ)(0) = 0,

regardless of γ.

2. Write out the definitions and conclude that both ways around the square send a
cotangent vector dφ to the linear map {[γ] 7→ (φ ◦ f ◦ γ)′(0)}.

3. Recalling that Ax
−1(v) = [t 7→ x−1(x(p) + tv)] we get that the composite sends the

cotangent vector dφ to the element in (Rm)∗ given by sending v ∈ Rm to the deriva-
tive at 0 of t 7→ φx−1(x(p)+ tv), which, by the chain rule is exactly D(φx−1)(x(p)) ·v.

4. By naturality, we just have to consider the case (M, p) = (Rm, 0) (use naturality
with f̄ the germ of a chart). Hence we are reduced to showing that the composite
(Ax

−1)∗αRm,0 is an isomorphism when x is the identity chart. But this is exactly
Corollary 4.3.9: the kernel of JRm,0 → (Rm)∗ ∼= M1×m(R) sending φ̄ to Dφ(0) is
precisely J2

Rm,0 and so the induces map from T ∗
0 Rm = JRm,0/J

2
Rm,0 is an isomorphism.

In order to get a concrete grip on the cotangent space, we should understand the linear
algebra of dual vector spaces a bit better.

Definition 4.3.13 If {v1, . . . , vn} is a basis for the vector space V , then the dual basis
{v∗

1, . . . , v
∗
n} for V ∗ is given by v∗

j (
∑n
i=1 aivi) = aj .

Exercise 4.3.14 Check that the dual basis is a basis and that f ∗ is a linear map with
associated matrix the transpose of the matrix of f .

Note 4.3.15 If (x, U) is a chart for M around p ∈ M and let xi = prix be the “ith
coordinate”. The proof of proposition 4.3.12 shows that {dxi}i=1,...,n is a basis for the
cotangent space T ∗

pM . The isomorphism αM,p sends this basis to the dual basis of the

basis {Ax−1(ei)}i=1,...,n for TpM (where {ei}i=1,...,n is the standard basis for Rn).
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Exercise 4.3.16 Verify the claim in the note. Also show that

dφ =
n∑

i=1

Di(φx
−1)(x(p)) · dxi.

To get notation as close as possible to the classical, one often writes ∂φ/∂xi(p) instead of
Di(φx

−1)(x(p)), and gets the more familiar expression

dφ =
n∑

i=1

∂φ

∂xi
(p) · dxi.

One good thing about understanding manifolds is that we finally can answer the question
“what is the x in that formula. What does actually ’variables’ mean, and what is the
mysterious symbol ’dxi’?” The x is the name of a particular chart. In the special case
where x = id : Rn = Rn we see that xi is just a name for the projection onto the ith
coordinate and Di(φ)(p) = ∂φ/∂xi(p).

Note 4.3.17 Via the correspondence between a basis and its dual in terms of transposition
we can explain the classical language of “transforming this or that way”. If x : Rn ∼= Rn is
a diffeomorphism (and so is a chart in the standard smooth structure of Rn, or a “change
of coordinates”) and p ∈ Rn, then the diagram

TpR
n Tpx−−−→ Tx(p)R

n

[γ] 7→γ′(0)

y∼= [γ] 7→γ′(0)

y∼=

Rn Dx(p)·−−−−→ Rn

commutes, that is, the change of coordinates x transforms tangent vectors by multiplication
by the Jacobi matrix Dx(p). For cotangent vectors the situation is that,

T ∗
x(p)R

n T ∗x−−−→ T ∗
pRn

∼=
ydφ 7→[Dφ(p)]t ∼=

ydφ 7→[Dφ(p)]t

Rn [Dx(p)]t·−−−−−→ Rn

commutes.

Exercise 4.3.18 Let 0 6= p ∈ M = R2 = C, let x : R2 = R2 be the identity chart and
y : V ∼= V ′ be polar coordinates: y−1(r, θ) = reiθ, where V is C minus some ray from the
origin not containing p, and V ′ the corresponding strip of radii and angles. Show that the
upper horizontal arrow in

T ∗
pM

T ∗
x(p)R

2

dφ 7→[Dφ(x(p))]t

��

//

T ∗x
::vvvvvvvvv

T ∗
y(p)R

2

dφ 7→[Dφ(y(p))]t

��

T ∗y
ddHHHHHHHHH

R2 // R2
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is T ∗(xy−1) and the lower horizontal map is given by multiplication by the transposed
Jacobi matrix D(xy−1)(y(p))t, and calculate this explicitly in terms of p1 and p2.

Conversely, in the same diagram with tangent spaces instead of cotangent spaces (re-
move the superscript ∗, reverse the diagonal maps, and let the vertical maps be given by
[γ] 7→ (xγ)′(0) and [γ] 7→ (yγ)′(0) respectively), the upper horizontal map is Tx(p)(yx

−1)
and the lower is given by multiplication with the Jacobi matrix D(yx−1)(x(p)), and calcu-
late this explicitly in terms of p1 and p2.

Example 4.3.19 If this example makes no sense to you, don’t worry, it’s for the physicists
among us! Classical mechanics is all about the relationship between the tangent and
cotangent space. More precisely, the kinetic energy E should be thought of as (half) a
inner product g on the tangent space i.e., as a symmetric bilinear and positive definite map

g = 2E : TpM × TpM → R.

This is the equation E = 1
2
m|v|2 you know from high school, giving the kinetic energy as

something proportional to the norm applied to the velocity v. The usual – mass indepen-
dent – inner product in euclidean space gives g(v, v) = vt · v = |v|2, in mechanics the mass
is incorporated into the inner product.

The assignment [γ] 7→ g([γ],−) where g([γ],−) : TpM → R is the linear map [γ1] 7→
g([γ], [γ1]) defines an isomorphism TpM ∼= HomR(TpM,R) (isomorphism since g is positive
definite). The momentum of a particle with mass m moving along the curve γ is, at time
t = 0, exactly the cotangent vector g([γ],−) (this is again the old formula p = mv: the mass
is intrinsic to the inner product, and the v should really be transposed (p = g(v,−) = mvt)
so as to be ready to be multiplied with with another v to give E = 1

2
m|v|2 = 1

2
p · v).

4.4 Derivations1

Although the definition of the tangent space by means of curves is very intuitive and
geometric, the alternative point of view of the tangent space as the space of “derivations”
can be very convenient. A derivation is a linear transformation satisfying the Leibniz rule:

Definition 4.4.1 Let M be a smooth manifold and p ∈ M . A derivation (on M at p) is
a linear transformation

X : OM,p → R

satisfying the Leibniz rule

X(φ̄ · ψ̄) = X(φ̄) · ψ(p) + φ(p) ·X(ψ̄)

for all function germs φ̄, ψ̄ ∈ OM,p.
We let D|pM be the set of all derivations.

1This material is not used in an essential way in the rest of the book. It is included for completeness,
and for comparison with other sources.
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Example 4.4.2 Let M = R. Then φ 7→ φ′(p) is a derivation. More generally, if M = Rn

then all the partial derivatives φ 7→ Dj(φ)(p) are derivations.

Note 4.4.3 Note that the set D|pM of derivations is a vector space: adding two derivations
or multiplying one by a real number gives a new derivation. We shall later see that the
partial derivatives form a basis for the vector space D|pRn.

Definition 4.4.4 Let f̄ : (M, p) → (N, f(p)) be a germ. Then we have a linear transfor-
mation

D|pf : D|pM → D|f(p)N

given by
D|pf(X) = Xf ∗

(i.e. D|pf(X)(φ̄) = X(φf).).

Lemma 4.4.5 If f̄ : (M, p)→ (N, f(p)) and ḡ : (N, f(p))→ (L, g(f(p))) are germs, then

D|pM
D|pf //

D|p(gf) %%J
JJJJJJJJ
D|f(p)N

D|f(p)g

��
D|gf(p)L

commutes.

Proof: Let X : OM,p → R be a derivation, then

D|f(p)g(D|pf(X)) = D|f(p)g(Xf ∗) = (Xf ∗)g∗ = X(gf)∗ = D|pgf(X).

4.4.6 The space of derivations is the dual of the cotangent space

Given our discussion of the cotangent space T ∗
pM = Jp/J

2
p in the previous section, it is

easy to identify the space of derivations as the dual of the cotangent space (and so the
double dual of the tangent space).2

However, it is instructive to see how naturally the derivations fall out of our discussion
of the cotangent space (this is of course a reflection of a deeper theory of derivations you
may meet later if you study algebra).

Proposition 4.4.7 Let M be a smooth manifold and p ∈ M . Then

βM,p :
(
T ∗
pM

)∗ −−−→ D|pM, βM,p(g) = {OM,p
φ̄ 7→dφ−−−→ T ∗

pM
g−−−→ R}

2For the benefit of those who did not study the cotangent space, we give an independent proof of this
fact in the next subsection, along with some further details about the structure of the space of derivations.
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is a natural isomorphism; if f : M → N is a smooth map, then

(
T ∗
pM

)∗ βM,p−−−→ D|pM

(T ∗f)∗

y D|pf
y

(
T ∗
f(p)N

)∗ βN,f(p)−−−−→ D|f(p)N

commutes.

Proof: Recall that T ∗
pM = Jp/J

2
p where Jp ⊆ OM,p consists of the germs vanishing at p.

That βM,p(g) is a derivation follows since g is linear and since d satisfies the Leibniz rule
by Lemma 4.3.7: βM,p(g) applied to φ̄ · ψ̄ gives g(d(φ · ψ)) = φ(p) · g(dψ) + g(dφ) · ψ(p).
The inverse of βM,p is given as follows. Given a derivation h : OM,p → R, notice that the
Leibniz rule gives that J2

p ⊆ ker{h}, and so h defines a map β−1
M,p(h) : Jp/J

2
p → R.

Showing that the diagram commutes boils down to following an element g ∈ (T ∗
pM)∗

both ways and observing that the result either way is the derivation sending φ̄ ∈ OM,p to
g(d(φf)) ∈ R.
For a vector space V , there is a canonical map to the double dualization V → (V ∗)∗ sending
v ∈ V to v∗∗ : V ∗ → R given by v∗∗(f) = f(v). This map is always injective, and if V is
finite dimensional it is an isomorphism. This is also natural: if f : V →W is linear, then

V −−−→ (V ∗)∗

f

y (f∗)∗

y
W −−−→ (W ∗)∗

commutes.
Together with the above result, this gives the promised natural isomorphism between

the double dual of the tangent space and the space of derivations:

Corollary 4.4.8 There is a chain of natural isomorphism

TpM
∼=−−−→ ((TpM)∗)∗ (αM,p)∗

−−−−→ (T ∗
pM)∗ βM,p−−−→ D|pM.

The composite sends [γ] ∈ TpM to Xγ ∈ D|pM whose value at φ̄ ∈ OM,p is Xγ(φ̄) =
(φγ)′(0).

Note 4.4.9 In the end, this all sums up to say that TpM and D|pM are one and the same
thing (the categorists would say that “the functors are naturally isomorphic”), and so we
will let the notation D|pM slip quietly into oblivion.

Notice that in the proof of Corollary 4.4.8 it is crucial that the tangent spaces are finite
dimensional. However, the proof of Proposition 4.4.7 is totally algebraic, and does not
depend on finite dimensionality.
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4.4.10 The space of derivations is spanned by partial derivatives

Even if we know that the space of derivations is just another name for the tangent space, a
bit of hands-on knowledge about derivations can often be useful. This subsection does not
depend on the previous, and as a side effect gives a direct proof of TpM ∼= D|pM without
talking about the cotangent space.

The chain rule gives as before, that we may use charts and transport all calculations
to Rn.

Proposition 4.4.11 The partial derivatives {Di|0}i = 1, . . . , n form a basis for D|0Rn.

Exercise 4.4.12 Prove Proposition 4.4.11

Thus, given a chart x̄ : (M, p) → (Rn, 0) we have a basis for D|pM , and we give this
basis the old-fashioned notation to please everybody:

Definition 4.4.13 Consider a chart x̄ : (M, p) → (Rn, x(p)). Define the derivation in
TpM

∂

∂xi

∣∣∣∣∣
p

= (D|px)−1
(
Di|x(p)

)
,

or in more concrete language: if φ̄ : (M, p)→ (R, φ(p)) is a function germ, then

∂

∂xi

∣∣∣∣∣
p

(φ̄) = Di(φx
−1)(x(p))

Note 4.4.14 Note that if f̄ : (M, p) → (N, f(p)) is a germ, then the matrix associated
with the linear transformation D|pf : D|pM → D|f(p)N in the basis given by the partial
derivatives of x and y is nothing but the Jacobi matrix D(yfx−1)(x(p)). In the current
notation the i, j-entry is

∂(yif)

∂xj

∣∣∣∣∣
p

.

Definition 4.4.15 Let M be a smooth manifold and p ∈ M . To every germ γ̄ : (R, 0)→
(M, p) we may associate a derivation Xγ : OM,p → R by setting

Xγ(φ̄) = (φγ)′(0)

for every function germ φ̄ : (M, p)→ (R, φ(p)).

Note that Xγ(φ̄) is the derivative at zero of the composite

(R, 0)
γ̄−−−→ (M, p)

φ̄−−−→ (R, φ(p))

Exercise 4.4.16 Check that the map TpM → D|pM sending [γ] to Xγ is well defined.
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Using the definitions we get the following lemma, which says that the map T0Rn →
D|0Rn is surjective.

Lemma 4.4.17 If v ∈ Rn and γ̄ the germ associated to the curve γ(t) = v · t, then [γ]
sent to

Xγ(φ̄) = D(φ)(0) · v =
n∑

i=0

viDi(φ)(0)

and so if v = ej is the jth unit vector, then Xγ is the jth partial derivative at zero.

Lemma 4.4.18 Let f̄ : (M, p)→ (N, f(p)) be a germ. Then

TpM
Tpf−−−→ Tf(p)Ny

y

D|pM
D|pf−−−→ D|f(p)N

commutes.

Exercise 4.4.19 Prove Lemma 4.4.18.

Proposition 4.4.20 Let M be a smooth manifold and p a point in M . The assignment
[γ] 7→ Xγ defines a natural isomorphism

TpM ∼= D|pM

between the tangent space at p and the vector space of derivations OM,p → R.

Proof: The term “natural” in the proposition refers to the statement in Lemma 4.4.18. In
fact, we can use this to prove the rest of the proposition.

Choose a germ chart x̄ : (M, p)→ (Rn, 0). Then Lemma 4.4.18 proves that

TpM
Tpx−−−→∼=

T0Rn

y
y

D|pM
D|px−−−→∼=

D|0Rn

commutes, and the proposition follows if we know that the right hand map is a linear
isomorphism.

But we have seen in Proposition 4.4.11 that D|0Rn has a basis consisting of partial
derivatives, and we noted in Lemma 4.4.17 that the map T0Rn → D|0Rn hits all the basis
elements, and now the proposition follows since the dimension of T0Rn is n (a surjective
linear map between vector spaces of the same (finite) dimension is an isomorphism).
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Chapter 5

Regular values

In this chapter we will acquire a powerful tool for constructing new manifolds as inverse
images of smooth functions. This result is a consequence of the rank theorem, which says
roughly that smooth maps are – locally around “most” points – like linear projections or
inclusions of Euclidean spaces.

5.1 The rank

Remember that the rank of a linear transformation is the dimension of its image. In terms
of matrices, this can be captured by saying that a matrix has rank at least r if it contains
an r × r invertible submatrix.

Definition 5.1.1 Let f̄ : (M, p)→ (N, f(p)) be a smooth germ. The rank rkpf of f at p
is the rank of the linear map Tpf . We say that a germ f̄ has constant rank r if it has a
representative f : Uf → N whose rank rkTqf = r for all q ∈ Uf . We say that a germ f̄ has
rank ≥ r if it has a representative f : Uf → N whose rank rkTqf ≥ r for all q ∈ Uf .

In view of Proposition 4.2.15, the rank of f at p is the same as the rank of the Jacobi
matrix D(yfx−1)(x(p)), where (x, U) is a chart around p and (y, V ) a chart around f(p).

Lemma 5.1.2 Let f̄ : (M, p)→ (N, f(p)) be a smooth germ. If rkpf = r then there exists
a neighborhood of p such that rkqf ≥ r for all q ∈ U .

Proof: Note that the subspace M≥r
n×m(R) ⊆Mn×m(R) of n×m-matrices of rank at least

r is open: the determinant function is continuous, so the set of matrices such that a given
r×r-submatrix is invertible is open (in fact, if for S ⊆ {1, . . . n} and T ⊆ {1, . . . , m} are two
sets with r elements each we let detS,T : Mn×m(R)→ R be the continuous function sending
the n ×m-matrix (aij) to det((aij)i∈S,j∈T ) we see that M≥r

n×m(R) is the finite intersection⋂
S,T det−1

S,T (R \ {0}) of open sets).
Choose a representative f : Uf → N and charts (x, U) and (y, V ) with p ∈ U and

f(p) ∈ V . Let W = Uf ∩ U ∩ f−1(V ), and consider the continuous function J : W →

73
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Mn×m(R) sending q ∈W to J(q) = Dj(priyfx
−1)(x(q)). The desired neighborhood of p is

then J−1(M r
n×m(R)).

Note 5.1.3 In the previous proof we used the useful fact that the subspace M≥r
n×m(R) ⊆

Mn×m(R) of n×m-matrices of rank at least r is open. As a matter of fact, we showed in
Example 3.5.10 that the subspace M r

n×m(R) ⊆Mn×m(R) of n×m-matrices of rank (exactly
equal to) r is a submanifold of codimension (m − r)(n − r). Perturbing a rank r matrix
may kick you out of this manifold and into one of higher rank (but if the perturbation is
small enough you can avoid the matrices of smaller rank).

To remember what way the inequality in Lemma 5.1.2 goes, it may help to recall that
the zero matrix is the only matrix of rank 0 (and so all the neighboring matrices are

of higher rank), and likewise that the subset M
min(m,n)
n×m (R) ⊆ Mn×m(R) of matrices of

maximal rank is open. The rank “does not decrease locally”.

Example 5.1.4 The map f : R → R given by f(p) = p2 has Df(p) = 2p, and so

rkpf =





0 p = 0

1 p 6= 0

Example 5.1.5 Consider the determinant det : M2(R)→ R with

det(A) = a11a22 − a12a21, for A =

[
a11 a12

a21 a22

]
.

By the calculation in Example 4.2.16 we see that

rkA det =





0 A = 0

1 A 6= 0

For dimension n ≥ 2, the analogous statement is that rkA det = 0 if and only if rkA < n−1.

Example 5.1.6 Consider the map f : S1 ⊆ C → R given by f(x + iy) = x. Cover S1

by the “angle” charts (x, (0, 2π)) and (y, (−π, π)) with x(t) = y(t) = eit. Then fx−1(t) =
fy−1(t) = cos(t), and so we see that the rank of f at z is 1 if z 6= ±1 and 0 if z = ±1.

Definition 5.1.7 Let f : M → N be a smooth map where N is n-dimensional. A point
p ∈ M is regular if Tpf is surjective (i.e., if rkpf = n). A point q ∈ N is a regular value if
all p ∈ f−1(q) are regular points. Synonyms for “non-regular” are critical or singular.

Note that a point q which is not in the image of f is a regular value since f−1(q) = ∅.

Note 5.1.8 These names are well chosen: the critical values are critical in the sense that
they exhibit bad behavior. The inverse image f−1(q) ⊆ M of a regular value q will turn
out to be a submanifold, whereas inverse images of critical points usually are not.
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On the other hand, according to Sard’s theorem 5.6.1 the regular values are the common
state of affairs (in technical language: critical values have “measure zero” while regular
values are “dense”).

Example 5.1.9 The names correspond to the normal usage in multi variable calculus.
For instance, if you consider the function

f : R2 → R

whose graph is depicted to the right, the crit-
ical points – i.e., the points p ∈ R2 such that

D1f(p) = D2f(p) = 0

– will correspond to the two local maxima and
the saddle point. We note that the contour
lines at all other values are nice 1-dimensional
submanifolds of R2 (circles, or disjoint unions
of circles).
In the picture to the right, we have consid-
ered a standing torus, and looked at its height
function. The contour lines are then inverse
images of various height values. If we had
written out the formulas we could have calcu-
lated the rank of the height function at every
point of the torus, and we would have found
four critical points: one on the top, one on
“the top of the hole”, one on “the bottom of
the hole” (the point on the figure where you
see two contour lines cross) and one on the
bottom. The contours at these heights look
like points or figure eights, whereas contour
lines at other values are one or two circles.

The robot example 2.1, was also an example of this type of phenomenon.

Example 5.1.10 The robot example is another example. In that example we considered
a function

f : S1 × S1 → R1

and found three critical values.

To be more precise:

f(eiθ, eiφ) = |3− eiθ − eiφ| =
√

11− 6 cos θ − 6 cosφ+ 2 cos(θ − φ),
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and so (using charts corresponding to the angles: conveniently all charts give the same
formulas in this example) the Jacobi matrix at (eiθ, eiφ) equals

1

f(eiθ, eiφ)
[3 sin θ − cosφ sin θ + sin φ cos θ, 3 sinφ− cos θ sin φ+ sin θ cos φ].

The rank is one, unless both coordinates are zero, in which case we get that we must have
sin θ = sin φ = 0, which leaves the points

(1, 1), (−1,−1), (1,−1), and (−1, 1)

giving the critical values 1, 5 and (twice) 3: exactly the points we noticed as troublesome.

Exercise 5.1.11 Fill out the details in the robot example.

5.2 The inverse function theorem

The technical foundation for the theorems to come is the inverse function theorem from
multivariable calculus which we cite below. A proof can be found in [11, Theorem 2.11] or
any other decent book on multi-variable calculus.

Theorem 5.2.1 If f : U1 → U2 is a smooth function
where U1, U2 ⊆ Rn. Let p ∈ U1 and assume the the
Jacobi matrix [Df(p)] is invertible in the point p. Then
there exists a neighborhood around p on which f is
smoothly invertible, i.e., there exists an open subset
U0 ⊆ U1 containing p such that

f |U0 : U0 → f(U0)

is a diffeomorphism. The inverse has Jacobi matrix

[D(f−1)(f(x))] = [Df(x)]−1 UU

p

0

Recall from Lemma 4.1.7 that an invertible germ (M, p) → (N, q) is exactly a germ
induced by a diffeomorphism φ : U → V between neighborhoods of p and q.

Theorem 5.2.2 (The inverse function theorem) A germ

f̄ : (M, p)→ (N, f(p))

is invertible if and only if
Tpf : TpM → Tf(p)N

is invertible, in which case Tf(p)(f
−1) = (Tpf)−1.



5.3. THE RANK THEOREM 77

Proof: Choose charts (x, U) and (y, V ) with p ∈W = U ∩f−1(V ). By Proposition 4.2.15,
Tpf is an isomorphism if and only if the Jacobi matrix D(yfx−1)(x(p)) is invertible (which
incidentally implies that dim(M) = dim(N)).

By the inverse function theorem 5.2.1 in the flat case, this is the case iff yfx−1 is a
diffeomorphism when restricted to a neighborhood U0 ⊆ x(U) of x(p). As x and y are
diffeomorphisms, this is the same as saying that f |x−1(U0) is a diffeomorphism.

Corollary 5.2.3 Let f : M → N be a smooth map between smooth n-dimensional mani-
folds. Then f is a diffeomorphism if and only if it is bijective and Tpf is of rank n for all
p ∈M .

Proof: One way is obvious. For the other implication assume that f is bijective and Tpf is
of rank n for all p ∈ M . Since f is bijective it has an inverse function. A function has at
most one inverse function (!) so the smooth inverse functions existing locally by the inverse
function theorem, must be equal to the globally defined inverse function which hence is
smooth.

Exercise 5.2.4 Let G be a Lie group (a smooth manifold with a smooth associative
multiplication, with a unit and all inverses). Show that the map G→ G given by sending
an element g to its inverse g−1 is smooth (some authors have this as a part of the definition
of a Lie group, which is totally redundant. However, if G is only a topological space with a
continuous associative multiplication, with a unit and all inverses, it does not automatically
follow that inverting elements gives a continuous function).

5.3 The rank theorem

The rank theorem says that if the rank of a smooth map f : M → N is constant in a
neighborhood of a point, then there are charts so that f looks like a a composite Rm →
Rr ⊆ Rn, where the first map is the projection onto the first r ≤ m coordinate directions,
and the last one is the inclusion of the first r ≤ n coordinates. So for instance, a map of
rank 1 between 2-manifolds looks locally like

R2 → R2, (q1, q2) 7→ (q1, 0).

If σ : {1, . . . , n} → {1, . . . , n} is a bijection (a permutation), we refer to the diffeo-
morphism sending (t1, . . . , tn) to (tσ−1(1), . . . , tσ−1(n)) as a permutation of the coordinates
corresponding to σ and denoted σ : Rn → Rn.

In the formulation of the rank theorem we give below, the two last cases are the extreme
situations where the rank is maximal (and hence constant).



78 CHAPTER 5. REGULAR VALUES

Lemma 5.3.1 (The rank theorem)Let M and N be smooth manifolds of dimension
dim(M) = m and dim(N) = n, and let f̄ : (M, p)→ (N, f(p)) be a germ.

1. If f̄ is of rank ≥ r. Then for any chart (z, V ) for N with q ∈ V there exists a chart
(x, U) for M with p ∈ U and permutation σ : Rn → Rn such that the diagram of
germs

(Rm, x(p))
σzfx−1

−−−−→ (Rn, σz(p))

pr

y pr

y
(Rr, prx(p)) (Rr, prx(p))

commutes, where pr is the projection onto the first r coordinates, pr(t1, . . . , tm) =
(t1, . . . , tr).

2. If f̄ has constant rank r, then there exists a charts (x, U) for M and (y, V ) for N with
p ∈ U and q ∈ V such that yfx−1 = ipr, where ipr(t1, . . . , tm) = (t1, . . . , tr, 0, . . . , 0).

3. If f̄ is of rank n (and so m ≥ n), then for any chart (y, V ) for N with f(p) ∈ V , there
exists a chart (x, U) for M with p ∈ U such that yfx−1 = pr, where pr(t1, . . . , tm) =
(t1, . . . , tn).

4. If f̄ is of rank m (and so m ≤ n), then for any chart (x, U) for M with p ∈ U there
exists a chart (y, V ) for N with f(p) ∈ V such that yfx−1 = i, where i(t1, . . . , tm) =
(t1, . . . , tm, 0, . . . , 0).

Proof: This is a local question: if we start with arbitrary charts, we will fix them up so
that we have the theorem. Hence we may just as well assume that (M, p) = (Rm, 0) and
(N, f(p)) = (Rn, 0), that f is a representative of the germ, and that the Jacobian Df(0)
has the form

Df(0) =

[
A B
C D

]

where A is an invertible r × r matrix. This is where we use that we may permute the
coordinates: at the outset there was no guarantee that the upper left r × r-matrix A
was invertible: we could permute the columns by choosing x wisely (except in the fourth
part where x is fixed, but where this is unnecessary since r = m), but the best we could
guarantee without introducing the σ was that there would be an invertible r × r-matrix
somewhere in the first r columns. For the third part of the theorem, this is unnecessary
since r = n.

Let fi = prif , and for the first, second and third parts, define x : (Rm, 0)→ (Rm, 0) by

x(t) = (f1(t), . . . , fr(t), tr+1, . . . , tm)

(where tj = prj(t)). Then

Dx(0) =

[
A B
0 I

]
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and so detDx(0) = det(A) 6= 0. By the inverse function theorem 5.2.2, x̄ is an invertible
germ with inverse x̄−1. Choose a representative for x̄−1 which we by a slight abuse of
notation will call x−1. Since for sufficiently small t ∈M = Rm we have

(f1(t), . . . , fn(t)) = f(t) = fx−1x(t) = fx−1(f1(t), . . . , fr(t), tr+1, . . . , tm)

we see that
fx−1(t) = (t1, . . . , tr, fr+1x

−1(t), . . . , fnx
−1(t))

and we have proven the first and third parts of the rank theorem.
For the second part, assume rkDf(t) = r for all t. Since x̄ is invertible

D(fx−1)(t) = Df(x−1(t))D(x−1)(t)

also has rank r for all t in the domain of definition. Note that

D(fx−1)(t) =




I 0
. . . . . . . . . . . . . . . . . . . . . .
[Dj(fix

−1)(t)] i=r+1,...,n
j=1,...m




so since the rank is exactly r we must have that the lower right hand (n−r)×(m−r)-matrix
[
Dj(fix

−1)(t)
]
r+1 ≤ i ≤ n
r+1 ≤ j ≤ m

is the zero matrix (which says that “fix
−1 does not depend on the last m− r coordinates

for i > r”). Define ȳ : (Rn, 0)→ (Rn, 0) by setting

y(t) =
(
t1, . . . , tr, tr+1 − fr+1x

−1(t̄), . . . , tn − fnx−1(t̄)
)

where t̄ = (t1, . . . , tr, 0, . . . , 0). Then

Dy(t) =

[
I 0
? I

]

so ȳ is invertible and yfx−1 is represented by

t = (t1, . . . , tm) 7→
(
t1, . . . , tr, fr+1x

−1(t)− fr+1x
−1(t̄), . . . , fnx

−1(t)− fnx−1(t̄)
)

=(t1, . . . , tr, 0, . . . , 0)

where the last equation holds since Dj(fix
−1)(t) = 0 for r < i ≤ n and r < j ≤ m so

. . . , fnx
−1(t)− fnx−1(t̄) = 0 for r < i ≤ n for t close to the origin.

For the fourth part, we need to shift the entire burden to the chart onN = Rn. Consider
the germ η̄ : (Rn, 0)→ (Rn, 0) represented by η(t) = (0, . . . , 0, tm+1, . . . , tn)+f(t1, . . . , tm).
Since

Dη(0) =

[
A 0
C I

]

is invertible, η̄ is invertible. Let ȳ = η̄−1 and let y be the corresponding diffeomorphism.
Since f̄ is represented by (t1, . . . , tm) 7→ η(t1, . . . , tm, 0, . . . , 0), we get that ȳf̄ is represented
by (t1, . . . , tm) 7→ (t1, . . . , tm, 0, . . . , 0), as required.
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Exercise 5.3.2 Let f : M → N be a smooth map between n-dimensional smooth mani-
folds. Assume that M is compact and that q ∈ N a regular value. Prove that f−1(q) is a
finite set and that there is a neighborhood V around q such that for each q′ ∈ V we have
that f−1(q′) ∼= f−1(q).

Exercise 5.3.3 Prove the fundamental theorem of algebra: any non-constant complex
polynomial P has a zero.

Exercise 5.3.4 Let f : M → M be smooth such that f ◦ f = f and M connected. Prove
that f(M) ⊆ M is a submanifold. If you like point-set topology, prove that f(M) ⊆M is
closed.

Note 5.3.5 It is a remarkable fact that any smooth manifold can be obtained by the
method of Exercise 5.3.4 with M an open subset of Euclidean space and f some suitable
smooth map. If you like algebra, then you might like to think that smooth manifolds are
to open subsets of Euclidean spaces what projective modules are to free modules.

We will not be in a position to prove this, but the idea is as follows. Given a manifold
T , choose a smooth imbedding i : T ⊆ RN for some N (this is possible by the Whitney
imbedding theorem, which we prove in 9.2.6 for T compact). Thicken i(T ) slightly to a
“tubular neighborhood” U , which is an open subset of RN together with a lot of structure
(it is isomorphic to what we will later refer to as the “total space of the normal bundle” of
the inclusion i(T ) ⊆ RN), and in particular comes equipped with a smooth map f : U → U
(namely the “projection U → i(T ) of the bundle” composed with the “zero section i(T )→
U” – you’ll recognize these words once we have talked about vector bundles) such that
f ◦ f = f and f(U) = i(T ).

5.4 Regular values

Since by Lemma 5.1.2 the rank can not decrease locally, there are certain situations where
constant rank is guaranteed, namely when the rank is maximal.

Definition 5.4.1 A smooth map f : M → N is

a submersion if rkTpf = dimN (that is Tpf is surjective)

an immersion if rkTpf = dimM (Tpf is injective)

for all p ∈M .

In these situation the third and/or fourth versions in the rank theorem 5.3.1 applies.

Note 5.4.2 To say that a map f : M → N is a submersion is equivalent to claiming that
all points p ∈ M are regular (Tpf is surjective), which again is equivalent to claiming that
all q ∈ N are regular values (values that are not hit are regular by definition).
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Theorem 5.4.3 Let
f : M → N

be a smooth map where M is n+ k-dimensional and N is n-dimensional. If q = f(p) is a
regular value, then

f−1(q) ⊆ M

is a k-dimensional smooth submanifold.

Proof: We must display a chart (x,W ) such that x(W ∩ f−1(q)) = x(W ) ∩ (Rk × {0}).
Since p is regular, the rank of f must be n in a neighborhood of p, so by the rank

theorem 5.3.1, there are charts (x, U) and (y, V ) around p and q such that x(p) = 0,
y(q) = 0 and

yfx−1(t1, . . . , tn+k) = (t1, . . . , tn), for t ∈ x(U ∩ f−1(V ))

Let W = U ∩ f−1(V ), and note that f−1(q) = (yf)−1(0). Then

x(W ∩ f−1(q)) =x(W ) ∩
(
yfx−1

)−1
(0)

={(0, . . . , 0, tn+1, . . . , tn+k) ∈ x(W )}
=({0} ×Rk) ∩ x(W )

and so (permuting the coordinates) f−1(q) ⊆M is a k-dimensional submanifold as claimed.

Exercise 5.4.4 Give a new proof which shows that Sn ⊂ Rn+1 is a smooth submanifold.

Note 5.4.5 Not all submanifolds can be realized as the inverse image of a regular value of
some map (e.g., the zero section in the tautological line bundle η1 → S1 can not, see 6.1.3),
but the theorem still gives a rich source of important examples of submanifolds.

Example 5.4.6 Consider the special linear group

SLn(R) = {A ∈ GLn(R) | det(A) = 1}
We show that SL2(R) is a 3-dimensional manifold. The determinant function is given by

det : M2(R)→ R

A =

[
a11 a12

a21 a22

]
7→ det(A) = a11a22 − a12a21

and so with the obvious coordinates M2(R) ∼= R4 (sending A to [a11 a12 a21 a22]t) we have
that

D(det)(A) =
[
a22 −a21 −a12 a11

]

Hence the determinant function has rank 1 at all matrices, except the zero matrix, and in
particular 1 is a regular value.
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Exercise 5.4.7 Show that SL2(R) is diffeomorphic to S1 ×R2.

Exercise 5.4.8 If you have the energy, you may prove that SLn(R) is an (n2 − 1)-
dimensional manifold.

Example 5.4.9 The subgroup O(n) ⊆ GLn(R) of orthogonal matrices is a submanifold

of dimension n(n−1)
2

.

To see this, recall that A ∈ GLn(R) is orthogonal iff AtA = I. Note that AtA is always
symmetric. The space Sym(n) of all symmetric matrices is diffeomorphic to Rn(n+1)/2 (the
entries on and above the diagonal can be chosen arbitrarily, and will then determine the
remaining entries uniquely). We define a map

f : GLn(R)→Sym(n)

A 7→AtA

which is smooth (since matrix multiplication and transposition is smooth), and such that

O(n) = f−1(I)

We must show that I is a regular value, and we offer two proofs, one computational using
the Jacobi matrix, and one showing more directly that TAf is surjective for all A ∈ O(n).
We present both proofs, the first one since it is very concrete, and the second one since it
is short and easy to follow.

First the Jacobian argument. We use the usual chart on GLn(R) ⊆ Mn(R) ∼= Rn2
by

listing the entries in lexicographical order, and the chart

pr : Sym(n) ∼= Rn(n+1)/2

with prij[A] = aij if A = [aij ] (also in lexicographical order) only defined for 1 ≤ i ≤ j ≤ n.
Then prijf([A]) =

∑n
k=1 akiakj, and a straight forward calculation yields that if A = [aij ]

then

Dklprijf(A) =





aki i < j = l

akj l = i < j

2akl i = j = l

0 otherwise

In particular

Dklprijf(I) =





1 k = i < j = l

1 l = i < j = k

2 i = j = k = l

0 otherwise
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and rkDf(I) = n(n+1)/2 since Df(I) is on echelon form, with no vanishing rows (example:
for n = 2 and n = 3 the Jacobi matrices are



2

1 1
2


 , and




2
1 1

1 1
2

1 1
2




(in the first matrix the columns are the partial derivatives in the 11, 12, 21 and 22-variable,
and the rows are the projection on the 11 12 and 22-factor. Likewise in the second one)).

For any A ∈ GLn(R) we define the diffeomorphism

LA : GLn(R)→ GLn(R)

by LA(B) = A · B. Note that if A ∈ O(n) then

f(LA(B)) = f(AB) = (AB)tAB = BtAtAB = BtB = f(B)

and so by the chain rule and the fact that D(LA)(B) = A we get that

Df(I) = D(fLA)(I) = D(f)(LAI)D(LA)(I) = D(f)(A)A

implying that rkD(f)(A) = n(n + 1)/2 for all A ∈ O(n). This means that A is a regular
point for all A ∈ O(n) = f−1(I), and so I is a regular value, and O(n) is an

n2 − n(n + 1)/2 = n(n− 1)/2

dimensional submanifold.
For the other proof of the fact that I is a regular value, notice that all tangent vectors

in TAGLn(R) = TAMn(R) are in the equivalence class of a linear curve

νB(s) = A + sB, B ∈Mn(R), s ∈ R

We have that

fνB(s) = (A+ sB)t(A + sB) = AtA+ s(AtB +BtA) + s2BtB

and so
TAf [νB] = [fνB] = [γB]

where γB(s) = AtA+ s(AtB +BtA). Similarly, all tangent vectors in TISym(n) are in the
equivalence class of a linear curve

αC(s) = I + sC

for C a symmetric matrix. If A is orthogonal, we see that γ 1
2
AC = αC , and so TAf [ν 1

2
AC ] =

[αC ], and TAf is surjective. Since this is true for all A ∈ O(n) we get that I is a regular
value.



84 CHAPTER 5. REGULAR VALUES

Exercise 5.4.10 Consider the inclusion O(n) ⊆ Mn(R), giving a description of the tan-
gent bundle of O(n) along the lines of corollary 6.5.12. Show that under the isomorphism

TMn(R) ∼= Mn(R)×Mn(R), [γ] ⇆ (γ(0), γ′(0))

the tangent bundle of O(n) corresponds to the projection on the first factor

E = {(g, A) ∈ O(n)×Mn(R)|At = −gtAgt} → O(n).

This also shows that O(n) is parallelizable, since we get an obvious bundle isomorphism
induced by

E → O(n)× {B ∈Mn(R)|Bt = −B}, (g, A) 7→ (g, g−1A)

(a matrix B satisfying Bt = −B is called a skew matrix).

Note 5.4.11 The multiplication

O(n)×O(n)→ O(n)

is smooth (since multiplication of matrices is smooth in Mn(R) ∼= Rn2
, and 3.5.15), and

so O(n) is a Lie group. The same of course applies to SLn(R).

Exercise 5.4.12 Prove that

C→M2(R)

x+ iy 7→
[
x −y
y x

]

defines an imbedding. More generally it defines an imbedding

Mn(C)→Mn(M2(R)) ∼= M2n(R)

Show also that this imbedding sends “conjugate transpose” to “transpose” and “multipli-
cation” to “multiplication”.

Exercise 5.4.13 Prove that the unitary group

U(n) = {A ∈ GLn(C)|ĀtA = I}

is a Lie group of dimension n2.

Exercise 5.4.14 Prove that O(n) is compact and has two connected components. The
component consisting of matrices of determinant 1 is called SO(n), the special orthogonal
group.
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Note 5.4.15 SO(2) is diffeomorphic to S1 (prove this), and SO(3) is diffeomorphic to the
real projective 3-space (don’t prove that).

Note 5.4.16 It is a beautiful fact that if G is a Lie group (e.g., GLn(R)) and H ⊆ G is
a closed subgroup (i.e., a closed subset which is closed under multiplication and such that
if h ∈ H then h−1 ∈ H), then H ⊆ G is a “Lie subgroup”. We will not prove this fact,
(see e.g., Spivak’s book I, theorem 10.15), but note that it implies that all closed matrix
groups such as O(n) are Lie groups since GLn(R) is.

Example 5.4.17 Consider the map f : S1 × S1 × S1 → SO(3) uniquely defined by the
composite g : R3 → S1 × S1 × S1 → SO(3) ⊆M3(R) sending (α, β, γ) to




cos γ − sin γ 0
sin γ cos γ 0

0 0 1






1 0 0
0 cosβ − sin β
0 sin β cos β






cosα − sinα 0
sinα cosα 0

0 0 1


 .

A quick calculation shows that the rank of this map is 3, unless sin β = 0, in which
case the rank is 2 (do this!). Hence all points on S1 × S1 × S1 are regular except those in
the sub-torus S1× {1}× S1 ⊆ S1× S1 × S1 with middle coordinate 1 (why? Explain why
the rank of the composite g gives the rank of f). On this sub-torus, the rotation is simply
α + γ around the z-axis.

Hence, to most rotations there is a unique set of angles (α, β, γ), called the Euler angles,
representing this rotation. Euler angles are used e.g., in computer graphics and in flight
control and represent rotations uniquely except on the sub-torus S1 × {1} × S1 where the
rotation has inverse image consisting of an entire circle. This situation is often referred to
as the gimbal lock and is considered highly undesirable. This name derives from navigation
where one uses a device called an inertial measurement unit (IMU) to keep a reference
frame to steer by (it consists of three gimbals mounted inside each other at right angles to
provide free rotation in all directions with gyroscopes in the middle to provide inertia fixing
the reference frame). The map f above gives the correspondence between the rotation in
question and the angles in the gimbals. However, at the critical value of f – the gimbal
lock – the IMU fails to work causing a loss of reference frame. Hence a plane has to avoid
maneuvering too close to the gimbal lock.

For a good treatment of Euler angles, check the Wikipedia or a NASA page giving some
background on the worries the gimbal lock caused NASA’s Apollo mission.

Exercise 5.4.18 A k-frame in Rn is a k-tuple of orthonormal vectors in Rn. Define a
Stiefel manifold V k

n as the subset

V k
n = {k-frames in Rn}

of Rnk. Show that V k
n is a compact smooth nk − k(k+1)

2
-dimensional manifold. Note that

V 1
n may be identified with Sn−1.

http://en.wikipedia.org/wiki/Euler_angles
http://www.hq.nasa.gov/alsj/gimbals.html
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Note 5.4.19 In the literature you will often find a different definition, where a k-frame is
just a k-tuple of linearly independent vectors. Then the Stiefel manifold is an open subset
of the Mn×k(R), and so is clearly a smooth manifold – but this time of dimension nk.

A k-frame defines a k-dimensional linear subspace of Rn. The Grassmann manifold Gk
n

of Example 3.3.13 have as underlying set the set of k-dimensional linear subspaces of Rn,
and is topologized as the quotient space of the Stiefel manifold.

Exercise 5.4.20 Let Pn be the space of degree n polynomials. Show that the space of
solutions in P3 of the equation

(y′′)2 − y′ + y(0) + xy′(0) = 0

is a 1-dimensional submanifold of P3.

Exercise 5.4.21 Make a more interesting exercise along the lines of the previous, and
solve it.

Exercise 5.4.22 Let A ∈ Mn(R) be a symmetric matrix. For what values of a ∈ R is
the quadric

MA
a = {p ∈ Rn | ptAp = a}

an n− 1-dimensional smooth manifold?

Exercise 5.4.23 In a chemistry book I found van der Waal’s equation, which gives a rela-
tionship between the temperature T , the pressure p and the volume V , which supposedly
is somewhat more accurate than the ideal gas law pV = nRT (n is the number of moles of
gas, R is a constant). Given the relevant positive constants a and b, prove that the set of
points (p, V, T ) ∈ (0,∞)× (nb,∞)× (0,∞) satisfying the equation

(
p− n2a

V 2

)
(V − nb) = nRT

is a smooth submanifold of R3.

Exercise 5.4.24 Consider the set LFn,k of labeled flexible n-gons in Rk. A labeled flexible
n-gon is what you get if you join n > 2 straight lines of unit length to a closed curve and
label the vertices from 1 to n.

A labeled flexible 8-gon in R2.

Let n be odd and k = 2. Show that LFn,2 is a smooth submanifold of R2 × (S1)n−1 of
dimension n.

Exercise 5.4.25 Prove that the set of non-self-intersecting flexible n-gons in R2 is a
manifold.
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5.5 Transversality

In theorem 5.4.3 we learned about regular values, and inverse images of these. Often
interesting submanifolds naturally occur not as inverse images of points, but as inverse
images of submanifolds. How is one to guarantee that the inverse image of a submanifold
is a submanifold? The relevant term is transversality.

Definition 5.5.1 Let f : N → M be a smooth map and L ⊂ M a smooth submanifold.
We say that f is transverse to L ⊂ M if for all p ∈ f−1(L) the image of Tpf and Tf(p)L
together span Tf(p)M .

The picture to the left is a typical transverse situation, whereas the situation to

the right definitely can’t be transverse since Im{Tpf} and Tf(p)L only spans a one-

dimensional space. Beware that pictures like this can be misleading, since the sit-

uation to the left fails to be transverse if f slows down at the intersection so that

Im{Tpf} = 0.

Note 5.5.2 If L = {q} in the definition above, we recover the definition of a regular point.

Another common way of expressing transversality is to say that for all p ∈ f−1(L) the
induced map

TpN
Tpf−−−→ Tf(p)M −−−→ Tf(p)M/Tf(p)L

is surjective. Here Tf(p)M/Tf(p)L is the quotient space: If W is a subspace of a vector
space V , then the quotient space V/W is the vector space you get from V by dividing out
by the equivalence relation v ∼ v+w for v ∈ V and w ∈W . The vector space structure on
V/W is defined by demanding that the map V → V/W sending a vector to its equivalence
class is linear.

Note that the definition of transversality only refers to points in f−1(L), and so if
f(N) ∩ L = ∅ the condition is vacuous and f and L are transverse.
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A map is always transverse to a submanifold its image does not intersect.

Furthermore if f is a submersion (i.e., Tpf is always surjective), then f is transverse to all
submanifolds.

Theorem 5.5.3 Assume that the smooth map f : N → M is transverse to a k-
codimensional submanifold L ⊆ M and that f(N) ∩ L 6= ∅. Then f−1(L) ⊆ N is a
k-codimensional manifold.

Proof: Let q ∈ L and p ∈ f−1(q), and choose a chart (y, V ) around q such that y(q) = 0
and

y(L ∩ V ) = y(V ) ∩ (Rn−k × {0})
Let π : Rn → Rk be the projection π(t1, . . . , tn) = (tn−k+1, . . . , tn). Consider the diagram

TpN
Tpf−−−→ TqM −−−→ TqM/TpL

Tqy

y∼=
y∼=

T0R
n −−−→ T0Rn/T0R

n−k ∼=−−−→ T0R
k

The top horizontal composition is surjective by the transversality hypothesis, and the
lower horizontal composite is defined as T0π. Then we get that p is a regular point to the
composite

U = f−1(V )
f |U−−−→ V

y−−−→ y(V )
π|y(V )−−−→ Rk

and varying p in f−1(q) we get that 0 ∈ Rk is a regular value. Hence

(πyf |U)−1(0) = f−1y−1π−1(0) ∩ U = f−1(L) ∩ U

is a submanifold of codimension k in U , and therefore f−1(L) ⊆ N is a k-codimensional
submanifold.

5.6 Sard’s theorem1

As commented earlier, the regular points are dense. Although this is good to know and
important for many applications, we will not need this fact, and are content to cite the

1This material is not used in an essential way in the rest of the book. It is included for completeness,
and for comparison with other sources.
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precise statement and let the proof be a guided sequence of exercises. Proofs can be found
in many references, for instance in [8, Chapter 3].

Theorem 5.6.1 (Sard) Let f : M → N be a smooth map. The set of critical values has
measure zero.

Recall that a subset C ⊆ Rn has measure zero if for every ǫ > 0 there is a sequence of
closed cubes {Ci}i∈N with C ⊆ ⋃i∈N Ci and

∑
i∈N volume(Ci) < ǫ.

In this definition it makes no essential difference if one uses open or closed cubes,
rectangles or balls instead of closed cubes.

Exercise 5.6.2 Any open subset U of Rn is a countable union of closed balls.

Exercise 5.6.3 Prove that a countable union of measure zero subsets of Rn has measure
zero.

Exercise 5.6.4 Let f : U → Rm be a smooth map, where U ⊆ Rn is an open subset.
Prove that if C ⊆ U has measure zero, then so has the image f(C). Conclude that a
diffeomorphism f : U → U ′ between open subsets of Euclidean spaces provide a one-to-one
correspondence between the subsets of measure zero in U and in U ′.

Definition 5.6.5 Let (M,A) be a smooth n-dimensional manifold and C ⊆ M a subset.
We say that C has measure zero if for each (x, U) ∈ A the subset x(C ∩ U) ⊆ Rn has
measure zero.

Given a subatlas B ⊆ A we see that by Exercise 5.6.4 it is enough to check that
x(C ∩ U) ⊆ Rn has measure zero for all (x, U) ∈ B.

Exercise 5.6.6 An open cover of the closed interval [0, 1] by subintervals contains a finite
open subcover whose sum of diameters is less than or equal to 2.

Exercise 5.6.7 Prove Fubini’s theorem: Let C ⊆ Rn be a countable union of compact
subsets. Assume that for each t ∈ R the set {(t1, . . . , tn−1) ∈ Rn−1|(t1, . . . , tn−1, t) ∈ C} ⊆
Rn−1 has measure zero. Then C has measure zero.

Exercise 5.6.8 Show that Sard’s theorem follows if you show the following statement:
Let f : U → Rn be smooth where U ⊆ Rm is open, and let C be the set of critical points.
Then f(C) ⊆ Rn has measure zero.

Let f : U → Rn be smooth where U ⊆ Rm is open, and let C be the set of critical
points. For i > 0, let Ci be the set of points p ∈ U such that all partial derivatives of order
less than or equal to i vanish, and let C0 = C.

Exercise 5.6.9 Assume Sard’s theorem is proven for manifolds of dimension less than m.
Prove that f(C0 − C1) has measure zero.
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Exercise 5.6.10 Assume Sard’s theorem is proven for manifolds of dimension less than
m. Prove that f(Ci − Ci+1) has measure zero for all i > 0.

Exercise 5.6.11 Assume Sard’s theorem is proven for manifolds of dimension less than
m. Prove that f(Ck) has measure zero for nk ≥ m.

Exercise 5.6.12 Prove Sard’s theorem.

5.7 Immersions and imbeddings

We are finally closing in on the promised “real” definition of submanifolds, or rather, of
imbeddings. The condition of being an immersion is a readily checked property, since we
only have to check the derivatives in every point. The rank theorem states that in some
sense “locally” immersions are imbeddings. But how much more do we need? Obviously,
an imbedding is injective.

Something more is needed, as we see from the following example

Example 5.7.1 Consider the injective smooth map

f : (0, 3π/4)→ R2

given by

f(t) = sin(2t)(cos t, sin t)

Then

Df(t) = 2[(1− 3 sin2 t) cos t, (3 cos2 t− 1) sin t]

is never zero and f is an immersion.
However,

(0, 3π/4)→ Im{f}
is not a homeomorphism where

Im{f} = f((0, 3π/4)) ⊆ R2

has the subspace topology. For, if it were a homeo-
morphism, then

f((π/4, 3π/4)) ⊆ Im{f}

would be open (for the inverse to be continuous). But
any open ball around (0, 0) = f(π/2) in R2 must con-
tain a piece of f((0, π/4)), so f((π/4, 3π/4)) ⊆ Im{f}
is not open.
Hence f is not an imbedding.

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.2 0.4 0.6

The image of f is a sub-
space of R2.
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Exercise 5.7.2 Let

R
∐

R → R2

be defined by sending x in the first summand to (x, 0) and y in the second summand to
(0, ey). This is an injective immersion, but not an imbedding.

Exercise 5.7.3 Let

R
∐
S1 → C

be defined by sending x in the first summand
to (1 + ex)eix and being the inclusion S1 ⊆ C
on the second summand. This is an injective
immersion, but not an imbedding.

–1

–0.5

0.5

1

–1 –0.5 0.5 1 1.5 2

The image is not a submanifold of
C.

But, strangely enough these examples exhibit the only thing that can go wrong: if
an injective immersion is to be an imbedding, the map to the image has got to be a
homeomorphism.

Theorem 5.7.4 Let f : M → N be an immersion such that the induced map

M → Im{f}

is a homeomorphism where Im{f} = f(M) ⊆ N has the subspace topology, then f is an
imbedding.

Proof: Let p ∈M . The rank theorem says that there are charts

x1 : U1 → U ′
1 ⊆ Rn

and

y1 : V1 → V ′
1 ⊆ Rn+k

with x1(p) = 0 and y1(f(p)) = 0 such that

y1fx
−1
1 (t) = (t, 0) ∈ Rn ×Rk = Rn+k

for all t ∈ x1(U1 ∩ f−1(V1)).

Since V ′
1 is open, it contains open rectangles around the origin. Choose one such

rectangle V ′
2 = U ′ × B so that U ′ ⊆ x1(U1 ∩ f−1(V1)) (see the picture below)

V ′
2 = U ′ ×B ⊆ (x1(U1 ∩ f−1(V1))×Rk) ∩ V ′

1 ⊆ Rn ×Rk
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Let U = x−1
1 (U ′), x = x1|U and V2 = y−1

1 (V ′
2).

Since M → f(M) is a homeomorphism, f(U) is an open subset of f(M), and since
f(M) has the subspace topology, f(U) = W ∩ f(M) where W is an open subset of N
(here is the crucial point where complications as in example 5.7.1 are excluded: there are
no other “branches” of f(M) showing up in W ).

Let V = V2 ∩W , V ′ = V ′
2 ∩ y1(W ) and y = y1|V .

Then we see that f(M) ⊆ N is a submanifold (y(f(M)∩V ) = yf(U) = (Rn×{0})∩V ′),
and M → f(M) is a bijective local diffeomorphism (the constructed charts show that both
f and its inverse are smooth around every point), and hence a diffeomorphism.

We note the following useful corollary:

Corollary 5.7.5 Let f : M → N be an injective immersion from a compact manifold M .
Then f is an imbedding.

Proof: We only need to show that the continuous map M → f(M) is a homeomorphism.
It is injective since f is, and clearly surjective. But from point set topology (theorem 10.7.8)
we know that it must be a homeomorphism since M is compact and f(M) is Hausdorff
(f(M) is Hausdorff since it is a subspace of the Hausdorff space N).

Exercise 5.7.6 Let a, b ∈ R, and consider the map

fa,b : R → S1 × S1

t 7→ (eiat, eibt)

Show that fa,b is an immersion if either a or b is different from zero. Show that fa,b factors
through an imbedding S1 → S1 × S1 iff either b = 0 or a/b is rational.
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Part of the picture if a/b = π (this goes on forever)

Exercise 5.7.7 Consider smooth maps

M
i−−−→ N

j−−−→ L

Show that if the composite ji is an imbedding, then i is an imbedding.

Example 5.7.8 As a last example of Corollary 5.7.5 we can redo Exercise 3.5.12 and see
that

f : RPn →RPn+1

[p] = [p0, . . . , pn] 7→[p, 0] = [p0, . . . , pn, 0]

is an imbedding: RPn is compact, f is injective and an immersion (since it is a local
diffeomorphism, and so induces an isomorphism on tangent spaces).

Exercise 5.7.9 Let M be a smooth manifold, and consider M as a subset by imbedding
it as the diagonal in M ×M , i.e., as the set {(p, p) ∈ M ×M}: show that it is a smooth
submanifold.

Exercise 5.7.10 Consider two smooth maps

M
f−−−→ N

g←−−− L

Define the fiber product

M ×N L = {(p, q) ∈ M × L|f(p) = g(q)}

(topologized as a subspace of the product M × L: notice that if f and g are inclusions of
subspaces, then M ×N L = M ∩ L). Assume that for all (p, q) ∈ M ×N L the subspaces
spanned by the images of TpM and TqL equals all of Tf(p)N . Show that the fiber product
M ×N L may be given a smooth structure such that the projections M ×N L → M and
M ×N L→ L are smooth.
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Exercise 5.7.11 Let π : E → M be a submersion and f : N → M smooth. Let E ×M N
be the fiber product of Exercise 5.7.10. Show that the projection E ×M N → N is a
submersion.



Chapter 6

Vector bundles

In this chapter we are going to collect all the tangent spaces of a manifold into one single
object, the so-called tangent bundle.

6.0.12 The idea

We defined the tangent space at a point in a smooth manifold by considering curves
passing through the point. In physical terms, the tangent vectors are the velocity vectors
of particles passing through our given point. But the particle will have velocities and
positions at other times than the one in which it passes through our given point, and
the position and velocity may depend continuously upon the time. Such a broader view
demands that we are able to keep track of the points on the manifold and their tangent
space, and understand how they change from point to point.

A particle moving on S1: some of the velocity vectors are drawn. The collection
of all possible combinations of position and velocity ought to assemble into a
“tangent bundle”. In this case we see that S1 × R1 would do, but in most
instances it won’t be as easy as this.

As a set the tangent bundle ought to be given by pairs (p, v), where p ∈M and v ∈ TpM ,
i.e.,

TM = {(p, v) | p ∈M, v ∈ TpM} =
∐

p∈M
TpM.

95
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In the special case M = Rm we have a global chart (e.g., the identity chart), and so we
have a global (not depending on the point p) identification of TpR with the vector space
Rm through the correspondence [γ] ↔ γ′(0). Hence it is reasonable to say that TRn can
be identified with the product Rn × Rn. Now, in general a manifold M is locally like
Rm, but the question is how this local information should be patched together to a global
picture.

The tangent bundle is an example of an important class of objects called vector bundles.
We start the discussion of vector bundles in general in this chapter, although our immediate
applications will focus on the tangent bundle. We will pick up the glove in chapter 7 where
we discuss the algebraic properties of vector bundles, giving tools that eventually could
have brought the reader to fascinating topics like the topological K-theory of Atiyah and
Hirzebruch [1] which is an important tool in algebraic topology.

We first introduce topological vector bundles, and then see how transition functions,
very similar to the chart transformations, allow us to coin what it means for a bundle to
be smooth. An observation shows that the work of checking that something actually is a
vector bundle can be significantly simplified, paving the way for a sleek definition of the
tangent bundle in 6.5.1. Equally simple, we get the cotangent bundle.

6.1 Topological vector bundles

Loosely speaking, a vector bundle is a collection of vector spaces parametrized in a locally
controllable fashion by some space.

vector spaces

topological
space

A vector bundle is a topological space to which a vector space is stuck at each point,

and everything fitted continuously together.

The easiest example is simply the product X × Rn, and we will have this as our local
model.
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The product of a space and an euclidean space is the local model for vector bundles.

The cylinder S1 ×R is an example.

Definition 6.1.1 An n-dimensional (real topological) vector bundle is a surjective contin-
uous map

E

π

y
X

such that for every p ∈ X

— the fiber
π−1(p)

has the structure of a real n-dimensional vector space

— there is an open set U ⊆ X containing p

— a homeomorphism
h : π−1(U)→ U ×Rn

such that

π−1(U)
h //

π|
π−1(U) ##G

GG
GG

GG
GG

U ×Rn

prU
{{ww

ww
ww

ww
ww

U

commutes, and such that for every q ∈ U the composite

hq : π−1(q)
h|

π−1(q)−−−−−→ {q} ×Rn (q,t)7→t−−−−→ Rn

is a vector space isomorphism.

Example 6.1.2 The “unbounded Möbius band” given by

E = (R × [0, 1])/((p, 0) ∼ (−p, 1))
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defines a 1-dimensional vector bundle by projecting onto the central circle E → [0, 1]/(0 ∼
1) ∼= S1.

Restricting to an interval on the circle, we clearly see that it is homeomorphic to the
product:

This bundle is often referred to as the tautological line bundle, and is written η1 →
S1. The reason for its name is that, by exercise 3.4.11 we know that RP1 and S1 are
diffeomorphic, and over RPn we do have a “tautological line bundle” ηn → RPn where ηn
is the space of pairs (L, v) where L is a line (one dimensional linear subspace) in Rn+1 and
v a vector in L. The map is given by (L, v) 7→ L. We will prove in exercise 6.4.4 that this
actually defines a vector bundle.

Exercise 6.1.3 Consider the tautological line bundle (unbounded Möbius band)

η1 → S1

from 6.1.2. Prove that there is no smooth map f : η1 → R such that the zero section is
the inverse image of a regular value of f .

More generally, show that there is no map f : η1 → N for any manifold N such that
the zero section is the inverse image of a regular value of f .

Definition 6.1.4 Given an n-dimensional topological vector bundle π : E → X, we call

Eq = π−1(q) the fiber over q ∈ X,

E the total space and
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X the base space of the vector bundle.

The existence of the (h, U)s is referred to as the local trivialization of the bundle (“the
bundle is locally trivial ”), and the (h, U)s are called bundle charts. A bundle atlas is a
collection B of bundle charts such that

X =
⋃

(h,U)∈B
U

(B “covers” X).

Note 6.1.5 Note the correspondence the definition spells out between h and hq: for r ∈
π−1(U) we have

h(r) = (π(r), hπ(r)(r))

It is (bad taste, but) not uncommon to write just E when referring to the vector bundle
E → X.

Example 6.1.6 Given a topological space X, the projection onto the first factor

X ×Rn

prX

y
X

is an n-dimensional topological vector bundle.

This example is so totally uninteresting that we call it the trivial bundle over X (or
more descriptively, the product bundle). More generally, any vector bundle π : E → X with
a bundle chart (h,X) is called trivial.

Definition 6.1.7 Let π : E → X be a vector bundle. A section to π is a continuous map
σ : X → E such that πσ(p) = p for all p ∈ X.

zero section

X

E

image of a section

image of the

Example 6.1.8 Every vector bundle π : E → X has a section, namely the zero section,
which is the map σ0 : X → E that sends p ∈ X to zero in the vector space π−1(p). As
for any section, the map onto its image X → σ0(X) is a homeomorphism, and we will
occasionally not distinguish between X and σ0(X) (we already did this when we talked
informally about the unbounded Möbius band).
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Example 6.1.9 The trivial bundle X ×Rn → X has
nonvanishing sections (i.e., a section whose image does
not intersect the zero section), for instance p 7→ (p, 1)
will do. The tautological line bundle η1 → S1 (the
unbounded Möbius band of example 6.1.2), however,
does not. This follows by the intermediate value theo-
rem: a function f : [0, 1]→ R with f(0) = −f(1) must
have a zero.

1

0

The trivial bundle has
nonvanishing sections.

We have to specify the maps connecting the vector bundles. They come in two types,
according to whether we allow the base space to change. The more general is:

Definition 6.1.10 A bundle morphism from one bundle π : E → X to another π′ : E ′ →
X ′ is a pair of maps

f : X → X ′ and f̃ : E → E ′

such that

E
f̃−−−→ E ′

π

y π′

y

X
f−−−→ X ′

commutes, and such that

f̃ |π−1(p) : π−1(p)→ (π′)−1(f(p))

is a linear map.

6.2 Transition functions

We will need to endow our bundles with
smooth structures, and in order to do this
we will use the same trick as we used to de-
fine manifolds: transport everything down to
issues in Euclidean spaces. Given two over-
lapping bundle charts (h, U) and (g, V ), re-
stricting to π−1(U ∩ V ) both define homeo-
morphisms

π−1(U ∩ V )→ (U ∩ V )×Rn

which we may compose to give homeomor-
phisms of (U ∩ V ) × Rn with itself. If the
base space is a smooth manifold, we may ask
whether this map is smooth.

Two bundle charts. Restricting to
their intersection, how do the two
homeomorphisms to (U∩V )×Rn

compare?
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We need some names to talk about this construction.

Definition 6.2.1 Let π : E → X be an n-dimensional topological vector bundle, and let
B be a bundle atlas. If (h, U), (g, V ) ∈ B then

gh−1|(U∩V )×Rn : (U ∩ V )×Rn → (U ∩ V )×Rn

are called the bundle chart transformations. The restrictions to each fiber

gqh
−1
q : Rn → Rn

are linear isomorphisms (i.e., elements in GLn(R)) and the associated functions

U ∩ V →GLn(R)

q 7→gqh−1
q

are called transition functions.

Again, visually bundle chart transformations are given by going up and down in

π−1(U ∩ V )
h|

π−1(U∩V )

vvmmmmmmmmmmmm g|
π−1(U∩V )

((QQQQQQQQQQQQ

(U ∩ V )×Rn (U ∩ V )×Rn

The following lemma explains why giving the bundle chart transformations or the tran-
sition functions amounts to the same thing.

Lemma 6.2.2 Let W be a topological space, and f : W → Mm×n(R) a continuous func-
tion. Then the associated function

f∗ : W ×Rn →Rm

(w, v) 7→f(w) · v

is continuous iff f is. If W is a smooth manifold, then f∗ is smooth iff f is.

Proof: Note that f∗ is the composite

W ×Rn f×id−−−→ Mm×n(R)×Rn e−−−→ Rm

where e(A, v) = A · v. Since e is smooth, it follows that if f is continuous or smooth, then
so is f∗.

Conversely, considered as a matrix, we have that

[f(w)] = [f∗(w, e1), . . . , f∗(w, en)]

If f∗ is continuous (or smooth), then we see that each column of [f(w)] depends continuously
(or smoothly) on w, and so f is continuous (or smooth).
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So, requiring the bundle chart transformations to be smooth is the same as to require
the transition functions to be smooth, and we will often take the opportunity to confuse
this.

A nice formulation of the contents of Lemma 6.2.2 is that we have a bijection from the
set of continuous functions W →Mm×nR to the set of bundle morphisms

W ×Rn //

prW $$J
JJJJJJJJ

W ×Rm

prWyytttt
tt

ttt
t

W

,

by sending the function g : W → Mm×nR to the function

G(g) : W ×Rn (p,v)7→(p,g(p)·v)−−−−−−−−−→ W ×Rm.

Furthermore, if W is a smooth manifold, then g is smooth if and only if G(g) is smooth.

Exercise 6.2.3 Show that any vector bundle E → [0, 1] is trivial.

Exercise 6.2.4 Show that any 1-dimensional vector bundle (also called line bundle) E →
S1 is either trivial, or E ∼= η1. Show the analogous statement for n-dimensional vector
bundles.

6.3 Smooth vector bundles

Definition 6.3.1 Let M be a smooth manifold, and let π : E → M be a vector bundle.
A bundle atlas is said to be smooth if all the transition functions are smooth.

Note 6.3.2 Spelling the differentiability out in full detail we get the following: Let (M,A)
be a smooth n-dimensional manifold, π : E → M a k-dimensional vector bundle, and B a
bundle atlas. Then B is smooth if for all bundle charts (h1, U1), (h2, U2) ∈ B and all charts
(x1, V1), (x2, V2) ∈ A, the composites going up over and across

π−1(U)
h1|

π−1(U)

xxppppppppppp h2|
π−1(U)

&&NNNNNNNNNNN

U ×Rk

x1|U ×id
��

U ×Rk

x2|U ×id
��

x1(U)×Rk x2(U)×Rk

is a smooth function in Rn+k, where U = U1 ∩ U2 ∩ V1 ∩ V2.

Example 6.3.3 If M is a smooth manifold, then the trivial bundle is a smooth vector
bundle in an obvious manner.
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Example 6.3.4 The tautological line bundle (unbounded Möbius strip of Example 6.1.2)
η1 → S1 is a smooth vector bundle. As a matter of fact, the trivial bundle and the
tautological line bundle are the only one-dimensional smooth vector bundles over the circle
(see example 6.2.4 for the topological case. The smooth case needs partitions of unity,
which we will cover at a later stage, see exercise 6.3.15).

Note 6.3.5 Just as for atlases of manifolds, we have a notion of a maximal (smooth)
bundle atlas, and to each smooth atlas we may associate a unique maximal one in exactly
the same way as before.

Definition 6.3.6 A smooth vector bundle is a vector bundle equipped with a maximal
smooth bundle atlas.

We will often suppress the bundle atlas from the notation, so a smooth vector bundle
(π : E → M,B) will occasionally be written simply π : E → M (or even worse E), if the
maximal atlas B is clear from the context.

Definition 6.3.7 A smooth vector bundle (π : E →M,B) is trivial if its (maximal smooth)
atlas B contains a chart (h,M) with domain all of M .

Lemma 6.3.8 The total space E of a smooth vector bundle (π : E →M,B) has a natural
smooth structure, and π is a smooth map.

Proof: Let M be n-dimensional with atlasA, and let π be k-dimensional. Then the diagram
in 6.3.2 shows that E is a smooth (n + k)-dimensional manifold. That π is smooth is the
same as claiming that all the up over and across composites

π−1(U)
h|

π−1(U)

xxppppppppppp π|
π−1(U)

$$J
JJJJJJJJJ

U ×Rk

x1|U ×id
��

U

x2|U
��

x1(U)×Rk x2(U)

are smooth where (x1, V1), (x2, V2) ∈ A, (h,W ) ∈ B and U = V1 ∩ V2 ∩W . But

π−1(U)
h|

π−1(U)

yyssssssssss π|
π−1(U)

""F
FF

FF
FF

FF

U ×Rk
prU

// U

commutes, so the composite is simply

x1(U)×Rk
prx1(U)−−−−→ x1(U)

x1|U←−−− U
x2|U−−−→ x2(U)

which is smooth since A is smooth.
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Note 6.3.9 As expected, the proof shows that π : E →M locally looks like the projection

Rn ×Rk → Rn

(followed by a diffeomorphism).

Definition 6.3.10 A smooth bundle morphism is a bundle morphism

E
f̃−−−→ E ′

π

y π′

y

M
f−−−→ M ′

from a smooth vector bundle to another such that f̃ and f are smooth.

Definition 6.3.11 An isomorphism of two smooth vector bundles

π : E →M and π′ : E ′ →M

over the same base space M is an invertible smooth bundle morphism over the identity
on M :

E
f̃−−−→ E ′

π

y π′

y

M M

Checking whether a bundle morphism is an isomorphism reduces to checking that it is
a bijection:

Lemma 6.3.12 Let
E

f̃−−−→ E ′

π

y π′

y
M M

be a smooth (or continuous) bundle morphism. If f̃ is bijective, then it is a smooth (or
continuous) isomorphism.

Proof: That f̃ is bijective means that it is a bijective linear map on every fiber, or in
other words: a vector space isomorphism on every fiber. Choose charts (h, U) in E and
(h′, U) in E ′ around p ∈ U ⊆M (may choose the U ’s to be the same). Then

h′f̃h−1 : U ×Rn → U ×Rn

is of the form (u, v) 7→ (u, αuv) where αu ∈ GLn(R) depends smoothly (or continuously)
on u ∈ U . But by Cramer’s rule (αu)

−1 depends smoothly on αu, and so the inverse
(
h′f̃h−1

)−1
: U ×Rn → U ×Rn, (u, v) 7→ (u, (αu)

−1v)

is smooth (or continuous) proving that the inverse of f̃ is smooth (or continuous).
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Exercise 6.3.13 Let a be a real number and E → X a bundle. Show that multiplication
by a in each fiber gives a bundle morphism

E

  @
@@

@@
@@

@

aE // E

~~~~
~~

~~
~~

X

which is an isomorphism if and only if a 6= 0. If E → X is a smooth vector bundle, then
aE is smooth too.

Exercise 6.3.14 Show that any smooth vector bundle E → [0, 1] is trivial (smooth on
the boundary means what you think it does: don’t worry).

Exercise 6.3.15 Show that any 1-dimensional smooth vector bundle (also called line bun-
dle) over S1 is either trivial, or the unbounded Möbius band ??. Show the analogous
statement for n-dimensional vector bundles over S1.

6.4 Pre-vector bundles

A smooth or topological vector bundle is a very structured object, and much of its structure
is intertwined very closely. There is a sneaky way out of having to check topological
properties all the time. As a matter of fact, the topology is determined by some of the
other structure as soon as the claim that it is a vector bundle is made: specifying the
topology on the total space is redundant!.
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Definition 6.4.1 A pre-vector bundle of dimension n is

a set E (total space)

a topological space X (base space)

a surjective function π : E → X

a vector space structure on the fiber π−1(q) for each q ∈ X

a pre-bundle atlas B, i.e., a set B of pairs (h, U) with

U an open subset of X and

h a bijective function

π−1(U)
e 7→ h(e)=(π(e),hπ(e)(e))−−−−−−−−−−−−−−→ U ×Rn

which is linear on each fiber,

such that

B covers X, and

the transition functions are continuous.

That B covers X means that X =
⋃

(h,U)∈B U , that h is linear on each fiber means
that hq : π−1(q)→ Rn is linear for each q ∈ X, and that the transition functions of B are
continuous means that if (h, U), (h′, U ′) ∈ B, then

U ∩ U ′ → GLn(R), q 7→ h′
qh

−1
q

is continuous.

Definition 6.4.2 A smooth pre-vector bundle is a pre-vector bundle where the base space
is a smooth manifold and the transition functions are smooth.

Lemma 6.4.3 Given a pre-vector bundle, there is a unique vector bundle with underlying
pre-vector bundle the given one. The same statement holds for the smooth case.

Proof: Let (π : E → X,B) be a pre-vector bundle. We must equip E with a topology
such that π is continuous and the bijections in the bundle atlas are homeomorphisms. The
smooth case follows then immediately from the continuous case.
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We must have that if (h, U) ∈ B, then π−1(U)
is an open set in E (for π to be continuous).
The family of open sets {π−1(U)}U⊆X open

covers E, so we only need to know what
the open subsets of π−1(U) are, but this fol-
lows by the requirement that the bijection h
should be a homeomorphism, That is V ⊆
π−1(U) is open if V = h−1(V ′) for some open
V ′ ⊆ U ×Rk. Ultimately, we get that

{
h−1(V1 × V2)

∣∣∣∣∣ (h, U) ∈ B, V1 open in U,
V2 open in Rk

}
A typical open set in π−1(U) got-
ten as h−1 of the product of an
open set in U and an open set in
Rk

is a basis for the topology on E.

Exercise 6.4.4 Let

ηn =
{
([p], λp) ∈ RPn ×Rn+1 |p ∈ Sn, λ ∈ R

}

Show that the projection

ηn → RPn

([p], λp) 7→ [p]

defines a non-trivial smooth vector bundle, called the tautological line bundle.

Exercise 6.4.5 Let p ∈ RPn and X = RPn \ {p}. Show that X is diffeomorphic to the
total space ηn−1 of the tautological line bundle in exercise 6.4.4.

6.5 The tangent bundle

We define the tangent bundle as follows:
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Definition 6.5.1 Let (M,A) be a smooth n-dimensional manifold. The tangent bundle
of M is defined by the following smooth pre-vector bundle

TM =
∐
p∈M TpM (total space)

M (base space)

π : TM →M sends TpM to p

the pre-vector bundle atlas

BA = {(hx, U)|(x, U) ∈ A}

where hx is given by

hx : π−1(U)→U ×Rn

[γ] 7→(γ(0), (xγ)′(0))

Note 6.5.2 Since the tangent bundle is a smooth vector bundle, the total space TM is a
smooth 2n-dimensional manifold. To be explicit, its atlas is gotten from the smooth atlas
on M as follows.

If (x, U) is a chart on M ,

π−1(U)
hx−−−→ U ×Rn x×id−−−→ x(U)×Rn

[γ]7→(xγ(0), (xγ)′(0))

is a homeomorphism to an open subset of Rn ×Rn. It is convenient to have an explicit
formula for the inverse. Let (p, v) ∈ x(U) ×Rn. Define the germ

γ(p, v) : (R, 0)→ (Rn, p)

by sending t (in a sufficiently small open interval containing zero) to p + tv. Then the
inverse is given by sending (p, v) to

[x−1γ(p, v)] ∈ Tx−1(p)M

Lemma 6.5.3 Let f : (M,AM)→ (N,AN) be a smooth map. Then

[γ] 7→ Tf [γ] = [fγ]

defines a smooth bundle morphism

TM
Tf−−−→ TN

πM

y πN

y

M
f−−−→ N
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Proof: Since Tf |π−1(p) = Tpf we have linearity on the fibers, and we are left with showing
that Tf is a smooth map. Let (x, U) ∈ AM and (y, V ) ∈ AN . We have to show that up,
across and down in

π−1
M (W )

Tf |−−−→ π−1
N (V )

hx|W
y hy

y
W ×Rm V ×Rn

x|W ×id
y y×id

y
x(W )×Rm y(V )×Rn

is smooth, where W = U ∩ f−1(V ) and Tf | is Tf restricted to π−1
M (W ). This composite

sends (p, v) ∈ x(W )×Rm to [x−1γ(p, v)] ∈ π−1
M (W ) to [fx−1γ(p, v)] ∈ π−1

N (V ) and finally
to (yfx−1γ(p, v)(0), (yfx−1γ(p, v))′(0) ∈ y(V )×Rn which is equal to

(yfx−1(p), D(yfx−1)(p) · v)

by the chain rule. Since yfx−1 is a smooth function, this is a smooth function too.

Lemma 6.5.4 If f : M → N and g : N → L are smooth, then

TgTf = T (gf)

Proof: It is the chain rule 4.2.4 (made pleasant since the notation no longer has to specify
over which point in your manifold you are).

Note 6.5.5 The tangent space of Rn is trivial, since the identity chart induces a bundle
chart

hid : TRn →Rn ×Rn

[γ] 7→(γ(0), γ′(0))

Definition 6.5.6 A manifold is often said to be parallelizable if its tangent bundle is
trivial.

Example 6.5.7 The circle is parallelizable. This is so since the map

S1 × T1S
1 → TS1

(eiθ, [γ]) 7→ [eiθ · γ]

is a diffeomorphism (here (eiθ · γ)(t) = eiθ · γ(t)).

Exercise 6.5.8 The three-sphere S3 is parallelizable

Exercise 6.5.9 All Lie groups are parallelizable. (A Lie group is a manifold with a smooth
associative multiplication, with a unit and all inverses: skip this exercise if this sounds too
alien to you).
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Example 6.5.10 Let

E = {(p, v) ∈ Rn+1 ×Rn+1 | |p| = 1, p · v = 0}
Then

TSn →E
[γ] 7→(γ(0), γ′(0))

is a homeomorphism. The inverse sends (p, v) ∈ E to the equivalence class of the germ
associated to

t 7→ p+ tv

|p+ tv|

. p
v

|p|=1

p v=0

A point in the tangent space of S2

may be represented by a unit vec-
tor p together with an arbitrary
vector v perpendicular to p.

–1

0

1

x

–1 –0.5 0 0.5 1y

–1

–0.5

0

0.5

1

z

We can’t draw all the tangent
planes simultaneously to illus-
trate the tangent space of S2. The
description we give is in R6.

More generally we have the following fact:

Lemma 6.5.11 Let f : M → N be an imbedding. Then Tf : TM → TN is an imbedding.

Proof: We may assume that f is the inclusion of a submanifold (the diffeomorphism part
is taken care of by the chain rule which implies that Tf is a diffeomorphism if f is). Let
y : V → V ′ be a chart on N such that y(V ∩M) = V ′ ∩ (Rm × {0}). Since curves in
Rm × {0} have derivatives in Rm × {0} we see that if γ̄ : (R1, 0)→ (M, p) then

(y × idRm)hy(Tf [γ]) = (y × idRm)hy[fγ]

= (yfγ(0), (yfγ)′(0)) ∈ (V ′ ∩ (Rm × {0}))× (Rm × {0})
and so

(y × idRm)hy(Tf(π−1
M (W ∩M)) = (V ′ ∩ (Rm × {0}))×Rm × {0}

⊆ Rm ×Rk ×Rm ×Rk

and by permuting the coordinates we have that Tf is the inclusion of a submanifold.
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Corollary 6.5.12 If M ⊆ RN is the inclusion of a smooth submanifold of an Euclidean
space, then

TM ∼=
{

(p, v) ∈M×RN

∣∣∣∣∣
v = γ′(0) for some germ
γ̄ : (R, 0)→ (M, p)

}
⊆ RN ×RN ∼= TRN

(the derivation of γ happens in RN )

Exercise 6.5.13 There is an even groovier description of TSn: prove that

E =

{
(z0, . . . , zn) ∈ Cn+1|

n∑

i=0

z2 = 1

}

is the total space in a bundle isomorphic to TSn.

Definition 6.5.14 Let M be a smooth manifold. A vector field on M is a section in the
tangent bundle.

Exercise 6.5.15 Prove that the projection Sn → RPn gives an isomorphism

TRPn ∼= {(p, v) ∈ Sn ×Rn+1 | p · v = 0}/(p, v) ∼ (−p,−v).

As we will see in Chapter 8 vector fields are closely related to differential equations. It is
often of essence to know whether a manifold M supports nonvanishing vector fields, i.e., a
vector field s : M → TM such that s(p) 6= 0 for all p ∈M .

Example 6.5.16 The circle has nonvanishing vector fields. Let [γ] 6= 0 ∈ T1S
1, then

S1 → TS1, eiθ 7→ [eiθ · γ]

is a vector field (since eiθ · γ(0) = eiθ · 1) and does not intersect the zero section since
(viewed as a vector in C)

|(eiθ · γ)′(0)| = |eiθ · γ′(0)| = |γ′(0)| 6= 0

The vector field spins around the circle with constant speed.
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This is the same construction we used to show that S1 was parallelizable. This is a
general argument: an n dimensional manifold with n linearly independent vector fields has
a trivial tangent bundle, and conversely.

Exercise 6.5.17 Construct three vector fields on S3 that are linearly independent in all
tangent spaces.

Exercise 6.5.18 Prove that T (M ×N) ∼= TM × TN .

Example 6.5.19 We have just seen that S1 and S3 (if you did the exercise) both have
nonvanishing vector fields. It is a hard fact that S2 does not: “you can’t comb the hair on
a sphere”.

This has the practical consequence that when you want to confine the plasma in a fusion
reactor by means of magnetic fields, you can’t choose to let the plasma be in the interior
of a sphere (or anything homeomorphic to it). At each point on the surface bounding the
region occupied by the plasma, the component of the magnetic field parallel to the surface
must be nonzero, or the plasma will leak out (if you remember your physics, there once
was a formula saying something like F = qv×B where q is the charge of the particle, v its
velocity and B the magnetic field: hence any particle moving nonparallel to the magnetic
field will be deflected).

This problem is solved by letting the plasma stay inside a torus S1 × S1 which does
have nonvanishing vector fields (since S1 has by 6.5.16, and since T (S1×S1) ∼= TS1×TS1

by exercise 6.5.18).
Although there are no nonvanishing vector fields on S2, there are certainly interesting

ones that have only a few zeros. For instance “rotation around an axis” will give you a
vector field with only two zeros. The “magnetic dipole” defines a vector field on S2 with
just one zero.

–1

–0.5

0.5

1

y

–1 –0.5 0.5 1
x

A magnetic dipole on S2, seen by stereographic projection in a neighborhood
of the only zero.

Exercise 6.5.20 Let M be an n-dimensional smooth manifold. For p ∈M , let Ep be the
set of germs

s̄ : (R2, 0)→ (M, p)
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modulo the equivalence relation that s ≃ s′ if for any chart (x, U) with p ∈ U we have that

D1(xs)(0) = D1(xs
′)(0), D2(xs)(0) = D2(xs

′)(0) and D1D2(xs)(0) = D1D2(xs′)(0).

Let E =
∐
p∈M Ep and define a bijection E ∼= T (TM) making the projection E → TM

sending [s] to [t 7→ s(t, 0)] a smooth vector bundle isomorphic to the tangent bundle of
TM .

6.6 The cotangent bundle1

Let M be a smooth m-dimensional manifold. Recall the definition of the cotangent spaces
from 4.3, more precisely the definition 4.3.1. We will show that the cotangent spaces join
to form a bundle, the cotangent bundle T ∗M , by showing that they define a prevector
bundle.

Let the total space T ∗M be the set

T ∗M = {(p, dφ) | p ∈M, dφ ∈ T ∗
pM},

and π : T ∗M → M be the projection sending (p, dφ) to p. For a smooth chart (x, U) we
have a bundle chart

hx : π−1(U) = T ∗U → U × (Rn)∗

gotten by sending (p, dφ) to (p,D(φx−1)(x(p)·). To get it in exactly the form of defini-
tion 6.1.1 we should choose an isomorphism HomR(Rm,R) = (Rm)∗ ∼= Rm once and for
all (e.g., transposing vectors), but it is convenient to postpone this translation as much as
possible.

By the discussion in section 4.3, hx induces a linear isomorphism π−1(p) = T ∗
pM

∼=
{p} × (Rm)∗ in each fiber. If (y, V ) is another chart, the transition function is given by
sending p ∈ U ∩ V to the linear isomorphism (Rm)∗ → (Rm)∗ induced by the linear
isomorphism Rm → Rm given by multiplication by the Jacobi matrix D(yx−1)(x(p)).
Since the Jacobi matrix D(yx−1)(x(p)) varies smoothly with p, we have shown that

T ∗M →M

is a smooth (pre)vector bundle, the cotangent bundle.

Exercise 6.6.1 Go through the details in the above discussion.

Definition 6.6.2 If M is a smooth manifold, a one-form is a smooth section of the cotan-
gent bundle T ∗M → M .

1If you did not read about the cotangent space in section 4.3, you should skip this section
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Example 6.6.3 Let f : M → R be a smooth function. Recall the differential map
d : OM,p → T ∗

pM given by sending a function germ φ̄ to the cotangent vector represented
by the germ of q 7→ φ(q)− φ(p). Correspondingly, we write dpf ∈ T ∗

pM for the cotangent
vector represented by q 7→ f(q) − f(p). Then the assignment p 7→ (p, dpf) ∈ T ∗M is a
one-form, and we simply write

df : M → T ∗M.

To signify that this is just the beginning in a series of important vector spaces, let
Ω0M = C∞(M,R) and let Ω1(M) be the vector space of all one-forms on M . The differ-
ential is then a map

d : Ω0(M)→ Ω1(M).

Even though the differential as a map to each individual cotangent space d : OM,p → T ∗
pM

was surjective, this is not the case for d : Ω0(M) → Ω1(M). In fact, the one-forms in the
image of d are the ones that are referred to as “exact” (this is classical notation coming
from differential equations, the other relevant notion being “closed”. It is the wee beginning
of the study of the shapes of spaces through cohomological methods).

Example 6.6.4 If x1, x2 : S1 ⊆ R2 → R are the projection to the first and second coor-
dinate, respectively, then one can show that

x1dx2 − x2dx1

is a one-form that is not exact, a phenomenon related to the fact that the circle is not
simply connected. As a matter of fact, the quotient H1(S1) = Ω1(S1)/d(Ω0(S1)) (which is
known as the first de Rham cohomology group of the circle) is a one-dimensional real vector
space, and so the image of the non-exact one-form displayed above generates H1(S1).

Example 6.6.5 In physics the total space of the cotangent bundle is referred to as the
phase space. If the manifold M is the collection of all possible positions of the physical
system, the phase space T ∗M is the collection of all positions and momenta. For instance,
if we study a particle of mass m in euclidean 3-space, the position is given by three numbers
x1, x2, x3 (really, coordinates with respect to the standard basis) and the momentum by
yet three numbers p1, p2, p3 (coordinates with respect to the basis {dx1, dx2, dx3} in the
cotangent space). See also example 4.3.19. We will come back to such matters when we
have talked about Riemannian metrics.

6.6.6 The tautological one-form

If M is an m-dimensional smooth manifold, T ∗M is a 2m-dimensional smooth manifold.
This manifold has an especially important one-form θM : T ∗M → T ∗T ∗M , called the tau-
tological one-form (or canonical one-form or Liouville one-form or symplectic potential
– a dear child has many names). For each point (p, dφ) ∈ T ∗M in the total space of
the cotangent bundle we define an element in T ∗

(p,dφ)T
∗M as follows: consider the map

Tπ : T (T ∗M) → TM induced by the projection π : T ∗M → M . By the isomorphism
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αp(M) : T ∗
pM
∼= (TpM)∗, the cotangent vector dφ should be thought of as a linear map

TpM → R. By composing these maps

T(p,dφ)T
∗M → TpM → R

we have an element in θM (p, dφ) ∈ T ∗
(p,dφ)T

∗M ∼= (T(p,dφ)T
∗M)∗ (the isomorphism is the

inverse of αT ∗
pM,(p,dφ)).

Exercise 6.6.7 Show that the procedure above gives a one-form θM on T ∗M (that is a
smooth section of the projection T ∗(T ∗M)→ T ∗M).
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Chapter 7

Constructions on vector bundles

A good way to think of vector bundles are as families of vector spaces indexed over a base
space. All constructions we wish to perform on the individual vector spaces should conform
with the indexation in that they should be allowed to vary continuously or smoothly from
point to point.

This means that, in all essence, the “natural” (in a precise sense) constructions we
know from linear algebra have their counterparts for bundles. The resulting theory gives
deep information about the base space, as well as allowing us to construct some important
mathematical objects. We start this study in this chapter.

7.1 Subbundles and restrictions

There are a variety of important constructions we need to address. The first of these have
been lying underneath the surface for some time:

Definition 7.1.1 Let

π : E → X

be an n-dimensional vector bundle. A k-
dimensional subbundle of this vector bundle is
a subset E ′ ⊆ E such that around any point
there is a bundle chart (h, U) such that

h(π−1(U) ∩E ′) = U × (Rk × {0}) ⊆ U ×Rn

Note 7.1.2 It makes sense to call such a sub-
set E ′ ⊆ E a subbundle, since we see that the
bundle charts, restricted to E ′, define a vec-
tor bundle structure on π|E′ : E ′ → X which
is smooth if we start out with a smooth atlas.

A one-dimensional subbundle in a

two-dimensional vector bundle: pick

out a one-dimensional linear sub-

space of every fiber in a continuous

(or smooth) manner.

117
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Example 7.1.3 Consider the trivial bundle S1 × C → S1. The tautological line bundle
η1 → RP1 ∼= S1 of Example 6.1.2 can be thought of as the subbundle given by

{(eiθ, teiθ/2) ∈ S1 ×C|t ∈ R} ⊆ S1 ×C.

Exercise 7.1.4 Spell out the details of the previous example. Also show that

ηn =
{

([p], λp) ∈ RPn ×Rn+1 |p ∈ Sn, λ ∈ R
}
⊆ RPn ×Rn+1

is a subbundle of the trivial bundle RPn ×Rn+1 → RPn.

Definition 7.1.5 Given a bundle π : E → X
and a subspace A ⊆ X, the restriction to A
is the bundle

πA : EA → A

where EA = π−1(A) and πA = π|π−1(A).

In the special case where A is a single point
p ∈ X, we write Ep = π−1(p) (instead of
E{p}). Occasionally it is typographically con-
venient to write E|A instead of EA (especially
when the notation is already a bit cluttered).

Note 7.1.6 We see that the restriction is a
new vector bundle, and the inclusion

EA
⊆−−−→ E

πA

y π

y

A
⊆−−−→ X

is a bundle morphism inducing an isomor-
phism on every fiber.

The restriction of a bundle E → X

to a subset A ⊆ X.

Example 7.1.7 Let N ⊆ M be a smooth submanifold. Then we can restrict the tangent
bundle on M to N and get

(TM)|N → N

We see that TN ⊆ TM |N is a smooth subbundle.
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In a submanifold N ⊆ M the tangent bundle of N is naturally a subbundle of the

tangent bundle of M restricted to N

Definition 7.1.8 A bundle morphism

E1
f−−−→ E2

π1

y π2

y
X1 −−−→ X2

is said to be of constant rank r if restricted to each fiber f is a linear map of rank r.

Note that this is a generalization of our concept of constant rank of smooth maps.

Theorem 7.1.9 (Rank theorem for bundles) Consider a bundle morphism

E1
f //

π1   A
AA

AA
AA

A
E2

π2~~}}
}}

}}
}}

X

over a space X with constant rank r. Then around any point p ∈ X there are bundle charts
(h, U) and (g, U) such that

E1|U
f |U−−−→ E2|U

h

y g

y

U ×Rm (u,(t1,...,tm))7→(u,(t1,...,tr ,0,...,0))−−−−−−−−−−−−−−−−−−−→ U ×Rn

commutes.
Furthermore if we are in a smooth situation, these bundle charts may be chosen to be

smooth.

Proof: This is a local question, so translating via arbitrary bundle charts we may assume
that we are in the trivial situation

U ′ ×Rm
f //

prU′

$$J
JJ

JJ
JJ

JJ
J

U ′ ×Rn

prU′

zzuuuuuuuuu

U ′
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with f(u, v) = (u, (f 1
u(v), . . . , fnu (v))), and rkfu = r. By a choice of basis on Rm and Rn

we may assume that fu is represented by a matrix
[
A(u) B(u)
C(u) D(u)

]

with A(p) ∈ GLr(R) and D(p) = C(p)A(p)−1B(p) (the last equation follows as the rank
rkfp is r). We change the basis so that this is actually true in the standard basis.

Let p ∈ U ⊆ U ′ be the open set U = {u ∈ U ′| det(A(u)) 6= 0}. Then again D(u) =
C(u)A(u)−1B(u) on U .

Let
h : U ×Rm → U ×Rm, h(u, v) = (u, hu(v))

be the homeomorphism where hu is given by the matrix
[
A(u) B(u)

0 I

]

Let
g : U ×Rn → U ×Rn, g(u, w) = (u, gu(w))

be the homeomorphism where gu is given by the matrix
[

I 0
−C(u)A(u)−1 I

]

Then gfh−1(u, v) = (u, (gfh−1)u(v)) where (gfh−1)u is given by the matrix
[

I 0
−C(u)A(u)−1 I

] [
A(u) B(u)
C(u) D(u)

] [
A(u) B(u)

0 I

]−1

=

[
I 0

−C(u)A(u)−1 I

] [
A(u) B(u)
C(u) D(u)

] [
A(u)−1 −A(u)−1B(u)

0 I

]

=

[
I 0

−C(u)A(u)−1 I

] [
I 0

C(u)A(u)−1 0

]

=

[
I 0
0 0

]

as claimed (the right hand lower zero in the answer is really a 0 = −C(u)A(u)−1B(u) +
D(u)).
Recall that if f : V → W is a linear map of vector spaces, then the kernel (or null space)
is the subspace

ker{f} = {v ∈ V | f(v) = 0} ⊆ V

and the image (or range) is the subspace

Im{f} = {w ∈W | there is a v ∈ V such that w = f(v)}
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Corollary 7.1.10 If

E1
f //

π1   A
AA

AA
AA

A
E2

π2~~}}
}}

}}
}}

X

is a bundle morphism of constant rank, then the kernel
⋃

p∈X
ker{fp} ⊆ E1

and image ⋃

p∈X
Im{fp} ⊆ E2

are subbundles.

Exercise 7.1.11 Let π : E → X be a vector bundle over a connected space X. Assume
given a bundle morphism

E
f //

π
  @

@@
@@

@@
@ E

π
~~~~

~~
~~

~~

X

with f ◦ f = f . Prove that f has constant rank.

Exercise 7.1.12 Let π : E → X be a vector bundle over a connected space X. Assume
given a bundle morphism

E
f //

π
  @

@@
@@

@@
@ E

π
~~~~

~~
~~

~~

X

with f ◦ f = idE . Prove that the space of fixed points

E{f} = {e ∈ E|f(e) = e}

is a subbundle of E.

Exercise 7.1.13 Consider the map f : TR → TR sending [γ] to [t 7→ γ(0) · γ(t)]. Show
that f is a bundle morphisms, but that f does not have constant rank and neither the
kernel nor the image of f are subbundles.

Exercise 7.1.14 Let f : E → M be a smooth bundle of rank k. Show that the vertical
bundle

V = {v ∈ TE | Tf(v) = 0} ⊆ TE

is a smooth subbundle of TE → E.
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7.2 The induced bundle

Definition 7.2.1 Assume given a bundle π : E → Y and a continuous map f : X → Y .
Let the fiber product of f and π be the space

f ∗E = X ×Y E = {(x, e) ∈ X ×E|f(x) = π(e)}
(topologized as a subspace of X × E), and let the induced bundle be the projection

f ∗π : f ∗E → X, (x, e) 7→ x

Note 7.2.2 Note that the fiber over x ∈ X may be identified with the fiber over f(x) ∈ Y .
The reader may recognize the fiber product X ×Y E from Exercise 5.7.10, where we

showed that if the contributing spaces are smooth then the fiber product is often smooth
too.

Lemma 7.2.3 If π : E → Y is a vector bundle and f : X → Y a continuous map, then

f ∗π : f ∗E → X

is a vector bundle and the projection f ∗E → E defines a bundle morphism

f ∗E −−−→ E

f∗π

y π

y

X
f−−−→ Y

inducing an isomorphism on fibers. If the input is smooth the output is smooth too.

Proof: Let p ∈ X and let (h, V ) be a bundle chart

h : π−1(V )→ V ×Rk

such that f(p) ∈ V . Then U = f−1(V ) is an open neighborhood of p. Note that

(f ∗π)−1(U) = {(u, e) ∈ X × E|f(u) = π(e) ∈ V }
= {(u, e) ∈ U × π−1(V )|f(u) = π(e)}
= U ×V π−1(V )

and
U ×V (V ×Rk) ∼= U ×Rk

and we define

f ∗h : (f ∗π)−1(U) = U ×V π−1(V )→ U ×V (V ×Rk) ∼= U ×Rk

(u, e) 7→ (u, h(e))↔ (u, hπ(e)e)

Since h is a homeomorphism f ∗h is a homeomorphism (smooth if h is), and since hπ(e)e is
an isomorphism (f ∗h) is an isomorphism on each fiber. The rest of the lemma now follows
automatically.
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Theorem 7.2.4 Let
E ′ f̃−−−→ E

π′

y π

y

X ′ f−−−→ X
be a bundle morphism.

Then there is a factorization

E ′ −−−→ f ∗E −−−→ E

π′

y f∗π

y π

y

X ′ X ′ f−−−→ X

Proof: Let

E ′ → X ′ ×X E = f ∗E

e 7→ (π′(e), f̃(e))

This is well defined since f(π′(e)) = π(f̃(e)). It is linear on the fibers since the composition

(π′)−1(p)→ (f ∗π)−1(p) ∼= π−1(f(p))

is nothing but f̃p.

Exercise 7.2.5 Let i : A ⊆ X be an injective map and π : E → X a vector bundle. Prove
that the induced and the restricted bundles are isomorphic.

Exercise 7.2.6 Show the following statement: if

E ′ h−−−→ Ẽ
g−−−→ E

π′

y π̃

y π

y

X ′ X ′ f−−−→ X

is a factorization of (f, f̃), then there is a unique bundle map

Ẽ //

��@
@@

@@
@@

@
f ∗E

}}zz
zz

zz
zz

X

such that

E ′ //

!!C
CC

CC
CC

C Ẽ

�� !!B
BB

BB
BB

BB

f ∗E // E

commutes.
As a matter of fact, you could characterize the induced bundle by this property.
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Exercise 7.2.7 Show that if E → X is a trivial vector bundle and f : Y → X a map,
then f ∗E → Y is trivial.

Exercise 7.2.8 Let E → Z be a vector bundle and let

X
f−−−→ Y

g−−−→ Z

be maps. Show that ((gf)∗E → X) ∼= (f ∗(g∗E)→ X).

Exercise 7.2.9 Let π : E → X be a vector bundle, σ0 : X → E the zero section, and
π0 : E \ σ0(X) → X be the restriction of π. Construct a nonvanishing section on π∗

0E →
E \ σ0(X).

7.3 Whitney sum of bundles

Natural constructions you can perform on vector spaces, pass to to constructions on vector
bundles by applying the constructions on each fiber. As an example, we consider the sum
⊕. You should check that you believe the constructions, since we plan to be sketchier in
future examples.

Definition 7.3.1 If V1 and V2 are vector spaces, then V1⊕V2 = V1×V2 is the vector space
of pairs (v1, v2) with vj ∈ Vj. If fj : Vj → Wj is a linear map j = 1, 2, then

f1 ⊕ f2 : V1 ⊕ V2 →W1 ⊕W2

is the linear map which sends (v1, v2) to (f1(v1), f2(v2)).

Note that not all linear maps V1 ⊕ V2 →W1 ⊕W2 are of the form f1 ⊕ f2. For instance, if
V1 = V2 = W1 = W2 = R, then the set of linear maps R ⊕R → R ⊕R may be identified
(by choosing the standard basis) with the set of 2 × 2-matrices, whereas the maps of the
form f1 ⊕ f2 correspond to the diagonal matrices.

Definition 7.3.2 Let (π1 : E1 → X,A1) and (π2 : E2 → X,A2) be vector bundles over a
common space X. Let

E1 ⊕ E2 =
∐

x∈X
π−1

1 (x)⊕ π−1
2 (x)

and let π1⊕π2 : E1⊕E2 → X send all points in the x’th summand to x ∈ X. If (h1, U1) ∈ A1

and (h2, U2) ∈ A2 then

h1 ⊕ h2 : (π1 ⊕ π2)−1(U1 ∩ U2)→ (U1 ∩ U2)× (Rn1 ⊕Rn2)

is h1 ⊕ h2 on each fiber (i.e., over the point p ∈ X it is (h1)p ⊕ (h2)p : π−1
1 (p) ⊕ π−1

2 (p) →
Rn1 ⊕Rn2).

This defines a pre-vector bundle, and the associated vector bundle is called the Whitney
sum of the two vector bundles.
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If

Ej
fj //

πj
��@

@@
@@

@@
@

E ′
j

π′

j��~~
~~

~~
~

X

are bundle morphisms over X, then

E1 ⊕E2
f1⊕f2 //

π1⊕π2 $$H
HH

HH
HH

HH
H

E ′
1 ⊕E ′

2

π′

1⊕π′

2zzvvvvvvvvv

X

is a bundle morphism defined as f1 ⊕ f2 on each fiber.

Exercise 7.3.3 Check that if all bundles and morphisms are smooth, then the Whitney
sum is a smooth bundle too, and that f1 ⊕ f2 is a smooth bundle morphism over X.

Note 7.3.4 Although ⊕ = × for vector spaces, we must not mix them for vector bundles,
since × is reserved for another construction: the product of two bundles E1×E2 → X1×X2.

As a matter of fact, as a space E1 ⊕E2 is the fiber product E1 ×X E2.

Exercise 7.3.5 Let

ǫ = {(p, λp) ∈ Rn+1 ×Rn+1| |p| = 1, λ ∈ R}
Show that the projection down to Sn defines a trivial bundle.

Definition 7.3.6 A bundle E → X is called stably trivial if there is a trivial bundle ǫ→ X
such that E ⊕ ǫ→ X is trivial.

Exercise 7.3.7 Show that the tangent bundle of the sphere TSn → Sn is stably trivial.

Exercise 7.3.8 Show that the sum of two trivial bundles is trivial. Also that the sum of
two stably trivial bundles is stably trivial.

Exercise 7.3.9 Given three bundles πi : Ei → X, i = 1, 2, 3. Show that the set of pairs
(f1, f2) of bundle morphisms

Ei
fi //

πi   A
AA

AA
AA

E3

π3~~}}
}}

}}
}}

X

(i = 1, 2) is in one-to-one correspondence with the set of bundle morphisms

E1 ⊕ E2
//

π1⊕π2 $$I
IIIIIIII

E3

π3~~}}
}}

}}
}}

X
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7.4 More general linear algebra on bundles

There are many constructions on vector spaces that pass on to bundles. We list a few.
The examples 1-4 and 8-9 will be used in the text, and the others are listed for reference,
and for use in exercises.

7.4.1 Constructions on vector spaces

1. The (Whitney) sum. If V1 and V2 are vector spaces, then V1 ⊕ V2 is the vector space
of pairs (v1, v2) with vj ∈ Vj. If fj : Vj → Wj is a linear map j = 1, 2, then

f1 ⊕ f2 : V1 ⊕ V2 → W1 ⊕W2

is the linear map which sends (v1, v2) to (f1(v1), f2(v2)).

2. The quotient. If W ⊆ V is a linear subspace we may define the quotient V/W as the
set of equivalence classes V/ ∼ under the equivalence relation that v ∼ v′ if there is
a w ∈W such that v = v′ + w. The equivalence class containing v ∈ V is written v̄.
We note that V/W is a vector space with

av̄ + bv̄′ = av + bv′

If f : V → V ′ is a linear map with f(W ) ⊆W ′ then f defines a linear map

f̄ : V/W → V ′/W ′

via the formula f̄(v̄) = f(v) (check that this makes sense).

3. The hom-space. Let V and W be vector spaces, and let

Hom(V,W )

be the set of linear maps f : V → W . This is a vector space via the formula (af +
bg)(v) = af(v) + bg(v). Note that

Hom(Rm,Rn) ∼= Mn×m(R)

Also, if R : V → V ′ and S : W →W ′ are linear maps, then we get a linear map

Hom(V ′,W )
Hom(R,S)−−−−−−→ Hom(V,W ′)

by sending f : V ′ →W to

V
R−−−→ V ′ f−−−→ W

S−−−→ W ′

(note that the direction of R is turned around!).
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4. The dual space. This is a special case of the example above (and was discussed
thoroughly in section following Definition 4.3.10): if V is a vector space, then the
dual space is the vector space

V ∗ = Hom(V,R).

5. The tensor product. Let V and W be vector spaces. Consider the set of bilinear
maps from V ×W to some other vector space V ′. The tensor product

V ⊗W
is the vector space codifying this situation in the sense that giving a bilinear map
V ×W → V ′ is the same as giving a linear map V ⊗W → V ′. With this motivation
it is possible to write down explicitly what V ⊗ W is: as a set it is the set of all
finite linear combinations of symbols v ⊗ w where v ∈ V and w ∈ W subject to the
relations

a(v ⊗ w) =(av)⊗ w = v ⊗ (aw)

(v1 + v2)⊗ w =v1 ⊗ w + v2 ⊗ w
v ⊗ (w1 + w2) =v ⊗ w1 + v ⊗ w2

where a ∈ R, v, v1, v2 ∈ V and w,w1, w2 ∈ W . This is a vector space in the obvious
manner, and given linear maps f : V → V ′ and g : W →W ′ we get a linear map

f ⊗ g : V ⊗W → V ′ ⊗W ′

by sending
∑k
i=1 vi ⊗ wi to

∑k
i=1 f(vi)⊗ g(wi) (check that this makes sense!).

Note that
Rm ⊗Rn ∼= Rmn

and that there are isomorphisms

Hom(V ⊗W,V ′) ∼= {bilinear maps V ×W → V ′}
The bilinear map associated to a linear map f : V ⊗W → V ′ sends (v, w) ∈ V ×W
to f(v ⊗ w). The linear map associated to a bilinear map g : V ×W → V ′ sends∑
vi ⊗ wi ∈ V ⊗W to

∑
g(vi, wi).

6. The exterior power. Let V be a vector space. The kth exterior power ΛkV is defined
as the quotient of the k-fold tensor product V ⊗ · · · ⊗ V by the subspace generated
by the elements v1 ⊗ v2 ⊗ · · · ⊗ vk where vi = vj for some i 6= j. The image of
v1 ⊗ v2 ⊗ · · · ⊗ vk in ΛkV is written v1 ∧ v2 ∧ · · · ∧ vk. Note that it follows that
v1 ∧ v2 = −v2 ∧ v1 since

0 = (v1 + v2) ∧ (v1 + v2) = v1 ∧ v1 + v1 ∧ v2 + v2 ∧ v1 + v2 ∧ v2 = v1 ∧ v2 + v2 ∧ v1

and similarly for more ∧-factors: swapping two entries changes sign.

Note that the dimension of ΛkRn is
(
n
k

)
. There is a particularly nice isomorphism

ΛnRn → R given by the determinant function.
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7. The symmetric power. Let V be a vector space. The kth symmetric power SkV is
defined as the quotient of the k-fold tensor product V ⊗ · · · ⊗ V by the subspace
generated by the elements v1 ⊗ v2 ⊗ · · · ⊗ vi ⊗ · · · ⊗ vj ⊗ · · · ⊗ vk − v1 ⊗ v2 ⊗ · · · ⊗
vj ⊗ · · · ⊗ vi ⊗ · · · ⊗ vk.

8. Alternating forms. The space of alternating forms Altk(V ) on a vector space V is

defined to be
(
ΛkV

)∗
, the dual of the exterior power ΛkV 6. That is Altk(V ) consists

of the multilinear maps
V × · · · × V → R

in k V -variables which are zero on inputs with repeated coordinates.

The alternating forms on the tangent space is the natural home of the symbols like
dxdydz you’ll find in elementary multivariable analysis.

9. Symmetric bilinear forms. Let V be a vector space. The space of SB(V ) symmetric
bilinear forms is the space of bilinear maps f : V ×V → R such that f(v, w) = f(w, v).
In other words, the space of symmetric bilinear forms is SB(V ) = (S2V )

∗
.

7.4.2 Constructions on vector bundles

When translating these constructions to vector bundles, it is important not only to bear
in mind what they do on each individual vector space but also what they do on linear
maps. Note that some of the examples “turn the arrows around”. The Hom-space in
Section 7.4.1(3) is a particular example of this: it “turns the arrows around” in the first
variable, but not in the second.

Instead of giving the general procedure for translating such constructions to bundles in
general, we do it on the Hom-space which exhibit all the potential difficult points.

Example 7.4.3 Let (π : E → X,B) and (π′ : E ′ → X,B′) be vector bundles of dimension
m and n. We define a pre-vector bundle

Hom(E,E ′) =
∐

p∈X
Hom(Ep, E

′
p)→ X

of dimension mn as follows. The projection sends the pth summand to p, and given bundle
charts (h, U) ∈ B and (h′, U ′) ∈ B′ we define a bundle chart (Hom(h−1, h′), U ∩ U ′). On
the fiber above p ∈ X,

Hom(h−1, h′)p : Hom(Ep, E
′
p)→ Hom(Rm,Rn) ∼= Rmn

is given by sending f : Ep → E ′
p to

Rm Rn

h−1
p

y h′
p

x

Ep
f−−−→ E ′

p
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If (g, V ) ∈ B and (g′, V ′) ∈ B′ are two other bundle charts, the transition function becomes

p 7→ Hom(g−1
p , g′

p)
(
Hom(h−1

p , h′
p)
)−1

= Hom(hpg
−1
p , g′

p(h
′
p)

−1),

sending f : Rm → Rn to
Rm Rn

g−1
p

y g′
p

x
Ep E ′

p

hp

y (h′
p)−1

x

Rm f−−−→ Rn.

That is, if W = U ∩ U ′ ∩ V ∩ V ′, then the transition function

W −→ GL(Hom(Rm,Rn)) ∼= GLmn(R)

is the composite of

1. the diagonal W → W ×W sending p to (p, p),

2. the product of the transition functions

W ×W → GL(Rm)×GL(Rn),

sending (p, q) to (gph
−1
p , g′

p(h
′
p)

−1)

3. the map
GL(Rm)×GL(Rn)→ GL(Hom(Rm,Rn)),

sending (A,B) to Hom(A−1, B).

The first two are continuous or smooth depending on whether the bundles are topological or
smooth. The last map GL(Rm)×GL(Rn)→ GL(Hom(Rm,Rn)) is smooth (C 7→ BCA−1

is a linear transformation on Hom(Rm,Rn) which depends smoothly on A and B by
Cramer’s rule (to invert A) and the fact that the algebraic operations are continuous).

In effect, the transition functions of Hom(E,E ′)→ X are smooth (resp. continuous) if
the transition functions of E → X and E ′ → X are smooth (resp. continuous).

Exercise 7.4.4 Let E → X and E ′ → X be vector bundles. Show that there is a one-to-
one correspondence between bundle morphisms

E
f //

  @
@@

@@
@@

@ E ′

~~}}
}}

}}
}}

X

and sections of Hom(E,E ′)→ X.
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Exercise 7.4.5 Convince yourself that the construction of Hom(E,E ′) → X outlined
above really gives a vector bundle, and that if

E
f //

��@
@@

@@
@@

@
E1

~~}}
}}

}}
}}

X

, and E ′ f ′

//

  @
@@

@@
@@

@
E ′

1

~~}}
}}

}}
}

X

are bundle morphisms, we get another

Hom(E1, E
′)

Hom(f,f ′) //

&&LLLLLLLLLLL
Hom(E,E ′

1)

yyrrrrrrrrrrr

X

Exercise 7.4.6 Write out the definition of the quotient bundle, and show that if

E
f //

  @
@@

@@
@@

@ E ′

~~}}
}}

}}
}}

X

is a bundle map, F ⊆ E and F ′ ⊆ E ′ are subbundles such that Im{f |F} ⊆ F ′, then we get
a bundle morphism

E/F
f̄ //

""D
DD

DD
DD

D
E ′/F ′

||xx
xxxxx

x

X

Example 7.4.7 Given a bundle E → X, the dual bundle E∗ → X is important in many
situations. If (h, U) is a bundle chart, then we get a bundle chart for the dual bundle

(E∗)U =
∐
p∈U E

∗
p

∐
(h−1

p )∗

−−−−−→ ∐
p∈U(Rk)∗ = U × (Rk)∗

(choose a fixed isomorphism (Rk)∗ ∼= Rk).

Exercise 7.4.8 Check that the bundle charts proposed for the dual bundle actually give
a bundle atlas, and that this atlas is smooth if the original bundle was smooth.

Exercise 7.4.9 For those who read the section on the cotangent bundle T ∗M → M
associated with a smooth n-manifold M : prove that the maps of Proposition 4.3.12

αp : T ∗
pM → (TM)∗, dφ 7→ {[γ] 7→ ()′(0)}

induces an isomorphism from the cotangent bundle to the dual of the tangent bundle.
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Given Exercise 7.4.9, the ones who have not studied the cotangent bundle is free to define
it in the future as the dual of the tangent bundle. Recall that the elements of the cotangent
bundle are called 1-forms.

Exercise 7.4.10 Given a bundle E → X, write out the definition of the associated sym-
metric bilinear forms bundle SB(E)→ X

Example 7.4.11 An alternating k-form (or just k-form) is an element in Altk(TM)
(see 7.4.1(??)). These are the main object of study when doing analysis of manifolds
(integrations etc.).

Exercise 7.4.12 Write out the definition of the bundle of alternating k-forms, and if you
are still not bored stiff, do some more examples. If you are really industrious, find out on
what level of generality these ideas really work, and prove it there.

Exercise 7.4.13 Let L → M be a line bundle (one-dimensional vector bundle). Show
that the tensor product L ⊗ L → M is also a line bundle and that all the transition
functions in the associated bundle atlas on L ⊗ L → M have values in the positive real
numbers {t ∈ R | t > 0} ⊂ GL1(R).

7.5 Normal bundles

We will later discuss Riemannian structures and more generally fiber metrics over smooth
manifolds. This will give us the opportunity to discuss inner products, and in particular
questions pertaining to orthogonality, in the fibers. That such structures exists over smooth
manifolds is an artifact of the smooth category, in which local smooth data occasionally
can be patched together to global smooth structures.

However, there is a formulation of these phenomena which does not depend on inner
products, but rather uses quotient bundles.

Definition 7.5.1 Let N ⊆M be a smooth submanifold. The normal bundle ⊥N → N is
defined as the quotient bundle (TM |N )/TN → N (see exercise 7.4.6).

In a submanifold N ⊆ M the tangent bundle of N is naturally a subbundle of the

tangent bundle of M restricted to N , and the normal bundle is the quotient on each

fiber, or isomorphically in each fiber: the normal space
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More generally, if f : N →M is an imbedding, we define the normal bundle ⊥fN → N
to be the bundle (f ∗TM)/TN → N .

It turns out that there is an important consequence of transversality pertaining to
normal bundles:

Theorem 7.5.2 Assume f : N →M is transverse to a k-codimensional submanifold L ⊆
M and that f(N) ∩ L 6= ∅. Then f−1(L) ⊆ N is a k-codimensional submanifold and there
is an isomorphism

⊥f−1(L)
∼= //

%%LLLLLLLLLL
f ∗(⊥L)

yyssss
sss

sss

f−1(L)

Proof: The first part is simply Theorem 5.5.3. For the statement about normal bundles,
consider the diagram

T (f−1(L)) −−−→ TLy
y

TN |f−1(L) −−−→ TM |Ly
y

(TN |f−1(L))/T (f−1(L)) = ⊥f−1(L) −−−→ (TM |L)/TL = ⊥L

Transversality gives that the map from TN |f−1(L) to (TM |L)/TL is surjective on every
fiber, and so – for dimensional reasons – ⊥f−1(L)→ ⊥L is an isomorphism on every fiber.
This then implies that ⊥f−1(L)→ f ∗(⊥L) must be an isomorphism by lemma 6.3.12.

Corollary 7.5.3 Consider a smooth map f : N → M and a regular value q ∈ M . Then
the normal bundle ⊥f−1(q)→ f−1(q) is trivial.

Note 7.5.4 In particular, this shows that the normal bundle of Sn ⊆ Rn+1 is trivial. Also
it shows that the normal bundle of O(n) ⊆ Mn(R) is trivial, and all the other manifolds
we constructed in Chapter 5 as the inverse image of regular values.

In Exercise 7.3.7 we showed that the tangent bundle of Sn is stably trivial, and an
analysis of that proof gives an isomorphism between TRn+1|Sn and TSn ⊕ ⊥Sn. This
“splitting” is a general phenomenon and is a result of the flexibility of the smooth category
alluded to at the beginning of this section. We will return to such issues in Section 9.3.
When we discuss Riemannian structures.
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7.6 Orientations1

The space of alternating forms Altk(V ) on a vector space V is defined to be
(
ΛkV

)∗
=

Hom(ΛkV,R) (see 7.4.1(??)), or alternatively, Altk(V ) consists of the multilinear maps

V × · · · × V → R

in k V -variables which are zero on inputs with repeated coordinates.

In particular, if V = Rk we have the determinant function

det ∈ Altk(Rk)

given by sending v1 ∧ · · · ∧ vk to the determinant of the k × k-matrix [v1 . . . vk] you get by
considering vi as the ith column.

In fact, det : ΛkRk → R is an isomorphism.

Exercise 7.6.1 Check that the determinant actually is an alternating form and an iso-
morphism.

Definition 7.6.2 An orientation on a k-dimensional vector space V is an equivalence class
of bases on V , where (v1, . . . vk) and (w1, . . . wk) are equivalent if v1∧· · ·∧vk and w1∧· · ·∧wk
differ by a positive scalar. The equivalence class, or orientation class, represented by a
basis (v1, . . . vk) is written [v1, . . . vk].

Note 7.6.3 That two bases v1∧· · ·∧vk and w1∧· · ·∧wk in Rk define the same orientation
class can be formulated by means of the determinant:

det(v1 . . . vk)/ det(w1 . . . wk) > 0.

As a matter of fact, this formula is valid for any k-dimensional vector space if you choose
an isomorphism V → Rk (the choice turns out not to matter).

Note 7.6.4 On a vector space V there are exactly two orientations. For instance, on Rk

the two orientations are [e1, . . . , ek] and [−e1, e2, . . . , ek] = [e2, e1, e3 . . . , ek].

Note 7.6.5 An isomorphism of vector spaces f : V → W sends an orientation O =
[v1, . . . , vk] to the orientation fO = [f(v1), . . . , f(vk)].

Definition 7.6.6 An oriented vector space is a vector space together with a chosen orien-
tation. An isomorphism of oriented vector spaces either preserve or reverse the orientation.

1This section is not used anywhere else and may safely be skipped.
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Definition 7.6.7 Let E → X be a vector bundle. An orientation on E → X is a family
O = {Op}p∈X such that Op is an orientation on the fiber Ep, and such that around any
point p ∈ X there is a bundle chart (h, U) such that for all q ∈ U the isomorphism

hq : Eq → Rk

sends Oq to hpOp.

Definition 7.6.8 A vector bundle is orientable if it can be equipped with an orientation.

Example 7.6.9 A trivial bundle is orientable.

Example 7.6.10 Not all bundles are orientable, for instance, the tautological line bundle
η1 → S1 of example 6.1.2 is not orientable: start choosing orientations, run around the
circle, and have a problem.

Definition 7.6.11 A manifold M is orientable if the tangent bundle is orientable.

7.7 The generalized Gauss map2

The importance of the Grassmann manifolds to bundle theory stems from the fact that
in a certain precise sense the bundles over a given manifold M is classified by a set of
equivalence classes (called homotopy classes) from M into Grassmann manifolds. This is
really cool, but unfortunately beyond the scope of our current investigations. We offer a
string of exercises as a vague orientation into interesting stuff we can’t pursue to the depths
it deserves.

Exercise 7.7.1 Recall the Grassmann manifold Gk
n of all k-dimensional linear subspaces

of Rn defined in Example 3.3.13. Define the canonical k-plane bundle over the Grassmann
manifold

γkn → Gk
n

by setting
γkn = {(E, v)|E ∈ Gk

n, v ∈ E}
(note that γ1

n = ηn → RPn = G1
n). (hint: use the charts in Example 3.3.13, and let

hg : π−1(Ug)→ Ug × Eg

send (E, v) to (E, prEg
v)).

Note 7.7.2 The Grassmann manifolds are important because there is a neat way to de-
scribe vector bundles as maps from manifolds into Grassmann manifolds, which makes
their global study much more transparent. We won’t have the occasion to study this
phenomenon, but we include the following example.

2This section is not used anywhere else and may safely be skipped.
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Exercise 7.7.3 Let M ⊆ Rn be a smooth k-dimensional manifold. Then we define the
generalized Gauss map

TM −−−→ γkny
y

M −−−→ Gk
n

by sending p ∈M to TpM ∈ Gk
n (we consider TpM as a subspace of Rn under the standard

identification TpR
n = Rn), and [γ] ∈ TM to (Tγ(0)M, [γ]). Check that it is a bundle

morphism and displays the tangent bundle of M as the induced bundle of the tautological
k-plane bundle under M → Gk

n.
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Chapter 8

Integrability

Many applications lead to situations where you end up with a differential equation on some
manifold. Solving these are no easier than it is in the flat case. However, the language of
tangent bundles can occasionally make it clearer what is going on, and where the messy
formulas actually live.

Furthermore, the existence of solutions to differential equations are essential to show
that the deformations we intuitively are inclined to perform on manifolds, actually make
sense smoothly. This is reflected in that the flows we construct are smooth.

Example 8.0.4 In the flat case, we are used to draw “flow charts”. E.g., given a first
order differential equation

[
x′(t)
y′(t)

]
= f(x(t), y(t))

we associate to each point (x, y) the vector f(x, y). In this fashion a first order ordinary
differential equation may be identified with a vector field. Each vector would be the velocity
vector of a solution to the equation passing through the point (x, y). If f is smooth, the
vectors will depend smoothly on the point (it is a smooth vector field), and the picture
would resemble a flow of a liquid, where each vector would represent the velocity of the
particle at the given point. The paths of each particle would be solutions of the differential
equation, and assembling all these solutions, we could talk about the flow of the liquid.

137
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The vector field resulting from a sys-

tem of ordinary differential equa-

tions (here: a predator-prey system

with a stable equilibrium).

A solution to the differential equa-

tion is a curve whose derivative

equals the corresponding vector

field.

8.1 Flows and velocity fields

If we are to talk about differential equations on manifolds, the confusion of where the
velocity fields live (as opposed to the solutions) has to be sorted out. The place of velocity
vectors is the tangent bundle, and a differential equation can be represented by a vector
field, that is a section in the tangent bundle TM →M , and its solutions by a “flow”:

Definition 8.1.1 Let M be a smooth manifold. A (global) flow is a smooth map

Φ: R ×M → M

such that for all p ∈M and s, t ∈ R

• Φ(0, p) = p

• Φ(s,Φ(t, p)) = Φ(s + t, p)

We are going to show that on a compact manifold there is a one-to-one correspondence
between vector fields and global flows. In other words, first order ordinary differential
equations have unique solutions on compact manifolds. This statement is true also for
non-compact manifolds, but then we can’t expect the flows to be defined on all of R×M
anymore, and we have to talk about local flows. We will return to this later, but first we
will familiarize ourselves with global flows.

Definition 8.1.2 Let M = R, let

L : R ×R→ R

be the flow given by L(s, t) = s+ t.
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Example 8.1.3 Consider the map

Φ: R ×R2 → R2

given by (
t,

[
p
q

])
7→ e−t/2

[
cos t sin t
− sin t cos t

] [
p
q

]

Exercise 8.1.4 Check that this actually is a global flow!

For fixed p and q this is the solution to the initial value problem
[
x′

y′

]
=

[
−1/2 1
−1 −1/2

] [
x
y

]
,

[
x(0)
y(0)

]
=

[
p
q

]

whose corresponding vector field was used in the figures in example 8.0.4.

A flow is a very structured representation of a vector field:

Definition 8.1.5 Let Φ be a flow on the smooth manifold M . The velocity field of Φ is
defined to be the vector field →

Φ: M → TM

where
→
Φ(p) = [t 7→ Φ(t, p)].

The surprise is that every vector field is the velocity field of a flow (see the integrability
theorems 8.2.2 and 8.4.1)

Example 8.1.6 Consider the global flow of 8.1.2. Its velocity field

→
L : R→ TR

is given by s 7→ [Ls] where Ls is the curve t 7→ Ls(t) = L(s, t) = s + t. Under the
diffeomorphism

TR→ R ×R, [ω] 7→ (ω(0), ω′(0))

we see that
→
L is the non-vanishing vector field corresponding to picking out 1 in every

fiber.

Example 8.1.7 Consider the flow Φ in 8.1.3. Under the diffeomorphism

TR2 → R2 ×R2, [ω] 7→ (ω(0), ω′(0))

the velocity field
→
Φ: R2 → TR2 corresponds to

R2 → R2 ×R2,

[
p
q

]
7→
([
p
q

]
,

[
−1/2 1
−1 −1/2

] [
p
q

])
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Definition 8.1.8 Let Φ be a global flow on a smooth manifold M , and p ∈M . The curve

R→ M, t 7→ Φ(t, p)

is called the flow line of Φ through p. The image Φ(R, p) of this curve is called the orbit
of p.

–0.5

0.5

1

1.5

2

2.5

–4 –3 –2 –1 1

The orbit of the point [ 1
0 ] of the flow of example 8.1.3.

The orbits split the manifold into disjoint sets:

Exercise 8.1.9 Let Φ: R ×M → M be a flow on a smooth manifold M . Then

p ∼ q ⇔ there is a t such that Φ(t, p) = q

defines an equivalence relation on M . hence, every point in M lies in a unique orbit: no
orbits intersect.

Example 8.1.10 The flow line through 0 of the flow L of definition 8.1.2 is the identity
on R. The only orbit is R.

More interesting: the flow lines of the flow of example 8.1.3 are of two types: the
constant flow line at the origin, and the spiraling flow lines filling out the rest of the space.

Exercise 8.1.11 Given w = reiθ, let φ : R×C→ C be the flow Φ(t, z) = rteitθ. Describe
the flow lines when (r, θ) is i) (1, 0), ii) (1, π/2) and iii) (1/2, 0).

Note 8.1.12 (Contains important notation, and a reinterpretation of the term “global
flow”). Writing Φt(p) = Φ(t, p) we get another way of expressing a flow. To begin with we
have

• Φ0 = identity

• Φs+t = Φs ◦ Φt

We see that for each t the map Φt is a diffeomorphism (with inverse Φ−t) from M to M .
The assignment t 7→ Φt sends sum to composition of diffeomorphisms and so defines a
“group homomorphism”

R → Diff(M)
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from the additive group of real numbers to the group of diffeomorphism (under composi-
tion) on M .

We have already used this notation in connection with the flow L of Definition 8.1.2:
Ls(t) = L(s, t) = s+ t.

Lemma 8.1.13 Let Φ be a global flow on M and s ∈ R. Then the diagram

TM
TΦs−−−→∼=

TM

→

Φ

x
→

Φ

x

M
Φs−−−→∼=

M

commutes.

Proof: One of the composites sends q ∈ M to [t 7→ Φ(s,Φ(t, q))] and the other sends
q ∈ M to [t 7→ Φ(t,Φ(s, q))].

Definition 8.1.14 Let
γ : R →M

be a smooth curve on the manifold M . The velocity vector γ̇(s) ∈ Tγ(s)M of γ at s ∈ R is
defined as the tangent vector

γ̇(s) = Tγ
→
L(s) = [γLs] = [t 7→ γ(s+ t)]

The velocity vector γ̇(s) of the curve γ at s lives in Tγ(s)M .

Note 8.1.15 The curve γLs is given by t 7→ γ(s + t) and (Ls)
′(0) = 1. So, if (x, U) is a

chart with γ(s) ∈ U we get that γ̇(s) ∈ Tγ(s)M corresponds to (xγLs)
′(0) = (xγ)′(s) under

the isomorphism Tγ(s)
∼= Rm induced by x, explaining the term “velocity vector”.

The following diagram can serve as a reminder for the construction and will be used
later:

TR
Tγ // TM

��
R

→

L

OO
γ̇

;;wwwwwwwww γ //M
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The velocity field and the flow are intimately connected, and the relation can be expressed
in many ways. Here are some:

Lemma 8.1.16 Let Φ be a flow on the smooth manifold M , p ∈ M . Let φp be the flow
line through p given by φp(s) = Φ(s, p). Then the diagrams

R
φp−−−→ M

Ls

y∼= Φs

y∼=

R
φp−−−→ M

and

TR
Tφp // TM

R

→

L

OO
φ̇p

;;wwwwwwwww

φp

//M

→

Φ

OO

commutes. For future reference, we have for all s ∈ R that

φ̇p(s) =
→
Φ(φp(s))

= TΦs[φp]

Proof: All these claims are variations of the fact that

Φ(s + t, q) = Φ(s,Φ(t, q)) = Φ(t,Φ(s, q))

Proposition 8.1.17 Let Φ be a flow on a smooth manifold M , and p ∈M . If

γ : R →M

is the flow line of Φ through p (i.e., γ(t) = Φ(t, p)) then either

• γ is an injective immersion

• γ is a periodic immersion (i.e., there is a T > 0 such that γ(s) = γ(t) if and only if
there is an integer k such that s = t+ kT ), or

• γ is constant.

Proof: Note that since TΦsγ̇(0) = TΦs[γ] = γ̇(s) and Φs is a diffeomorphism γ̇(s) is either
zero for all s or never zero at all.

If γ̇(s) = 0 for all s, this means that γ is constant since if (x, U) is a chart with γ(s0) ∈ U
we get that (xγ)′(s) = 0 for all s close to s0, hence xγ(s) is constant for all s close to s0

giving that γ is constant.
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If γ̇(s) = Tγ[Ls] is never zero we get that Tγ is injective (since [Ls] 6= 0 ∈ TsR ∼= R),
and so γ is an immersion. Either it is injective, or there are two numbers s > s′ such that
γ(s) = γ(s′). This means that

p = γ(0) = Φ(0, p) = Φ(s− s, p) = Φ(s,Φ(−s, p))
= Φ(s, γ(−s)) = Φ(s, γ(−s′)) = Φ(s− s′, p)

= γ(s− s′)

Since γ is continuous γ−1(p) ⊆ R is closed and not empty (it contains 0 and s − s′ > 0
among others). As γ is an immersion it is a local imbedding, so there is an ǫ > 0 such that

(−ǫ, ǫ) ∩ γ−1(0) = {0}

Hence
S = {t > 0|p = γ(t)} = {t ≥ ǫ|p = γ(t)}

is closed and bounded below. This means that there is a smallest positive number T such
that γ(0) = γ(T ). Clearly γ(t) = γ(t+ kT ) for all t ∈ R and any integer k.

On the other hand we get that γ(t) = γ(t′) only if t − t′ = kT for some integer k.
For if (k − 1)T < t − t′ < kT , then γ(0) = γ(kT − (t − t′)) with 0 < kT − (t − t′) < T
contradicting the minimality of T .

Note 8.1.18 In the case the flow line is a periodic immersion we note that γ must factor
through an imbedding f : S1 →M with f(eit) = γ(tT/2π). That it is an imbedding follows
since it is an injective immersion from a compact space.

In the case of an injective immersion there is no reason to believe that it is an imbedding.

Example 8.1.19 The flow lines in example 8.1.3 are either constant (the one at the origin)
or injective immersions (all the others). The flow

Φ: R ×R2 → R2,

(
t,

[
x
y

])
7→
[
cos t − sin t
sin t cos t

] [
x
y

]

has periodic flow lines (except at the origin).

Exercise 8.1.20 Display an injective immersion f : R → R2 which is not the flow line of
a flow.

8.2 Integrability: compact case

A difference between vector fields and flows is that vector fields can obviously be added,
which makes it easy to custom-build vector fields for a particular purpose. That this is true
also for flows is far from obvious, but is one of the nice consequences of the integrability
theorem 8.2.2 below. The importance of the theorem is that we may custom-build flows
for particular purposes simply by specifying their velocity fields.
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Going from flows to vector fields is simple: just take the velocity field. The other way
is harder, and relies on the fact that first order ordinary differential equations have unique
solutions.

Definition 8.2.1 Let X : M → TM be a vector field. A solution curve is a curve γ : J →
M (where J is an open interval) such that γ̇(t) = X(γ(t)) for all t ∈ J .

We note that the equation

φ̇p(s) =
→
Φ(φp(s))

of lemma 8.1.16 says that “the flow lines are solution curves to the velocity field”. This is
the key to proof of the integrability theorem:

Theorem 8.2.2 Let M be a smooth compact manifold. Then the velocity field gives a
natural bijection between the sets

{global flows on M}⇆ {vector fields on M}

Before we prove the Integrability theorem, recall a the basic existence and uniqueness
theorem for ordinary differential equations. For a nice proof giving just continuity see
Spivak’s book [12] chapter 5. For a complete proof, see e.g., one of the analysis books of
Lang.

Theorem 8.2.3 Let f : U → Rn be a smooth map where U ⊆ Rn is an open subset and
p ∈ U .

• (Existence of solution) There is a neighborhood p ∈ V ⊆ U of p, a neighborhood J of
0 ∈ R and a smooth map

Φ: J × V → U

such that

– Φ(0, q) = q for all q ∈ V and

– ∂
∂t

Φ(t, q) = f(Φ(t, q)) for all (t, q) ∈ J × V .

• (Uniqueness of solution) If γi are smooth curves in U satisfying γ1(0) = γ2(0) = p
and

γ′
i(t) = f(γ(t)), i = 1, 2

then γ1 = γ2 where they both are defined.

Notice that uniqueness gives that the Φ satisfies the condition Φ(s+t, q) = Φ(s,Φ(t, q))
for small s and t. In more detail, for sufficiently small, but fixed t let γ1(s) = Φ(s + t, q)
and 2(s) = Φ(s,Φ(t, q)). Then γ1(0) = γ2(0) and γ′

k(s) = f(γk(s)) for k = 1, 2, so γ1 = γ2

Proof: To prove the Integrability theorem 8.2.2 we construct an inverse to the function
given by the velocity field. That is, given a vector field X on M we will produce a unique

flow Φ whose vector field is
→
Φ = X.
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Our problem hinges on a local question which we refer away to analysis (although the
proof contains nice topological stuff). Given a point p ∈M choose a chart x = xp : U → U ′

with p ∈ U . Let Xp : U ′ → TU ′ be section given by the composite Xp = Txp ◦X|U ◦ x−1
p

(i.e., so that the diagram

TU ′ Txp←−−−∼=
TU

Xp

x X|U
x

U ′ xp←−−−∼=
U

commutes) and define f = fp : U ′ → Rn as the composite

U ′ Xp

−−−→ TU ′ [ν] 7→(ν(0),ν′(0))−−−−−−−−−→∼=
U ′ ×Rn prRn−−−→ Rn.

Then we get that claiming that a curve γ : J → U is a solution curve to X, i.e., it
satisfies the equation

γ̇(t) = X(γ(t)),

is equivalent to claiming that
(xγ)′(t) = f(xγ(t)).

By the existence and uniqueness theorem for first order differential equations 8.2.3 there
is a neighborhood Jp × V ′

p around (0, x(p)) ∈ R× U ′ for which there exists a smooth map

Ψ = Ψp : Jp × V ′
p → U ′

p

such that

• Ψ(0, q) = q for all q ∈ V ′
p and

• ∂
∂t

Ψ(t, q) = f(Ψ(t, q)) for all (t, q) ∈ Jp × V ′
p .

and furthermore for each q ∈ V ′
p the curve Ψ(−, q) : Jp → U ′

p is unique with respect to this
property.

The set of open sets of the form x−1
p V ′

p is an open cover of M , and hence we may choose
a finite subcover. Let J be the intersection of the Jp’s corresponding to this finite cover.
Since it is a finite intersection J contains an open interval (−ǫ, ǫ) around 0.

What happens to fp when we vary p? Let q ∈ U = Up ∩ Up′ and consider the commu-
tative diagram

xpU

Xp

��

U

X
��

xpoo
xp′

// xp′U

Xp′

��
T (xpU)

∼=
��

T (U)
Txpoo

Txp′

// T (xp′U)

∼=
��

xpU ×Rn
(r,v) 7→ (xp′x

−1
p (r),D(xp′x

−1
p )(r)·v)

// xp′U ×Rn



146 CHAPTER 8. INTEGRABILITY

(restrictions suppressed). Hence, from the definition of fp, we get that fp′xp′x−1
p (r) =

D(xp′x−1
p )(r) · fp(r) for r ∈ xpU . So, if we set P (t, q) = xp′x−1

p Ψp(t, xpx
−1
p′ (q)), the flat

chain rule gives that ∂
∂t
P (t, q) = fp′(P (t, q)). Since in addition P (0, q) = 0, we get that

both P and Ψp′ are solutions to the initial value problem (with fp′), and so by uniqueness
of solution P = Ψp′ on the domain of definition, or in other words

x−1
p Ψp(t, xp(q)) = x−1

p′ Ψp′(t, xp′(q)), q ∈ U, t ∈ J.
Hence we may define a smooth map

Φ̃ : J ×M →M

by Φ̃(t, q) = x−1
p Ψp(t, xpq) if q ∈ x−1

p V ′
p .

Note that the uniqueness of solution also gives that

Φ̃(t, Φ̃(s, q)) = Φ̃(s + t, q)

for |s|, |t| and |s+ t| less than ǫ.
But this also means that we may extend the domain of definition to get a map

Φ: R ×M → M

since for any t ∈ R there is a natural number k such that |t/k| < ǫ, and we simply define
Φ(t, q) as Φ̃t/k applied k times to q.

The condition that M was compact was crucial to this proof. A similar statement is
true for noncompact manifolds, and we will return to that statement later.

Exercise 8.2.4 Given two flows ΦN and ΦS on the sphere S2. Why does there exist a flow
Φ with Φ(t, q) = ΦN (t, q) for small t and q close to the North pole, and Φ(t, q) = ΦS(t, q)
for small t and q close to the South pole?

Exercise 8.2.5 Construct vector fields on the torus such that the solution curves are all
either

• imbedded circles, or

• dense immersions.

Exercise 8.2.6 Let O(n) be the orthogonal group, and recall from exercise 5.4.10 the
isomorphism between the tangent bundle of O(n) and the projection on the first factor

E = {(g, A) ∈ O(n)×Mn(R)|At = −gtAgt} → O(n).

Choose a skew matrix A ∈Mn(R) (i.e., such that At = −A), and consider the vector field
X : O(n)→ TO(n) induced by

O(n)→E
g 7→(g, gA)

Show that the flow associated to X is given by Φ(s, g) = gesA where the exponential is
defined as usual by eB =

∑∞
n=0

Bn

n!
.
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8.3 Local flows

We now make the necessary modifications for the non-compact case.

On manifolds that are not compact, the concept of a (global) flow is not the correct
one. This can be seen by considering a global flow Φ on some manifold M and restricting
it to some open submanifold U . Then some of the flow lines may leave U after finite time.
To get a “flow” ΦU on U we must then accept that ΦU is only defined on some open subset
of R × U containing {0} × U .

Also, if we jump ahead a bit, and believe that flows should correspond to general
solutions to first order ordinary differential equations (that is, vector fields), you may
consider the differential equation

y′ = y2, y(0) = y0

on M = R (the corresponding vector field is
R → TR given by s 7→ [t 7→ s+ s2t]).
Here the solution is of the type

y(t) =





1
1/y0−t if y0 6= 0

0 if y0 = 0

and the domain of the “flow”

Φ(t, p) =





1
1/p−t if p 6= 0

0 if p = 0

is
A = {(t, p) ∈ R ×R | pt < 1}

The domain A of the “flow”. It con-

tains an open neighborhood around

{0} ×M

Definition 8.3.1 Let M be a smooth manifold. A local flow is a smooth map
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Φ: A→M

where A ⊆ R×M is open and contains {0}×
M , such that for each p ∈M

Jp × {p} = A ∩ (R × {p})

is connected (so that Jp is an open interval
containing 0) and such that

• Φ(0, p) = p

• Φ(s,Φ(t, p)) = Φ(s + t, p)

for all p ∈ M such that (t, p), (s + t, p) and
(s,Φ(t, p)) are in A.
For each p ∈ M we define −∞ ≤ ap < 0 <
bp ≤ ∞ by Jp = (ap, bp).

The “horizontal slice” Jp of the do-

main of a local flow is an open inter-

val containing zero.

Definition 8.3.2 A local flow Φ: A→M is maximal if there is no local flow Ψ: B →M
such that A ( B and Ψ|A = Φ.

Note that maximal flows that are not global must leave any given compact subset within
finite time:

Lemma 8.3.3 Let K ⊂ M be a compact subset of a smooth manifold M , and let Φ be a
maximal local flow on M such that bp <∞. Then there is an ǫ > 0 such that Φ(t, p) /∈ K
for t > bp − ǫ.
Proof: Since K is compact there is an ǫ > 0 such that

[−ǫ, ǫ]×K ⊆ A ∩ (R ×K)

If Φ(t, p) ∈ K for t < T where T > bp − ǫ then we would have that Φ could be extended
to T + ǫ > bp by setting

Φ(t, p) = Φ(ǫ,Φ(t− ǫ, p))
for all T ≤ t < T + ǫ.

Note 8.3.4 The definitions of the velocity field

→
Φ: M → TM

(the tangent vector
→
Φ(p) = [t 7→ Φ(t, p)] only depends on the values of the curve in a small

neighborhood of 0), the flow lines

Φ(−, p) : Jp →M, t 7→ Φ(t, p)
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and the orbits
Φ(Jp, p) ⊆M

make just as much sense for a local flow Φ.
However, we can’t talk about “the diffeomorphism Φt” since there may be p ∈M such

that (t, p) /∈ A, and so Φt is not defined on all of M .

Example 8.3.5 Check that the proposed flow

Φ(t, p) =





1
1/p−t if p 6= 0

0 if p = 0

is a local flow with velocity field
→
Φ: R → TR given by s 7→ [t 7→ Φ(t, s)] (which under the

standard trivialization

TR
[ω] 7→(ω(0),ω′(0))−−−−−−−−−→ R ×R

correspond to s 7→ (s, s2) – and so
→
Φ(s) = [t 7→ Φ(t, s)] = [t 7→ s+ s2t]) with domain

A = {(t, p) ∈ R ×R|pt < 1}

and so ap = 1/p for p < 0 and ap = −∞ for p ≥ 0. Note that Φt only makes sense for
t = 0.

8.4 Integrability

Theorem 8.4.1 Let M be a smooth manifold. Then the velocity field gives a natural
bijection between the sets

{maximal local flows on M}⇆ {vector fields on M}

Proof: The essential idea is the same as in the compact case, but we have to worry a
bit more about the domain of definition of our flow. The local solution to the ordinary
differential equation means that we have unique maximal solution curves

φp : Jp → M

for all p. This also means that the curves t 7→ φp(s + t) and t 7→ φφp(s)(t) agree (both are
solution curves through φp(s)), and we define

Φ: A→M

by setting
A =

⋃

p∈M
Jp × {p}, and Φ(t, p) = φp(t)
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The only questions are whether A is open and Φ is smooth. But this again follows from
the local existence theorems: around any point in A there is a neighborhood on which Φ
corresponds to the unique local solution (see [3] page 82 and 83 for more details).

Note 8.4.2 Some readers may worry about the fact that we do not consider “time depen-
dent” differential equations, but by a simple trick as in [12] page 226, these are covered by
our present considerations.

Exercise 8.4.3 Find a nonvanishing vector field on R whose solution curves are only
defined on finite intervals.

8.5 Second order differential equations1

We give a brief and inadequate sketch of second order differential equations. This is
important for a wide variety of applications, in particular for the theory of geodesics which
will be briefly discussed in section 9.2.7 after partitions of unity has been covered.

For a smooth manifold M let πM : TM → M be the tangent bundle (just need a
decoration on π to show its dependence on M).

Definition 8.5.1 A second order differential equation on a smooth manifoldM is a smooth
map

ξ : TM → TTM

such that

TTM
TπM

zzuuuuuuu
uu

πT M

$$I
IIII

IIII

TM TM
=oo = //

ξ

OO

TM

commutes.

Note 8.5.2 The πTMξ = idTM just says that ξ is a vector field on TM , it is the other
relation (TπM)ξ = idTM which is crucial.

Exercise 8.5.3 The flat case: reference sheet. Make sense of the following remarks, write
down your interpretation and keep it for reference.

A curve in TM is an equivalence class of “surfaces” in M , for if β : J → TM then to
each t ∈ J we have that β(t) must be an equivalence class of curves, β(t) = [ω(t)] and we

1This section is not referred to later in the book except in the example on the exponential map 9.2.7
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may think of t 7→ {s 7→ ω(t)(s)} as a surface if we let s and t move simultaneously. If
U ⊆ Rn is open, then we have the trivializations

TU
[ω] 7→(ω(0),ω′(0))−−−−−−−−−→∼=

U ×Rn

with inverse (p, v) 7→ [t 7→ p+ tv] (the directional derivative at p in the vth direction) and

T (TU)
[β] 7→(β(0),β′(0))−−−−−−−−−→∼=

T (U)× (Rn ×Rn)

(β(0),β′(0))7→((ω(0,0),D2ω(0,0)),(D1ω(0,0),D2D1ω(0,0)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→∼=
(U ×Rn)× (Rn ×Rn)

with inverse (p, v1, v2, v3) 7→ [t 7→ [s 7→ ω(t)(s)]] with

ω(t)(s) = p+ sv1 + tv2 + stv3

Hence if γ : J → U is a curve, then γ̇ correspond to the curve

J
t7→(γ(t),γ′(t))−−−−−−−−→ U ×Rn

and if β : J → TU corresponds to t 7→ (x(t), v(t)) then β̇ corresponds to

J
t7→(x(t),v(t),x′(t),v′(t))−−−−−−−−−−−−−→ U ×Rn ×Rn ×Rn

This means that γ̈ = ˙̇γ corresponds to

J
t7→(γ(t),γ′(t),γ′(t),γ′′(t))−−−−−−−−−−−−−−→ U ×Rn ×Rn ×Rn

Exercise 8.5.4 Show that our definition of a second order differential equation corre-
sponds to the usual notion of a second order differential equation in the case M = Rn.

Definition 8.5.5 Given a second order differential equation

ξ : TM → TTM

A curve γ : J → M is called a solution curve for ξ on M if γ̇ is a solution curve to ξ “on
TM”.

Note 8.5.6 Spelling this out we have that

γ̈(t) = ξ(γ̇(t))

for all t ∈ J . Note the bijection

{solution curves β : J → TM}⇆ {solution curves γ : J →M}, γ̇ ← γ
β 7→ πMβ
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Chapter 9

Local phenomena that go global

In this chapter we define partitions of unity. They are smooth devices making it possible to
patch together some types of local information into global information. They come in the
form of “bump functions” such that around any given point there are only finitely many
of them that are nonzero, and such that the sum of their values is 1.

This can be applied for instance to patch together the nice local structure of a manifold
to an imbedding into an Euclidean space (we do it in the compact case, see Theorem 9.2.6),
construct sensible metrics on the tangent spaces (so-called Riemannian metrics 9.3), and
in general to construct smooth functions with desirable properties. We will also use it to
prove Ehresmann’s fibration theorem 9.5.6.

9.1 Refinements of covers

In order to patch local phenomena together, we will be using that manifolds can be covered
by chart domains in a very orderly fashion, by means of what we will call “good” atlases.
This section gives the technical details needed.

If 0 < r let En(r) = {x ∈ Rn||x| < r} be the open n-dimensional ball of radius r
centered at the origin.

Lemma 9.1.1 Let M be an n-dimensional manifold. Then there is a countable atlas A
such that x(U) = En(3) for all (x, U) ∈ A and such that

⋃

(x,U)∈A
x−1(En(1)) = M

If M is smooth all charts may be chosen to be smooth.

Proof: Let B be a countable basis for the topology on M . For every p ∈M there is a chart
(x, U) with x(p) = 0 and x(U) = En(3). The fact that B is a basis for the topology gives
that there is a V ∈ B with

p ∈ V ⊆ x−1(En(1))

153
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For each such V ∈ B choose just one such chart (x, U) with x(U) = En(3) and

x−1(0) ∈ V ⊆ x−1(En(1))

The set of these charts is the desired countable A.

If M were smooth we just append “smooth” in front of every “chart” in the proof
above.

Lemma 9.1.2 Let M be a manifold. Then there is a sequence A1 ⊆ A2 ⊆ A3 ⊆ . . . of
compact subsets of M such that for every i ≥ 1 the compact subset Ai is contained in the
interior of Ai+1 and such that

⋃
iAi = M

Proof: Let {(xi, Ui)}i=1,... be the countable atlas of the lemma above, and let

Ak =
k⋃

i=1

x−1
i (En(2− 1/k))

Definition 9.1.3 Let U be an open cover of a space X. We say that another cover V is
a refinement of U if every member of V is contained in a member of U .

Definition 9.1.4 Let U be an open cover of a space X. We say that U is locally finite if
each p ∈ X has a neighborhood which intersects only finitely many sets in U .

Definition 9.1.5 Let M be a manifold and let U be an open cover of M . A good atlas
subordinate to U is a countable atlas A on M such that

1) the cover {V }(x,V )∈A is a locally finite refinement of U ,

2) x(V ) = En(3) for each (x, V ) ∈ A and

3)
⋃

(x,V )∈A x
−1(En(1)) = M .

Theorem 9.1.6 Let M be a manifold and let U be an open cover of M . Then there exists
a good atlas A subordinate to U . If M is smooth, then A may be chosen smooth too.
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Proof: The remark about
the smooth situation will
follow by the same proof.
Choose a sequence

A1 ⊆ A2 ⊆ A3 ⊆ . . .

of compact subsets of M
such that for every i ≥ 1
the compact subset Ai is
contained in the interior of
Ai+1 and such that

⋃
iAi =

M .
For every point

p ∈ Ai+1 − int(Ai)

choose a Up ∈ U with
p ∈ Up and choose a chart
(yp,Wp) such that p ∈ Wp

and yp(p) = 0.

The positioning of the charts

Since int(Ai+2)− Ai−1, yp(Wp) and Up are open there is an ǫp > 0 such that

En(ǫp) ⊆ yp(Wp), y−1
p (En(ǫp)) ⊆ (int(Ai+2)− Ai−1) ∩ Up

Let Vp = y−1
p (En(ǫp)) and

xp =
3

ǫp
yp|Vp

: Vp → En(3)

Then {x−1
p (En(1))}p covers the compact set Ai+1− int(Ai), and we may choose a finite set

of points p1, . . . , pk such that

{x−1
pj

(En(1))}j=1,...,k

still cover Ai+1 − int(Ai).
Letting A consist of the (xpj

, Vpj
) as i and j vary we have proven the theorem. �

9.2 Partition of unity

Recall that if f : X → R is a continuous function, then the support of f is supp(f) =
f−1(0).
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Definition 9.2.1 A family of continuous function

φα : X → [0, 1]

is called a partition of unity if

the collection of subsets { {p ∈ X|φα(p) 6= 0} } is a locally finite (9.1.4) open cover
of X,

for all p ∈ X the (finite) sum
∑
α φα(p) = 1.

The partition of unity is said to be subordinate to a cover U of X if in addition

for every φα there is a U ∈ U with supp(φα) ⊆ U .

Given a space that is not too big and complicated (for instance if it is a compact
manifold) it may not be surprising that we can build a partition of unity on it. What
is more surprising is that on smooth manifolds we can build smooth partitions of unity
(that is, all the φα’s are smooth).

In order to this we need smooth bump functions, in particular, we will use the smooth
bump function

γ(1,1) : Rn → R

defined in Lemma 4.1.16 which has the property that γ(1,1)(p) = 1 for all p with |p| ≤ 1
and γ(1,1)(p) = 0 for all p ∈ Rn with |p| ≥ 2.

Theorem 9.2.2 Let M be a differentiable manifold, and let U be a cover of M . Then
there is a smooth partition of unity of M subordinate to U .

Proof: To the good atlas A = {(xi, Vi)} subordinate to U constructed in theorem 9.1.6 we
may assign functions {ψi} as follows

ψi(q) =




γ(1,1)(xi(q)) for q ∈ Vi = x−1

i (En(3))

0 otherwise.

The function ψi has support x−1
i (En(2)) and is obviously smooth. Since {Vi} is locally

finite, around any point p ∈M there is an open set such there are only finitely many ψi’s
with nonzero values, and hence the expression

σ(p) =
∑

i

ψi(p)

defines a smooth function M → R with everywhere positive values. The partition of unity
is then defined by

φi(p) = ψi(p)/σ(p)

�
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Exercise 9.2.3 Let M be a smooth manifold, f : M → R a continuous function and ǫ a
positive real number. Then there is a smooth g : M → R such that for all p ∈M

|f(p)− g(p)| < ǫ.

You may use without proof Weierstrass’ theorem which says the following: Suppose
f : K → R is a continuous function with K ⊆ Rm compact. For every ǫ > 0, there exists
a polynomial g such that for all x ∈ K we have |f(x)− p(x)| < ǫ.

Exercise 9.2.4 Let L→M be a line bundle (one-dimensional smooth vector bundle over
the smooth manifold M). Show that L⊗ L→M is trivial.

9.2.5 Imbeddings in Euclidean space

As an application of partitions of unity, we will prove the easy version of Whitney’s imbed-
ding theorem. The hard version states that any manifold may be imbedded in the Euclidean
space of the double dimension. As a matter of fact, with the appropriate topology, the
space of imbeddings M → R2n+1 is dense in the space of all smooth maps M → R2n+1

(see e.g. [5, 2.1.0], or the more refined version [5, 2.2.13]). We will only prove:

Theorem 9.2.6 Let M be a compact smooth manifold. Then there is an imbedding M →
RN for some N .

Proof: Assume M has dimension m. Choose a finite good atlas

A = {xi, Vi}i=1,...,r

Define ψi : M → R and ki : M → Rm by

ψi(p) =




γ(1,1)(xi(p)) for p ∈ Vi
0 otherwise

ki(p) =




ψi(p) · xi(p) for p ∈ Vi
0 otherwise

Consider the map

f : M →
r∏

i=1

Rm ×
r∏

i=1

R

p 7→ ((k1(p), . . . , kr(p)), (ψ1(p), . . . , ψr(p)))

We shall prove that this is an imbedding by showing that it is an immersion inducing a
homeomorphism onto its image.

Firstly, f is an immersion, because for every p ∈M there is a j such that Tpkj has rank
m.



158 CHAPTER 9. LOCAL PHENOMENA THAT GO GLOBAL

Secondly, assume f(p) = f(q) for two points p, q ∈M . Assume p ∈ x−1
j (Em(1)). Then

we must have that q is also in x−1
j (Em(1)) (since ψj(p) = ψj(q)). But then we have that

kj(p) = xj(p) is equal to kj(q) = xj(q), and hence p = q since xj is a bijection.
Since M is compact, f is injective (and so M → f(M) is bijective) and RN Hausdorff,

M → f(M) is a homeomorphism by theorem 10.7.8.
Techniques like this are used to construct imbeddings. However, occasionally it is

important to know when imbeddings are not possible, and then these techniques are of no
use. For instance, why can’t we imbed RP2 in R3? Proving this directly is probably very
hard. For such problems algebraic topology is needed.

9.2.7 The exponential map1

This section gives a quick definition of the exponential map from the tangent space to the
manifold.

Exercise 9.2.8 (The existence of “geodesics”) The differential equation TRn → TTRn

corresponding to the map

Rn ×Rn → Rn ×Rn ×Rn ×Rn, (x, v) 7→ (x, v, v, 0)

has solution curves given by the straight line t 7→ x+ tv (a straight curve has zero second
derivative). Prove that you may glue together these straight lines by means of charts and
partitions of unity to get a second order differential equation (see Definition 8.5.1)

ξ : TM → TTM

with the property that

TTM
Ts−−−→ TTM

sξ

x ξ

x

TM
s−−−→ TM

for all s ∈ R where s : TM → TM is multiplication by s in each fiber.

The significance of the diagram in the previous exercise on geodesics is that “you may
speed up (by a factor s) along a geodesic, but the orbit won’t change”.

Exercise 9.2.9 (Definition of the exponential map). Given a second order differential
equation ξ : TM → TTM as in exercise 9.2.8, consider the corresponding local flow Φ: A→
TM , define the open neighborhood of the zero section

T = {[ω] ∈ TM |1 ∈ A ∩ (R × {[ω]})}
1Geodesics and the exponential map is important for many applications, but is not used later on in

these notes, so this section may be skipped without disrupting the flow.
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and you may define the exponential map

exp : T → M

by sending [ω] ∈ TM to πMΦ(1, [ω]).
Essentially exp says: for a tangent vector [ω] ∈ TM start out in ω(0) ∈ M in the

direction on ω′(0) and travel a unit in time along the corresponding geodesic.
The exponential map depends on on ξ. Alternatively we could have given a definition

of exp using a choice of a Riemannian metric, which would be more in line with the usual
treatment in differential geometry.

9.3 Riemannian structures

In differential geometry one works with more highly structured manifolds than in differ-
ential topology. In particular, all manifolds should come equipped with metrics on the
tangent spaces which vary smoothly from point to point. This is what is called a Rieman-
nian manifold, and is crucial to many applications.

In this section we will show that all smooth manifolds have a structure of a Riemannian
manifold. However, the reader should notice that there is a huge difference between merely
saying that a given manifold has some Riemannian structure, and actually working with
manifolds with a chosen Riemannian structure.

Recall from 7.4.1(9) that if V is a vector space, then SB(V ) is the vector space of all
symmetric bilinear forms g : V × V → R, i.e., functions g such that g(v, w) = g(w, v) and
which are linear in each variable.

Recall that this lifts to the level of bundles: if π : E → X is a bundle, we get an
associated symmetric bilinear forms bundle SB(π) : SB(E)→ X (see Exercise 7.4.10). A
more involved way of saying this is SB(E) = (S2E)∗ → X in the language of 7.4.1(4)
and 7.4.1(7).

Definition 9.3.1 Let V be a vector space. An inner product is a symmetric bilinear form
g ∈ SB(V ) which is positive definite, i.e., we have that g(v, v) ≥ 0 for all v ∈ V and
g(v, v) = 0 only if v = 0.

Example 9.3.2 So, if A is a symmetric n × n-matrix, then 〈v, w〉A = vtAw defines an
inner product 〈, 〉A ∈ SB(Rn). In particular, if A is the identity matrix we get the standard
inner product on Rn.

Definition 9.3.3 A fiber metric on a vector bundle π : E → X is a section g : X → SB(E)
on the associated symmetric bilinear forms bundle, such that for every p ∈ X the associated
symmetric bilinear form gp : Ep × Ep → R is positive definite. The fiber metric is smooth
if E → X and the section g are smooth.

A fiber metric is often called a Riemannian metric, although many authors reserve this
notion for a fiber metric on the tangent bundle of a smooth manifold.
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Definition 9.3.4 A Riemannian manifold is a smooth manifold with a smooth fiber metric
on the tangent bundle.

Theorem 9.3.5 Let M be a differentiable manifold and let E → M be an n-dimensional
smooth bundle with bundle atlas B. Then there is a fiber metric on E →M

Proof: Choose a good atlas A = {(xi, Vi)}i∈N subordinate to {U |(h, U) ∈ B} and a smooth
partition of unity {φi : M → R} with supp(φi) ⊂ Vi as given by the proof of theorem 9.2.2.

Since for any of the Vi’s, there is a bundle chart (h, U) in B such that Vi ⊆ U , the
bundle restricted to any Vi is trivial. Hence we may choose a fiber metric, i.e., a section

σi : Vi → SB(E)|Vi

such that σi is (bilinear, symmetric and) positive definite on every fiber. For instance we
may let σi(p) ∈ SB(Ep) be the positive definite symmetric bilinear map

Ep × Ep
hp×hp−−−−→ Rn ×Rn (v,w)7→v·w=vTw−−−−−−−−−→ R

Let gi : M → SB(E) be defined by

gi(p) =




φi(p)σi(p) if p ∈ Vi
0 otherwise

and let g : M → SB(E) be given as the sum g(p) =∑
i gi(p). The property “positive definite” is convex,

i.e., if σ1 and σ2 are two positive definite forms on
a vector space and t ∈ [0, 1], then tσ1 + (1 − t)σ2 is
also positive definite (since tσ1(v, v) + (1 − t)σ2(v, v)
must obviously be nonnegative, and can be zero only if
σ1(v, v) = σ2(v, v) = 0). By induction we get that g(p)
is positive definite since all the σi(p)’s were positive
definite.

In the space of symmet-

ric bilinear forms, all the

points on the straight line

between two positive defi-

nite forms are positive def-

inite.

Corollary 9.3.6 All smooth manifolds possess Riemannian metrics.

Note 9.3.7 A fiber metric on a bundle E → M gives rise to an isomorphism between
E → M and its dual bundle E∗ → M as follows. If V is a finite dimensional vector space
and 〈−,−〉 is an inner product, we define an isomorphism V → V ∗ by sending v ∈ V to the
linear map 〈v,−〉 : V → R sending w ∈ V to 〈v, w〉. The bilinearity of the inner product
ensures that the map V → V ∗ is linear and well defined. The nondegenerate property
of the inner product is equivalent to the injectivity of V → V ∗, and since any injective
linear map of vector spaces of equal finite dimension is an isomorphism, V → V ∗ is an
isomorphism.
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Now, given a vector bundle E →M with a chosen fiber metric g we define

E
g∗

∼=
//

  A
AA

AA
AA

A E∗

}}{{
{{

{{
{{

M

by using the inner product gp : Ep⊗Ep → R to define g∗ : Ep ∼= (Ep)
∗ with g∗(v) = gp(v,−).

Since gp varies smoothly in p this assembles to the desired isomorphism of bundles (exercise:
check that this actually works).

Ultimately, we see that a Riemannian manifold comes with an isomorphism

TM
g∗−−−→∼=

> (TM)∗

between the tangent and the cotangent bundles.

Example 9.3.8 In applications the fiber metric is often given by physical considerations.
Consider a particle moving on a manifold M , defining, a smooth curve γ : R → M . At
each point the velocity of the curve defines a tangent vector, and so the curve lifts to a
curve on the tangent space γ : R → TM (see 8.1.14 for careful definitions). The dynamics
is determined by the energy, and the connection between the metric and the energy is
that the norm associated with the metric g at a given point is twice the kinetic energy
T . The “generalized” or “conjugate momentum” in mechanics is then nothing but g∗ of
the velocity, living in the cotangent bundle T ∗M which is often referred to as the “phase
space”.

For instance, if M = Rn (with the identity chart) and the mass of the particle is m,
the kinetic energy of a particle moving with velocity v ∈ TpM at p ∈M is 1

2
m|v|2, and so

the appropriate metric is m times the usual Euclidean metric gp(v, w) = m · 〈v, w〉 (and in
particular independent of p) and the generalized momentum is m〈v,−〉 ∈ T ∗

pM .

9.4 Normal bundles

With the knowledge that the existence of fiber metrics is not such an uncommon state of
affairs, we offer a new take on normal bundles. Normal bundles in general were introduced
in Section 7.5.

Definition 9.4.1 Given a bundle π : E → X with a chosen fiber metric g and a subbundle
F ⊆ E, then we define the normal bundle with respect to g of F ⊆ E to be the subset

F⊥ =
∐

p∈X
F⊥
p

given by taking the orthogonal complement of Fp ∈ Ep (relative to the metric g(p)).
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Lemma 9.4.2 Given a bundle π : E → X with a fiber metric g and a subbundle F ⊂ E,
then

1. the normal bundle F⊥ ⊆ E is a subbundle

2. the composite
F⊥ ⊆ E → E/F

is an isomorphism of bundles over X.

3. the bundle morphism F ⊕F⊥ → E induced by the inclusions is an isomorphism over
X.

Proof: Choose a bundle chart (h, U) such that

h(F |U) = U × (Rk × {0}) ⊆ U ×Rn

Let vj(p) = h−1(p, ej) ∈ Ep for p ∈ U . Then (v1(p), . . . , vn(p)) is a basis for Ep whereas
(v1(p), . . . , vk(p)) is a basis for Fp. We can then perform the Gram-Schmidt process with
respect to the metric g(p) to transform these bases to orthogonal bases (v′

1(p), . . . , v′
n(p))

for Ep, (v′
1(p), . . . , v

′
k(p)) for Fp and (v′

k+1(p), . . . , v
′
n(p)) for F⊥

p .
We can hence define a new bundle chart (h′, U) given by

h′ : E|U → U ×Rn

n∑

i=1

aiv
′
i(p) 7→ (p, (a1, . . . , an))

(it is a bundle chart since the metric varies continuously with p, and so the basis change
from {vi} to {v′

i} is not only an isomorphism on each fiber, but a homeomorphism) which
gives F⊥|U as U × ({0} ×Rn−k).

For the second claim, observe that the dimension of F⊥ is equal to the dimension of
E/F , and so the claim follows if the map F⊥ ⊆ E → E/F is injective on every fiber, but
this is true since Fp ∩ F⊥

p = {0}.
For the last claim, note that the map in question induces a linear map on every fiber

which is an isomorphism, and hence by lemma 6.3.12 the map is an isomorphism of bundles.

Note 9.4.3 Note that the bundle chart h′ produced in the lemma above is orthogonal
on every fiber (i.e., g(x)(e, e′) = (h′(e)) · (h′(e′))). This means that all the transition
functions between maps produced in this fashion would map to the orthogonal group
O(n) ⊆ GLn(R).

In conclusion:

Corollary 9.4.4 Every bundle over a (smooth) manifold possesses an atlas whose transi-
tion functions maps to the orthogonal group.
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Note 9.4.5 This is an example of the notion of reduction of the structure group, in this
case from GLn(R) to O(n). Another example is gotten when it is possible to choose an
atlas whose transition functions land in the special linear group SLn(R): then the bundle
is orientable, see Section 7.6. If all transition functions are the identity matrix, then the
bundle is trivial. If n = 2m, then GLm(C) ⊆ GLn(R), and a reduction to GLm(C) is
called a complex structure on the bundle.

Generally, a reduction of the structure group provides important information about the
bundle. In particular, a reduction of the structure group for the tangent bundle provides
important information about the manifold.

Definition 9.4.6 Let N ⊆M be a smooth submanifold. The normal bundle ⊥N → N is
defined as the quotient bundle (TM |N )/TN → N (see Exercise 7.4.6).

In a submanifold N ⊆ M the tangent bundle of N is naturally a subbundle of the

tangent bundle of M restricted to N , and the normal bundle is the quotient on each

fiber, or isomorphically in each fiber: the normal space

More generally, if f : N →M is an imbedding, we define the normal bundle ⊥fN → N
to be the bundle (f ∗TM)/TN → N .

Note 9.4.7 With respect to some Riemannian structure on M , we note that the normal
bundle ⊥N → N of N ⊆M is isomorphic to (TN)⊥ → N .

Exercise 9.4.8 Let M ⊆ Rn be a smooth submanifold. Prove that ⊥M ⊕ TM → M is
trivial.

Exercise 9.4.9 Consider Sn as a smooth submanifold of Rn+1 in the usual way. Prove
that the normal bundle is trivial.

Exercise 9.4.10 Let M be a smooth manifold, and consider M as a submanifold by
imbedding it as the diagonal in M × M (i.e., as the set {(p, p) ∈ M ×M}: show that
it is a smooth submanifold). Prove that the normal bundle ⊥M → M is isomorphic to
TM →M .

Exercise 9.4.11 The tautological line bundle ηn → RPn is a subbundle of the trivial
bundle pr : RPn ×Rn+1 → RPn:

ηn = {(L, v) ∈ RPn ×Rn+1 | v ∈ L} ⊆ RPn ×Rn+1 = ǫ.
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Let
η⊥

1 = {{(L, v) ∈ RPn ×Rn+1 | v ∈ L⊥} ⊆ RPn ×Rn+1 = ǫ

be the orthogonal complement.
Prove that the Hom bundle Hom(ηn, η

⊥
n )→ is isomorphic to the tangent bundle T n →

RPn.

9.5 Ehresmann’s fibration theorem

We have studied quite intensely what consequences it has that a map f : M → N is
an immersion. In fact, adding the point set topological property that M → f(M) is a
homeomorphism we got in Theorem 5.7.4 that f was an imbedding.

We are now ready to discuss submersions (which by definition said that all points were
regular). It turns out that adding a point set property we get that submersions are also
rather special: they look like vector bundles, except that the fibers are not vector spaces,
but manifolds!

Definition 9.5.1 Let f : E → M be a smooth map. We say that f is a locally trivial
fibration if for each p ∈M there is an open neighborhood U and a diffeomorphism

h : f−1(U)→ U × f−1(p)

such that

f−1(U)
h //

f |
f−1(U)

##G
GG

GG
GG

GG
U × f−1(p)

prU
yyssssssssss

U

commutes.

Over a small U ∈M a locally trivial fibration looks like the projection U×f−1(p)→ U

(the picture is kind of misleading, since the projection S1 × S1 → S1 is globally of

this kind).
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Example 9.5.2 The projection of the torus
down to a circle which is illustrated above is
kind of misleading since the torus is globally a
product. However, due to the scarcity of com-
pact two-dimensional manifolds, the torus is
the only example of a total space of a locally
trivial fibration with non-discrete fibers that
can be imbedded in R3.
However, there are nontrivial examples we
can envision: for instance, the projection of
the Klein bottle onto its “central circle” (see
illustration to the right) is a nontrivial exam-
ple.

a a

b

b

central circle

The projection from the Klein bottle

onto its “central circle” is a locally

trivial fibration

If we allow discrete fibers there are many examples small enough to to be pictured.
For instance, the squaring operation z 7→ z2 in complex numbers gives a locally trivial
fibration S1 → S1: the fiber of any point z ∈ S1 is the set consisting of the two complex
square roots of z (it is what is called a double cover). However, the fibration is not trivial
(since S1 is not homeomorphic to S1∐S1)!

The last example is of a kind one encounters frequently: if E → M is a vector bundle
endowed with some fiber metric, one can form the so-called sphere bundle S(E) → M by
letting S(E) = {v ∈ E| |v| = 1}. The double cover above is exactly the sphere bundle
associated to the infinite Möbius band.

Exercise 9.5.3 Let E → M be a vector bundle. Show that E → M has a non-vanishing
vector field if and only if the associated sphere bundle (with respect to some fiber metric)
S(E)→ M has a section.

Exercise 9.5.4 In a locally trivial smooth fibration over a connected smooth manifold all
fibers are diffeomorphic.

Definition 9.5.5 A continuous map f : X → Y is proper if the inverse image of compact
subsets are compact.

Theorem 9.5.6 (Ehresmann’s fibration theorem) Let f : E →M be a proper submersion.
Then f is a locally trivial fibration.

Proof: Since the question is local in M , we may start out by assuming that M = Rn.
The theorem then follows from lemma 9.5.8 below.

Note 9.5.7 Before we start with the proof, it is interesting to see what the ideas are.
By the rank theorem a submersion looks locally (in E and M) as a projection

Rn+k → Rn × {0} ∼= Rn
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and so locally all submersions are trivial fibrations. We will use flows to glue all these
pieces together using partitions of unity.

R
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��������������������

R

n

k

Locally a submersion looks like the

projection from Rn+k down onto

Rn.

The "fiber direction"

q

The idea of the proof: make “flow”

that flows transverse to the fibers:

locally OK, but can we glue these

pictures together?

The clue is then that a point (t, q) ∈ Rn × f−1(p) should correspond to what you get
if you flow away from q, first a time t1 in the first coordinate direction, then a time t2 in
the second and so on.

Lemma 9.5.8 Let f : E → Rn be a proper submersion. Then there is a diffeomorphism
h : E → Rn × f−1(0) such that

E
h //

f

  A
AA

AA
AA

A
Rn × f−1(0)

prRn

xxqqqqqqqqqq

Rn

commutes.

Proof: If E is empty, the lemma holds vacuously since then f−1(0) = ∅, and ∅ = Rn × ∅.
Disregarding this rather uninteresting case, let p0 ∈ E and r0 = f(p0) ∈ Rn. The third part
of the rank theorem 5.3.1 guarantees that for all p ∈ f−1(r0) there are charts xp : Up → U ′

p

such that

Up
f |Up−−−→ Rn

xp

y
∥∥∥∥

U ′
p ⊆ Rn+k pr−−−→ Rn
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commutes (the map pr : Rn+k → Rn is the projection onto the first n coordinates.
Choose a partition of unity (see theorem 9.2.2) {φj} subordinate to {Up}. For every

j choose p such that supp(φj) ⊆ Up, and let xj = xp (so that we now are left with only
countably many charts).

Define the vector fields (the ith partial derivative in the jth chart)

Xi,j : Uj → TUj , i = 1, . . . , n

by Xi,j(q) = [ωi,j(q)] where

ωi,j(q)(t) = x−1
j (xj(q) + eit)

and where ei ∈ Rn is the ith unit vector. Let

Xi =
∑

j

φjXi,j : E → TE, i = 1, . . . , n

(a “global version” of the i-th partial derivative).
Notice that since f(u) = pr xj(u) for u ∈ Uj we get that

fωi,j(q)(t) = fx−1
j (xj(q) + eit) = pr xjx

−1
j (xj(q) + eit) = pr (xj(q) + eit)

= f(q) + eit

(the last equality uses that i ≤ n), which is independent of j. Since
∑
j φj(q) = 1 for all q

this gives that

TfXi(q) =
∑

j

φj(q)[fωi,j(q)] =
∑

j

φj(q)[t 7→ f(q) + eit]

= [t 7→ f(q) + eit],

or in other words
TE

Tf−−−→ TRn

Xi

x Di

x

E
f−−−→ Rn

commutes for all i = 1, . . . , n.
Fix the index i for a while. Notice that the curve β : R → Rn given by β(t) = u+ tei is

the unique solution to the initial value problem β ′(t) = ei, β(0) = u (see Theorem 8.2.3),
or in terms of the velocity vector β̇ : R → TRn given by β̇(t) = [s 7→ β(s+ t)] of 8.1.14: β
is unique with respect to the fact that β̇ = Diβ and β(0) = u.

Let Φi : Ai → E be the local flow corresponding to Xi, and let Jq be the slice of Ai at
q ∈ E (i.e., Ai ∩ (R × {q}) = Jq × {q}).

Fix q (and i), and consider the flow line α(t) = Φ(t, q). Since flow lines are solution
curves, the triangle in

TE
Tf // TRn

Jq

α̇
==||||||||

α // E
f //

Xi

OO

Rn

Di

OO
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commutes, and since Tf(α̇) = ˙(fα) and (fα)(0) = f(q) we get by uniqueness that

fΦi(t, q) = fα(t) = f(q) + tei.

We want to show that Ai = R ×E. Since fΦi(t, q) = f(q) + eit we see that the image
of a finite open interval under fΦi(−, q) must be contained in a compact, say K. Hence
the image of the finite open interval under Φi(−, q) must be contained in f−1(K) which is
compact since f is proper. But if Jq 6= R, then Corollary 8.3.3 tells us that Φi(−, q) will
leave any given compact in finite time leading to a contradiction.

Hence all the Φi defined above are global and we define the diffeomorphism

φ : Rn × f−1(r0)→ E

by

φ(t, q) = Φ1(t1,Φ2(t2, . . . ,Φn(tn, q) . . . )), t = (t1, . . . , tn) ∈ Rn, q ∈ f−1(r0).

The inverse is given by

E → Rn × f−1(r0)

q 7→ (f(q)− r0,Φn((r0)n − fn(q), . . . ,Φ1((r0)1 − f1(q), q) . . . )).

Finally, we note that we have also proven that f is surjective, and so we are free in our
choice of r0 ∈ Rn. Choosing r0 = 0 gives the formulation stated in the lemma.

Corollary 9.5.9 (Ehresmann’s fibration theorem, compact case) Let f : E → M be a sub-
mersion of compact smooth manifolds. Then f is a locally trivial fibration.

Proof: We only need to notice that E being compact forces f to be proper: if K ⊂ M
is compact, it is closed (since M is Hausdorff), and f−1(K) ⊆ E is closed (since f is
continuous). But a closed subset of a compact space is compact.

Exercise 9.5.10 Check in all detail that the proposed formula for the inverse of φ given
at the end of the proof of Ehresmann’s fibration theorem 9.5.6 is correct.

Exercise 9.5.11 Consider the projection

f : S3 → CP1

Show that f is a locally trivial fibration. Consider the map

ℓ : S1 → CP1

given by sending z ∈ S1 ⊆ C to [1, z]. Show that ℓ is an imbedding. Use Ehresmann’s
fibration theorem to show that the inverse image

f−1(ℓS1)

is diffeomorphic to the torus S1 × S1. (note: there is a diffeomorphism S2 → CP1 given
by (a, z) 7→ [1 + a, z], and the composite S3 → S2 induced by f is called the Hopf fibration
and has many important properties. Among other things it has the truly counter-intuitive
property of detecting a “three-dimensional hole” in S2!)



9.5. EHRESMANN’S FIBRATION THEOREM 169

Exercise 9.5.12 Let γ : R→M be a smooth curve and f : E →M a proper submersion.
Let p ∈ f−1(γ(0)). Show that there is a smooth curve σ : R → E such that

E

��
R

σ
>>|||||||| γ //M

commutes and σ(0) = p. Show that if the dimensions of E and M agree, then σ is unique.
In particular, study the cases and Sn → RPn and S2n+1 → CPn.
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Chapter 10

Appendix: Point set topology

I have collected a few facts from point set topology. The main focus of this note is to be
short and present exactly what we need in the manifold course. Point set topology may
be your first encounter of real mathematical abstraction, and can cause severe distress to
the novice, but it is kind of macho when you get to know it a bit better. However: keep in
mind that the course is about manifold theory, and point set topology is only a means of
expressing some (obvious?) properties these manifolds should possess. Point set topology
is a powerful tool when used correctly, but it is not our object of study.

The concept that typically causes most concern is the quotient space. This construction
is used widely whenever working with manifolds and must be taken seriously. However, the
abstraction involved should be eased by the many concrete examples (like the flat torus in
the robot’s arm example 2.1). For convenience I have repeated the definition of equivalence
relations at the beginning of section 10.6.

If you need more details, consult any of the excellent books listed in the references.
The real classics are [2] and [6], but the most widely used these days is [10]. There are also
many on-line textbooks, some of which you may find at the Topology Atlas’ “Education”
web site

http://at.yorku.ca/topology/educ.htm

Most of the exercises are not deep and are just rewritings of definitions (which may be
hard enough if you are new to the subject) and the solutions short.

If I list a fact without proof, the result may be deep and its proof (much too) hard.

At the end, or more precisely in section 10.10, I have included a few standard definitions
and statements about sets that are used frequently in both the text and in the exercises.
The purpose of collecting them in a section at the end, is that whereas they certainly
should not occupy central ground in the note (even in the appendix), the reader will still
find the terms in the index and be referred directly to a definition, if she becomes uncertain
about them at some point or other.
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10.1 Topologies: open and closed sets

Definition 10.1.1 A topology is a family of sets U closed under finite intersection and
arbitrary unions, that is if

if U,U ′ ∈ U , then U ∩ U ′ ∈ U

if I ⊆ U , then
⋃
U∈I U ∈ U .

Note 10.1.2 Note that the set X =
⋃
U∈U U and ∅ =

⋃
U∈∅ U automatically are members

of U .

Definition 10.1.3 We say that U is a topology on X, or that (X,U) is a topological space.
Frequently we will even refer to X as a topological space when U is evident from the
context.

Definition 10.1.4 The members of U are called the open sets of X with respect to the
topology U .

A subset C of X is closed if the complement X \ C = {x ∈ X|x /∈ C} is open.

Example 10.1.5 An open set on the real line R is a (possibly empty) union of open
intervals. Check that this defines a topology on R. Check that the closed sets do not form
a topology on R.

Definition 10.1.6 A subset of X is called a neighborhood of x ∈ X if it contains an open
set containing x.

Lemma 10.1.7 Let (X, T ) be a topological space. Prove that a subset U ⊆ X is open if
and only if for all p ∈ U there is an open set V such that p ∈ V ⊆ U .

Proof: Exercise!

Definition 10.1.8 Let (X,U) be a space and A ⊆ X a subset. Then the interior intA of
A in X is the union of all open subsets of X contained in A. The closure Ā of A in X is
the intersection of all closed subsets of X containing A.

Exercise 10.1.9 Prove that intA is the biggest open set U ∈ U such that U ⊆ A, and
that Ā is the smallest closed set C in X such that A ⊆ C.

Example 10.1.10 If (X, d) is a metric space (i.e., a set X and a symmetric positive
definite function

d : X ×X → R

satisfying the triangle inequality), then X may be endowed with the metric topology by
letting the open sets be arbitrary unions of open balls (note: given an x ∈ X and a positive
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real number ǫ > 0, the open ǫ-ball centered in x is the set B(x, ǫ) = {y ∈ X|d(x, y) < ǫ}).
Exercise: show that this actually defines a topology.

In particular, Euclidean n-space is defined to be Rn with the metric topology.

Exercise 10.1.11 The metric topology coincides with the topology we have already de-
fined on R.

10.2 Continuous maps

Definition 10.2.1 A continuous map (or simply a map)

f : (X,U)→ (Y,V)

is a function f : X → Y such that for every V ∈ V the inverse image

f−1(V ) = {x ∈ X|f(x) ∈ V }

is in U
In other words: f is continuous if the inverse images of open sets are open.

Exercise 10.2.2 Prove that a continuous map on the real line is just what you expect.
More generally, if X and Y are metric spaces, considered as topological spaces by giving

them the metric topology as in 10.1.10: show that a map f : X → Y is continuous iff the
corresponding ǫ− δ-horror is satisfied.

Exercise 10.2.3 Let f : X → Y and g : Y → Z be continuous maps. Prove that the
composite gf : X → Z is continuous.

Example 10.2.4 Let f : R1 → S1 be the map which sends p ∈ R1 to eip = (cos p, sin p) ∈
S1. Since S1 ⊆ R2, it is a metric space, and hence may be endowed with the metric
topology. Show that f is continuous, and also that the image of open sets are open.

Definition 10.2.5 A homeomorphism is a continuous map f : (X,U) → (Y,V) with a
continuous inverse, that is a continuous map g : (Y,V) → (X,U) with f(g(y)) = y and
g(f(x)) = x for all x ∈ X and y ∈ Y .

Exercise 10.2.6 Prove that tan: (−π/2, π/2)→ R is a homeomorphism.

Note 10.2.7 Note that being a homeomorphism is more than being bijective and con-
tinuous. As an example let X be the set of real numbers endowed with the metric topology,
and let Y be the set of real numbers, but with the “indiscrete topology”: only ∅ and Y are
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open. Then the identity map X → Y (sending the real number x to x) is continuous and
bijective, but it is not a homeomorphism: the identity map Y → X is not continuous.

Definition 10.2.8 We say that two spaces are homeomorphic if there exists a homeomor-
phism from one to the other.

10.3 Bases for topologies

Definition 10.3.1 If (X,U) is a topological space, a
subfamily B ⊆ U is a basis for the topology U if for
each x ∈ X and each V ∈ U with x ∈ V there is a
U ∈ B such that

x ∈ U ⊆ V
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

xU

V

Note 10.3.2 This is equivalent to the condition that each member of U is a union of
members of B.

Conversely, given a family of sets B with the property
that if B1, B2 ∈ B and x ∈ B1 ∩ B2 then there is a
B3 ∈ B such that x ∈ B3 ⊆ B1 ∩B2, then B is a basis
for the topology on X =

⋃
U∈B U given by declaring

the open sets to be arbitrary unions from B. We say
that the basis B generates the topology on X.

B1 B2

B 3

x

Exercise 10.3.3 The real line has a countable basis for its topology.

Exercise 10.3.4 The balls with rational radius and whose center have coordinates that
all are rational form a countable basis for Rn.

Just to be absolutely clear: a topological space (X,U) has a countable basis for its
topology iff there exist a countable subset B ⊆ U which is a basis.

Exercise 10.3.5 Let (X, d) be a metric space. Then the open balls form a basis for the
metric topology.

Exercise 10.3.6 Let X and Y be topological spaces, and B a basis for the topology on
Y . Show that a function f : X → Y is continuous if f−1(V ) ⊆ X is open for all V ∈ B.

10.4 Separation

There are zillions of separation conditions, but we will only be concerned with the most
intuitive of all: Hausdorff spaces.
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Definition 10.4.1 A topological space
(X,U) is Hausdorff if for any two distinct
x, y ∈ X there exist disjoint neighborhoods
of x and y.

Example 10.4.2 The real line is Hausdorff.

Example 10.4.3 More generally, the metric
topology is always Hausdorff.

x
y

The two points x and y are con-
tained in disjoint open sets.

10.5 Subspaces

Definition 10.5.1 Let (X,U) be a topolog-
ical space. A subspace of (X,U) is a subset
A ⊂ X with the topology given letting the
open sets be {A ∩ U |U ∈ U}.

Exercise 10.5.2 Show that the subspace
topology is a topology.

Exercise 10.5.3 Prove that a map to a sub-
space Z → A is continuous iff the composite

Z → A ⊆ X

is continuous.

X

U A

U

A   U

Exercise 10.5.4 Prove that if X has a countable basis for its topology, then so has A.

Exercise 10.5.5 Prove that if X is Hausdorff, then so is A.

Corollary 10.5.6 All subspaces of Rn are Hausdorff, and have countable bases for their
topologies.

Definition 10.5.7 If A ⊆ X is a subspace, and f : X → Y is a map, then the composite

A ⊆ X → Y

is called the restriction of f to A, and is written f |A.
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10.6 Quotient spaces

Before defining the quotient topology we recall the concept of equivalence relations.

Definition 10.6.1 Let X be a set. An equivalence relation on X is a subset E of of the
set X ×X = {(x1, x2)|x1, x2 ∈ X} satisfying the following three conditions

(reflexivity) (x, x) ∈ E for all x ∈ X
(symmetry) If (x1, x2) ∈ E then (x2, x1) ∈ E

(transitivity) If (x1, x2) ∈ E (x2, x3) ∈ E then (x1, x3) ∈ E

We often write x1 ∼ x2 instead of (x1, x2) ∈ E.

Definition 10.6.2 Given an equivalence relation E on a set X we may for each x ∈ X
define the equivalence class of x to be the subset [x] = {y ∈ X|x ∼ y}.

This divides X into a collection of nonempty, mutually disjoint subsets.
The set of equivalence classes is written X/ ∼, and we have a surjective function

X → X/ ∼

sending x ∈ X to its equivalence class [x].

Definition 10.6.3 Let (X,U) be a topological space, and consider an equivalence relation
∼ on X. The quotient space space with respect to the equivalence relation is the set X/ ∼
with the quotient topology. The quotient topology is defined as follows: Let

p : X → X/ ∼

be the projection sending an element to its equivalence class. A subset V ⊆ X/ ∼ is open
iff p−1(V ) ⊆ X is open.

Exercise 10.6.4 Show that the quotient topology is a topology on X/ ∼.

V
-1p  (V)

X X/~

p
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Exercise 10.6.5 Prove that a map from a quotient space (X/ ∼) → Y is continuous iff
the composite

X → (X/ ∼)→ Y

is continuous.

Exercise 10.6.6 The projection R1 → S1 given by p 7→ eip shows that we may view S1

as the set of equivalence classes of real number under the equivalence p ∼ q if there is an
integer n such that p = q + 2πn. Show that the quotient topology on S1 is the same as
the subspace topology you get by viewing S1 as a subspace of R2.

10.7 Compact spaces

Definition 10.7.1 A compact space is a space (X,U) with the following property: in any
set V of open sets covering X (i.e., V ⊆ U and

⋃
V ∈V V = X) there is a finite subset that

also covers X.

Exercise 10.7.2 If f : X → Y is a continuous map and X is compact, then f(X) is
compact.

We list without proof the results

Theorem 10.7.3 (Heine–Borel) A subset of Rn is compact iff it is closed and of finite
size.

Example 10.7.4 Hence the unit sphere Sn = {p ∈ Rn+1| |p| = 1} (with the subspace
topology) is a compact space.

Exercise 10.7.5 The real projective space RPn is the quotient space Sn/ ∼ under the
equivalence relation p ∼ −p on the unit sphere Sn. Prove that RPn is a compact Hausdorff
space with a countable basis for its topology.

Theorem 10.7.6 If X is a compact space, then all closed subsets of X are compact spaces.

Theorem 10.7.7 If X is a Hausdorff space and C ⊆ X is a compact subspace, then
C ⊆ X is closed.

A very important corollary of the above results is the following:

Theorem 10.7.8 If f : C → X is a continuous map where C is compact and X is Haus-
dorff, then f is a homeomorphism if and only if it is bijective.

Exercise 10.7.9 Prove 10.7.8 using the results preceding it
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Exercise 10.7.10 Prove in three or fewer lines the standard fact that a continuous func-
tion f : [a, b]→ R has a maximum value.

A last theorem sums up some properties that are preserved under formation of quotient
spaces (under favorable circumstances). It is not optimal, but will serve our needs. You
can extract a proof from the more general statement given in [6, p. 148].

Theorem 10.7.11 Let X be a compact space, and let ∼ be an equivalence relation on X.
Let p : X → X/ ∼ be the projection and assume that if K ⊆ X is closed, then p−1p(K) ⊆ X
is closed too.

If X is Hausdorff, then so is X/ ∼.
If X has a countable basis for its topology, then so has X/ ∼.

10.8 Product spaces

Definition 10.8.1 If (X,U) and (Y,V) are two topological spaces, then their product
(X × Y,U × V) is the set X × Y = {(x, y)|x ∈ X, y ∈ Y } with a basis for the topology
given by products of open sets U × V with U ∈ U and V ∈ V.

There are two projections prX : X × Y → X and prY : X × Y → Y . They are clearly
continuous.

Exercise 10.8.2 A map Z → X × Y is continuous iff both the composites with the
projections

Z → X × Y →X, and

Z → X × Y →Y

are continuous.

Exercise 10.8.3 Show that the metric topology on R2 is the same as the product topology
on R1×R1, and more generally, that the metric topology on Rn is the same as the product
topology on R1 × · · · ×R1.

Exercise 10.8.4 If X and Y have countable bases for their topologies, then so has X×Y .

Exercise 10.8.5 If X and Y are Hausdorff, then so is X × Y .

10.9 Connected spaces

Definition 10.9.1 A space X is connected if the only subsets that are both open and
closed are the empty set and the set X itself.
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Exercise 10.9.2 The natural generalization of the intermediate value theorem is “If f :
X → Y is continuous and X connected, then f(X) is connected”. Prove this.

Definition 10.9.3 Let (X1,U1) and (X2,U2) be topological spaces. The disjoint union
X1

∐
X2 is the union of disjoint copies of X1 and X2 (i.e., the set of pairs (k, x) where

k ∈ {1, 2} and x ∈ Xk), where an open set is a union of open sets in X and Y .

Exercise 10.9.4 Show that the disjoint union of two nonempty spaces X1 and X2 is not
connected.

Exercise 10.9.5 A map X1
∐
X2 → Z is continuous iff both the composites with the

injections

X1 ⊆ X1

∐
X2 →Z

X2 ⊆ X1

∐
X2 →Z

are continuous.

10.10 Set theoretical stuff

The only purpose of this section is to provide a handy reference for some standard results
in elementary set theory.

Definition 10.10.1 Let A ⊆ X be a subset. The complement of A in X is the subset

X \ A = {x ∈ X|x /∈ A}

Definition 10.10.2 Let f : X → Y be a function. We say that f is injective (or one-to-
one) if f(x1) = f(x2) implies that x1 = x2. We say that f is surjective (or onto) if for
every y ∈ Y there is an x ∈ X such that y = f(x). We say that f is bijective if it is both
surjective and injective.

Definition 10.10.3 Let A ⊆ X be a subset and f : X → Y a function. The image of A
under f is the set

f(A) = {y ∈ Y |∃a ∈ A s.t. y = f(a)}
The subset f(X) ⊆ Y is simply called the image of f .

If B ⊆ Y is a subset, then the inverse image (or preimage) of B under f is the set

f−1(B) = {x ∈ X|f(x) ∈ B}

The subset f−1(Y ) ⊆ X is simply called the preimage of f .

Exercise 10.10.4 Prove that f(f−1(B)) ⊆ B and A ⊆ f−1(f(A)).
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Exercise 10.10.5 Prove that f : X → Y is surjective iff f(X) = Y and injective iff for
all y ∈ Y f−1({y}) consists of a single element.

Lemma 10.10.6 (De Morgan’s formulae) Let X be a set and {Ai}i∈I be a family of
subsets. Then

X \
⋃

i∈I
Ai =

⋂

i∈I
(X \ Ai)

X \
⋂

i∈I
Ai =

⋃

i∈I
(X \ Ai)

Apology: the use of the term family is just phony: to us a family is nothing but a set (so
a “family of sets” is nothing but a set of sets).

Exercise 10.10.7 Let B1, B2 ⊆ Y and f : X → Y be a function. Prove that

f−1(B1 ∩ B2) =f−1(B1) ∩ f−1(B2) (10.1)

f−1(B1 ∪ B2) =f−1(B1) ∪ f−1(B2) (10.2)

f−1(Y \ B1) =X \ f−1(B1) (10.3)

If in addition A1, A2 ⊆ X then

f(A1 ∪A2) =f(A1) ∪ f(A2) (10.4)

f(A1 ∩A2) ⊆f(A1) ∩ f(A2) (10.5)

Y \ f(A1) ⊆f(X \ A1) (10.6)

B1 ∩ f(A1) =f(f−1(B1) ∩ A1) (10.7)
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Hints or solutions to the exercises

Below you will find hints for all the exercises. Some are very short, and some are almost
complete solutions. Ignore them if you can, but if you are stuck, take a peek and see if you
can get some inspiration.

Chapter 2

Exercise 2.4.5

Draw a hexagon with identifications so that it
represents a handle attached to a Möbius band.
Try your luck at cutting and pasting this figure
into a (funny looking) hexagon with identifica-
tions so that it represents three Möbius bands
glued together (remember that the cuts may
cross your identified edges).

Exercise 2.4.6

First, notice that any line through the origin
intersects the unit sphere S2 in two antipo-
dal points, so that RP2 can be identified with
S2/p ∼ −p. Since any point on the Southern
hemisphere is in the same class as one on the
northern hemisphere we may disregard (in stan-
dard imperialistic fashion) all the points on the
Southern hemisphere, so that RP2 can be iden-
tified with the Northern hemisphere with an-
tipodal points on the equator identified. Smash-
ing down the Northern hemisphere onto a closed
disk, we get that RP2 can be identified with a
disk with antipodal points on the boundary cir-
cle identified. Pushing in the disk so that we
get a rectangle we get the following equivalent

picture (disregard the lines in the interior of the
rectangle for now)

B B

B B

A

A

A

A

The two dotted diagonal lines in the picture
above represents a circle. Cut RP2 along this
circle yielding a Möbius strip

B

B

A

A

and two pieces
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B

A

A

B

that glue together to a disk (the pieces have
been straightened out at the angles of the rect-
angle, and one of the pieces has to be reflected
before it can be glued to the other to form a
disk).

Exercise 2.4.7

Do an internet search (check for instance the
Wikipedia) to find the definition of the Euler
characteristic. To calculate the Euler charac-
teristic of surfaces you can simply use our flat
representations as polygons, just remembering
what points and edges really are identified.

Exercise 2.4.8

The beings could triangulate their universe,
count the number of vertices V , edges E and
surfaces F in this triangulation (this can be
done in finite time). The Euler characteristic
V − E + F uniquely determines the surface.

Chapter 3

Exercise 3.1.5

The map xk,i is the restriction of the corre-
sponding projection Rn+1 → Rn which is con-
tinuous, and the inverse is the restriction of
the continuous map Rn → Rn+1 sending p =
(p0, . . . , p̂k, . . . , pn) ∈ Rn (note the smart index-
ing) to (p0, . . . , (−1)i

√
1− |p|2, . . . , pn).

Exercise 3.1.6

(Uses many results from the point set topology
appendix). Assume there was a chart cover-
ing all of Sn. That would imply that we had a

homeomorphism x : Sn → U ′ where U ′ is an
open subset of Rn. For n = 0, this clearly
is impossible since S0 consists of two points,
whereas R0 is a single point. Also for n > 0
this is impossible since Sn is compact (it is a
bounded and closed subset of Rn+1), and so
U ′ = x(Sn) would be compact (and nonempty),
but Rn does not contain any compact and open
nonempty subsets.

Exercise 3.2.8

Draw the lines in the picture in example 3.2.7
and use high school mathematics to show that
the formulae for x± are correct and define con-
tinuous functions (the formulae extend to func-
tions defined on open sets in Rn+1 where they
are smooth and so continuous). Then invert x−

and x+, which again become continuous func-
tions (so that x± are homeomorphisms), and
check the chart transformation formulae.

Exercise 3.2.11

To get a smooth atlas, repeat the discussion in
Example 3.1.7 for the real projective space, ex-
changing R with C everywhere. To see that
CPn is compact, it is convenient to notice that
any [p] ∈ CPn can be represented by p/|p| ∈
S2n+1 ⊆ Cn, so that CPn can alternatively be
described as S2n+1/ ∼, where p ∼ q if there
is a z ∈ S1 such that zp = zq. Showing that
CPn is Hausdorff and has a countable basis for
its topology can be a bit more irritating, but a
reference to Theorem 10.7.11 provides an easy
fix.

Exercise 3.2.12

Transport the structure radially out from the
unit circle (i.e., use the homeomorphism from
the unit circle to the square gotten by blowing
up a balloon in a square box in flatland). All
charts can then be taken to be the charts on the
circle composed with this homeomorphism.

http://en.wikipedia.org/wiki/Euler_characteristic
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Exercise 3.2.13

The only problem is in the origin. If you calcu-
late (one side of the limit needed in the defini-
tion of the derivative at the origin),

lim
t→0+

λ(t)− λ(0)

t
= lim

t→0+

e−1/t

t
= lim

s→∞
s

es
= 0,

you see that λ is once differentiable. It contin-
ues this way (you have to do a small induction
showing that all derivatives at the origin involve
limits of exponential times rational), proving
that λ is smooth.

Exercise 3.3.4

If B is any smooth atlas containing D(A), then
D(A) ⊆ B ⊆ D(D(A)). Prove that D(D(A)) =
D(A).

Exercise 3.3.9

It is enough to show that all the “mixed chart
transformations” (like x0,0(x+)−1) are smooth.
Why?

Exercise 3.3.10

Because saying that “x is a diffeomorphism” is
just a rephrasing of “x = x(id)−1 and x−1 =
(id)x−1 are smooth”. The charts in this struc-
ture are all diffeomorphisms U → U ′ where
both U and U ′ are open subsets of Rn.

Exercise 3.3.11

This will be discussed more closely in
Lemma 9.1.1, but can be seen directly as fol-
lows: since M is a topological manifold it has
a countable basis B for its topology. For each
(x, U) ∈ A with En ⊆ x(U) choose a V ∈ B
such that V ⊆ x−1(En). The set U of such
sets V is a countable subset of B, and U covers
M , since around any point p in M there is a
chart sending p to 0 and containing En in its
image (choose any chart (x, U) containing your
point p. Then x(U), being open, contains some

small ball. Restrict to this, and reparametrize
and translate so that it becomes the open unit
ball). Now, for every V ∈ U choose one of the
charts (x, U) ∈ A with En ⊆ x(U) such that
V ⊆ x−1(En). The resulting set V ⊆ U is then
a countable smooth atlas for (M,A).

Exercise 3.4.4

Use the identity chart on R. The standard at-
las on S1 ⊆ C using projections is given simply
by real and imaginary part. Hence the formu-
lae you have to check are smooth are sin and
cos. This we know! One comment on domains
of definition: let f : R → S1 be the map in
question; if we use the chart (x0,0, U0,0, then
f−1(U0,0) is the union of all the intervals on the
form (−π/2+2πk, π/2+2πk) when k varies over
the integers. Hence the function to check in this
case is the function from this union to (−1, 1)
sending θ to sin θ.

Exercise 3.4.5

First check that g̃ is well defined (g(p) = g(−p)
for all p ∈ S2). Check that it is smooth us-
ing the standard charts on RP2 and R4 (for
instance: g̃x0(q1, q2) = 1

1+q2
1+q2

2
(q1q2, q2, q1, 1 +

2q2
1 + 3q2

2)). To show that g̃ is injective, show
that g(p) = g(q) implies that p = ±q.

Exercise 3.4.6

One way follows since the composite of smooth
maps is smooth. The other follows since
smoothness is a local question, and the pro-
jection g : Sn → RPn is a local diffeomor-
phism. More (or perhaps, too) precisely, if
f : RPn → M is a map, we have to show
that for all charts (y, V ) on M , the composites
yf(xk)−1 (defined on Uk ∩f−1(V )) are smooth.
But xkg(xk,0)−1 : Dn → Rn is a diffeomor-
phism (given by sending p ∈ Dn to 1√

1−|p|2
p ∈

Rn), and so claiming that yf(xk)−1 is smooth
is the same as claiming that y(fg)(xk,0)−1 =
yf(xk)−1xkg(xk,0)−1 is smooth.
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Exercise 3.4.11

Consider the map f : RP1 → S1 sending [z]
(with z ∈ S1 ⊆ C) to z2 ∈ S1, which is well de-
fined since (−z)2 = z2. To see that f is smooth
either consider the composite

S1 → RP1 f→ S1 ⊆ C

(where the first map is the projection z 7→ [z])
using Exercise 3.4.6 and Exercise 3.5.15, or do
it from the definition: consider the standard
atlas for RP1. In complex notation U0 =
{[z]|re(z) 6= 0} and x0([z]) = im(z)/re(z) with
inverse t 7→ ei tan−1(t). If [z] ∈ U0, then f([z]) =
z2 ∈ V = {v ∈ S1|v 6= −1}. On V we choose
the convenient chart y : V → (−π, π) with in-
verse θ 7→ eiθ, and notice that the “up, over
and across” yf(x0)−1(t) = 2 tan−1(t) obviously
is smooth. Likewise we cover the case [z] ∈ U1.
Showing that the inverse is smooth is similar.

Exercise 3.4.12

Consider the map CP1 → S2 ⊆ R ×C sending
[z0, z1] to

1

|z0|2 + |z1|2
(
|z1|2 − |z0|2, 2z1z0

)
,

check that it is well defined and continuous
(since the composite C2 → CP1 → S2 ⊆ R×C

is), calculate the inverse (which is continuous
by 10.7.8), and use the charts on S2 from stere-
ographic projection 3.2.7 to check that the map
and its inverse are smooth. The reader may
enjoy comparing the above with the discussion
about qbits in 2.3.1.

Exercise 3.4.14

Given a chart (x, U) on M , define a chart
(xf−1, f(U)) on N .

Exercise 3.4.19

To see this, note that given any p, there are
open sets U1 and V1 with p ∈ U1 and i(p) ∈ V1

and U1 ∩ V1 = ∅ (since M is Hausdorff). Let
U = U1 ∩ i(V1). Then U and i(U) = i(U1) ∩ V1

do not intersect. As a matter of fact M has a
basis for its topology consisting of these kinds
of open sets.

By shrinking even further, we may assume
that U is a chart domain for a chart x : U → U ′

on M .
We see that f |U is open (it sends open sets

to open sets, since the inverse image is the union
of two open sets).

On U we see that f is injective, and so it in-
duces a homeomorphism f |U : U → f(U). We
define the smooth structure on M/i by letting
x(f |U )−1 be the charts for varying U . This is
obviously a smooth structure, and f is a local
diffeomorphism.

Exercise 3.4.20

Choose any chart y : V → V ′ with p ∈ V in
U , choose a small open ball B ⊆ V ′ around
y(p). There exists a diffeomorphism h of this
ball with all of Rn. Let U = y−1(B) and define
x by setting x(q) = hy(q)− hy(p).

Exercise 3.5.4

Use “polar coordinates”.

Exercise 3.5.5

Let f(a0, . . . , an−1, t) = tt + an−1tn−1 + · · ·+ a0

and consider the map x : Rn+1 → Rn+1 given
by

x(a0, . . . , an) = (a1, . . . , an, f(a0, . . . , an))

This is a smooth chart on Rn+1 since
x is a diffeomorphism with inverse given
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by sending (b1, . . . , bn+1) to (bn+1 −
f(0, b1, . . . , bn), b1, . . . , bn). We see that x(C) =
Rn × 0, and we have shown that C is an n-
dimensional submanifold. Notice that we have
only used that f : Rn+1 → R is smooth and
that f(a0, . . . , an) = a0 + f(0, a1, an).

Exercise 3.5.6

Assume there is a chart x : U → U ′ with (0, 0) ∈
U , x(0, 0) = (0, 0) and x(K∩U) = (R×0)∩U ′.

Then the composite (V is a sufficiently small
neighborhood of 0)

V
q 7→(q,0)−−−−−→ U ′ x−1

−−−−→ U

is smooth, and of the form q 7→ T (q) =
(t(q), |t(q)|). But

T ′(0) =

(
lim
h→0

t(h)

h
, lim
h→0

|t(h)|
h

)
,

and for this to exist, we must have t′(0) = 0.

On the other hand x(p, |p|) = (s(p), 0), and
we see that s and t are inverse functions. The
directional derivative of pr1x at (0, 0) in the di-
rection (1, 1) is equal

lim
h→0+

s(h)

h

but this limit does not exist since t′(0) = 0, and
so x can’t be smooth, contradiction.

Exercise 3.5.9

Let f1, f2 : V → Rn be linear isomorphisms.
Let G1, G2 be the two resulting two smooth
manifolds with underlying set GL(V ). Show-
ing that G1 = G2 amounts to showing that the
composite

GL(f1)GL(f2) : GL(Rn)→ GL(Rn)

is a diffeomorphism. Noting that GL(f2)−1 =
GL(f−1

2 ) and GL(f1)GL(f−1
2 ) = GL(f1f−1

2 ),
this amounts to showing that given a fixed in-
vertible matrix A (representing f1f−1

2 in the

standard basis), then conjugation by A, i.e.,
B 7→ ABA−1 is a smooth map Mn(R) →
Mn(R). This is true since addition and mul-
tiplication are smooth.

That GL(h) is a diffeomorphism boils down
to the fact that the composite

GL(f)GL(h)GL(f)−1 : GL(Rn)→ GL(Rn)

is nothing but GL(fhf−1). If fhf−1 : Rn →
Rn is represented by the matrix A, then
GL(fhf−1) is represented by conjugation by A
and so a diffeomorphism.

If α, β : V ∼= V are two linear isomorphisms,
we may compose them to get αβ : V → V .
That GL(h) respects composition follows, since
GL(h)(αβ) = h(αβ)h−1 = hαh−1hβ)h−1 =
GL(h)(α)GL(h)(β). Also, GL(h) preserves
the identity element since GL(h)(idV ) =
hidV h−1 = hh−1 = idW .

Exercise 3.5.12

The subset f(RPn) = {[p, 0] ∈ RPn+1} is a
submanifold by using all but the last of the stan-
dard charts on RPn+1. Checking that RPn →
f(RPn) is a diffeomorphism is now straight-
forward (the “ups, over and acrosses” corre-
spond to the chart transformations in RPn).

Exercise 3.5.15

Assume ij : Nj →Mj are inclusions of subman-
ifolds — the diffeomorphism part of “imbed-
ding” being the trivial case — and let xj : Uj →
U ′
j be charts such that

xj(Uj ∩Nj) = U ′
j ∩ (Rnj × {0}) ⊆ Rmj

for j = 1, 2. To check whether f is smooth
at p ∈ N1 it is enough to assert that
x2fx−1

1 |x1(V ) = x2gx−1
1 |x1(V ) is smooth at p

where V = U1 ∩ N1 ∩ g−1(U2) which is done
by checking the higher order partial derivatives
in the relevant coordinates.
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Exercise 3.5.16

Let f : X → Y and g : Y → Z be imbed-
dings. Then the induced map X → gf(X)
is a diffeomorphism. Hence it is enough to
show that the composite of inclusions of sub-
manifolds is an inclusion of a submanifold. Let
X ⊆ Y ⊂ Z be inclusions of submanifolds (of
dimension n, n+k and n+k+l). Given p ∈ X let
z : U → U ′ be a chart on Z such that z(U∩Y ) =
(Rn+k×{0})∩U ′ and let y : V → V ′ be a chart
on Y such that y(V ∩X) = (Rn×{0})∩V ′ with
p ∈ U ∩ V . We may even assume (by shrinking
the domains) that V = Y ∩ U . Then

((
yz−1|z(V ) × idRl

)
|U ′ ◦ z, U

)

is a chart displaying X as a submanifold of Z.

Exercise 3.6.2

Check that all chart transformations are
smooth.

Exercise 3.6.5

Up over and across using appropriate charts on
the product, reduces this to saying that the
identity is smooth and that the inclusion of Rm

in Rm ×Rn is an imbedding.

Exercise 3.6.6

The heart of the matter is that Rk → Rm×Rn

is smooth if and only if both the composites
Rk → Rm and Rk → Rn are smooth.

Exercise 3.6.7

Consider the map (t, z) 7→ etz.

Exercise 3.6.8

Reduce to the case where f and g are inclusions
of submanifolds. Then rearrange some coordi-
nates to show that case.

Exercise 3.6.9

Use the preceding exercises.

Exercise 3.6.10

Remember that GLn(R) is an open subset of
Mn(R) and so this is in flatland 3.5.8). Multi-
plication of matrices is smooth since it is made
out of addition and multiplication of real num-
bers.

Exercise 3.6.11

Use the fact that multiplication of complex
numbers is smooth, plus Exercise 3.5.15).

Exercise 3.6.13

Check chart transformations.

Exercise 3.6.16

Using the “same” charts on both sides, this re-
duces to saying that the identity is smooth.

Exercise 3.6.17

A map from a disjoint union is smooth if and
only if it is smooth on both summands since
smoothness is measured locally.

Chapter 4

Exercise 4.1.5

The only thing that is slightly ticklish with the
definition of germs is the transitivity of the
equivalence relation: assume

f : Uf → N, g : Ug → N, and h : Uh → N

and f ∼ g and g ∼ h. Writing out the defini-
tions, we see that f = g = h on the open set
Vfg ∩ Vgh, which contains p.
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Exercise 4.1.6

Choosing other representatives changes nothing
in the intersection of the domains of definition.
Associativity and the behavior of identities fol-
lows from the corresponding properties for the
composition of representatives.

Exercise 4.1.18

We do it for ǫ = π/2. Other ǫs are then ob-
tained by scaling. Let

f(t) = γ(π/4,π/4)(t) ·t+(1−γ(π/4,π/4)(t)) ·tan(t).

As to the last part, if γ̄ : (R, 0)→ (M, p) is rep-
resented by γ1 : (−ǫ, ǫ) → R, we let γ = γ1f−1

where f is a diffeomorphism (−ǫ, ǫ) → R with
f(t) = t for |t| small.

Exercise 4.1.19

Let φ : Uφ → R be a representative for φ̄,
and let (x, U) be any chart around p such that
x(p) = 0. Choose an ǫ > 0 such that x(U ∩Uφ)
contains the open ball of radius ǫ. Then the
germ represented by φ is equal to the germ rep-
resented by the map defined on all of M given
by

q 7→
{

γ(ǫ/3,ǫ/3)(x(q))φ(q) for q ∈ U ∩ Uφ

0 otherwise.

Exercise 4.1.20

You can extend any chart to a function defined
on the entire manifold.

Exercise 4.2.6

This is immediate from the chain rule (or, for
that matter, from the definition).

Exercise 4.2.9

Let γ, γ1 ∈ Wp. If (x, U) is a chart with p ∈ U
and if for all function germs φ̄ ∈ Op (φγ)′(0) =

(φγ1)′(0), then letting φ = xk be the kth coordi-
nate of x for k = 1, . . . , n we get that (xγ)′(0) =
(xγ1)′(0). Conversely, assume φ̄ ∈ Op and
(xγ)′(0) = (xγ1)′(0) for all charts (x, U). Then
(φγ)′(0) = (φx−1xγ)′(0) = D(φx−1)(x(p)) ·
(xγ)′(0) by the flat chain rule 4.2.8 and we are
done.

Exercise 4.2.10

If (y, V ) is some other chart with p ∈ V , then
the flat chain rule 4.2.8 gives that

(yγ)′(0) =(yx−1xγ)′(0)

=D(yx−1)(x(p)) · (xγ)′(0)

=D(yx−1)(x(p)) · (xγ1)′(0)

=(yx−1xγ1)′(0) = (yγ1)′(0),

where D(yx−1)(x(p)) is the Jacobi matrix of the
function yx−1 at the point x(p).

Exercise 4.2.3

It depends neither on the representation of the
tangent vector nor on the representation of the
germ, because if [γ] = [ν] and f̄ = ḡ, then
(φfγ)′(0) = (φfν)′(0) = (φgν)′(0) (partially by
definition).

Exercise 4.2.17

Expanding along the ith row, we see that the
partial differential of det with respect to the
i, j-entry is equal to the determinant of the ma-
trix you get by deleting the ith row and the
jth column. Hence, the Jacobian of det is the
1 × n2-matrix consisting of these determinants
(in some order), and is zero if and only if all of
them vanish, which is the same as saying that
A has rank less than n− 1.

Exercise 4.2.18

Either by sitting down and calculating partial
derivatives or arguing abstractly: Since the Ja-
cobian DL(p) represents the unique linear map
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K such that lim h→ 0 1
h(L(p + h) − L(p) −

K(h)) = 0 and L is linear we get that K = L.

Exercise 4.3.3

Directly from the definition, or by f∗g∗ = (gf)∗

and the fact that if id : M →M is the identity,
then id∗ : OM,p → OM,p is the identity too.

Exercise 4.3.6

Both ways around the square sends φ̄ ∈ OM,p

to d(φf).

Exercise 4.3.16

Use the definitions.

Exercise 4.3.14

If V has basis {v1, . . . , vn}, W has basis
{w1, . . . , wm}, then f(vi) =

∑m
j=1 aijwj means

that A = (aij) represents f in the given ba-
sis. Then f∗(w∗

j ) = w∗
j f =

∑n
i=1 aijv

∗
i as

can be checked by evaluating at vi: w∗
j f(vi) =

wj(
∑m
k=1 aikwk) = aij.

Exercise 4.3.18

The two Jacobi matrices in question are given
by

D(xy−1)(y(p))t =

[
p1/|p| p2/|p|
−p2 p1

]
.

and

D(yx−1)(x(p)) =

[
p1/|p| −p2/|p|2
p2/|p| p1/|p|2

]
.

Exercise 4.4.12

Assume

X =
n∑

j=1

vj Dj |0 = 0

Then

0 = X(pri) =
n∑

j=1

vjDj(pri)(0) =

{
0 if i 6= j

vi if i = j

Hence vi = 0 for all i and we have linear inde-
pendence.

If X ∈ D|0Rn is any derivation, let vi =
X(pri). If φ̄ is any function germ, we have by
lemma 4.3.8 that

φ̄ = φ(0)+
n∑

i=1

pri·φi, φi(p) =

∫ 1

0
Diφ(t·p) dt,

and so

X(φ̄) =X(φ(0)) +
n∑

i=1

X(pri · φi)

=0 +
n∑

i=1

(
X(pri) · φi(0) + pri(0) ·X(φi)

)

=
n∑

i=1

(
vi · φi(0) + 0 ·X(φi))

)

=
n∑

i=1

viDiφ(0)

where the identity φi(0) = Diφ(0) was used in
the last equality.

Exercise 4.4.16

If [γ] = [ν], then (φfγ)′(0) = (φfν)′(0).

Exercise 4.4.19

The tangent vector [γ] is sent to Xγf∗ one way,
and Xfγ the other, and if we apply this to a
function germ φ̄ we get

Xγf∗(φ̄) = Xγ(φ̄f̄) = (φfγ)′(0) = Xfγ(φ̄).

If you find such arguments hard: notice that
φfγ is the only possible composition of

these functions, and so either side better re-
late to this!
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Chapter 5

Exercise 5.1.11

Observe that the function in question is

f(eiθ, eiφ) =
√

(3− cos θ − cos φ)2 + (sin θ + sin φ)2,

giving the claimed Jacobi matrix. Then solve
the system of equations

3 sin θ − cos φ sin θ + sin φ cos θ =0

3 sin φ− cos θ sin φ + sin θ cos φ =0

Adding the two equations we get that sin θ =
sin φ, but then the upper equation claims that
sin φ = 0 or 3− cos φ + cos θ = 0. The latter is
clearly impossible.

Exercise 5.2.4

Consider the smooth map

f : G×G→G×G

(g, h) 7→(gh, h)

with inverse (g, h) 7→ (gh−1, h). Use that, for a
given h ∈ G, the map Lh : G→ G sending g to
Lh(g) = gh is a diffeomorphism, and that

TgG× ThG

[
TgLh ThRg

0 1

]

−−−−−−−−−→ TghG× ThG

∼=
y ∼=

y

T(g,h)(G×G)
T(g,h)f−−−−→ T(gh,h)(G×G)

commutes (where the vertical isomorphisms are
the “obvious” ones and Rg(h) = gh) to conclude
that f has maximal rank, and is a diffeomor-
phism. Then consider a composite

G
g 7→(1,g)−−−−−→ G×G

f−1

−−−−→ G×G
(g,h)7→g−−−−−→ G.

Perhaps a word about the commutativity of
the above square is desirable. Starting with
a pair ([γ], [η]) in the upper left hand corner,

going down, right and up you get ([γ · η], [η]).
However, if go along the upper map you get
([γ · h] + [g · η], [η]), so we need to prove that
[γ · η] = [γ · h] + [g · η].

Choose a chart (z, U) around g · h, let
∆: R → R ×R be given by ∆(t) = (t, t) and
let µ : G × G → G be the multiplication in G.
Then the chain rule, as applied to the function
z(γ · η) = zµ(γ, η)∆: R → Rn gives that

(z(γ · η))′(0) = D(zµ(γ, η))(0, 0) ·∆′(0)

= [D1(zµ(γ, η))(0, 0) D2(zµ(γ, η))(0, 0)] ·
[
1
1

]

=(z(γ · h))′(0) + (z(g · η))′(0).

Exercise 5.3.2

The rank theorem says that around any regular
point there is a neighborhood on which f is a
diffeomorphism. Hence f−1(q) is discrete, and,
since M is compact, finite. Choose neighbor-
hoods Ux around each element in x ∈ f−1(q) s.t.
f defines a diffeomorphism from Ux to an open
neighborhood f(Ux) of q. Let the promised
neighborhood around q be

⋂

x∈f−1(q)

f(Ux)− f
(
M −

⋃

x∈f−1(q)

Ux
)

(remember that f takes closed sets to closed sets
since M is compact and N Hausdorff).

Exercise 5.3.3

(after [8, p. 8]). Extend P to a smooth map
f : S2 → S2 by stereographic projection (check
that f is smooth at the North pole). Assume
0 is a regular value (if it is a critical value we
are done!). The critical points of f correspond
to the zeros of the derivative P ′, of which there
are only finitely many. Hence the regular val-
ues of f cover all but finitely many points of
of S2, and so give a connected space. Since by
Exercise 5.3.2 q 7→ |f−1(q)| is a locally constant
function of the regular values, we get that there
is an n such that n = |f−1(q)| for all regular
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values q. Since n can’t be zero (P was not con-
stant) we are done.

Exercise 5.3.4

(after [3]). Use the rank theorem, which gives
the result immediately if we can prove that the
rank of f is constant (spell this out). To prove
that the rank of f is constant, we first prove
it for all points in f(M) and then extend it to
some neighborhood using the chain rule.

The chain rule gives that

Tpf = Tp(ff) = Tf(p)fTpf.

If p ∈ f(M), then f(p) = p, so we get that
Tpf = TpfTpf and

Tpf(TpM) = {v ∈ TpM |Tpf(v) = v} =

ker{1− Tpf}.

By the dimension theorem in linear algebra we
get that

rk (Tpf) + rk (1− Tpf) = dim(M),

and since both ranks only can increase locally,
they must be locally constant, and so constant,
say r, since M was supposed to be connected.

Hence there is an open neighborhood U of
p ∈ f(M) such that rkTqf ≥ r for all q ∈ U , but
since Tqf = Tf(q)fTqf we must have rkTqf ≤
Tf(p)f = r, and so rkTqf = r too.

That f(M) = {p ∈ M |f(p) = p} is closed
in M follows since the complement is open: if
p 6= f(p) choose disjoint open sets U and V
around p and f(p). Then U ∩f−1(V ) is an open
set disjoint from f(M) (since U ∩ f−1(V ) ⊆ U
and f(U ∩ f−1(V )) ⊆ V ) containing p.

Exercise 5.4.4

Prove that 1 is a regular value for the function
Rn+1 → R sending p to |p|2.

Exercise 5.4.7

Show that the map

SL2(R)→ (C \ {0}) ×R
[
a b
c d

]
7→ (a + ic, ab + cd)

is a diffeomorphism, and that S1 ×R is diffeo-
morphic to C \ {0}.

Exercise 5.4.8

Calculate the Jacobi matrix of the determi-
nant function. With some choice of indices you
should get

Dij(det)(A) = (−1)i+j det(Aij)

where Aij is the matrix you get by deleting the
ith row and the jth column. If the determinant
is to be one, some of the entries in the Jacobi
matrix then has got to be nonzero.

Exercise 5.4.10

By Corollary 6.5.12 we identify T O(n) with

E =




(g, A) ∈ O(n)×Mn(R)

∣∣∣∣∣∣∣∣∣

g = γ(0)
A = γ′(0)

for some curve
γ : (−ǫ, ǫ)→ O(n)





That γ(s) ∈ O(n) is equivalent to saying that
I = γ(s)tγ(s). This holds for all s ∈ (−ǫ, ǫ), so
we may derive this equation and get

0 =
d

ds

∣∣∣∣
s=0

(
γ(s)tγ(s)

)

= γ′(0)tγ(0) + γ(0)tγ′(0)

= Atg + gtA

Exercise 5.4.12

Consider the chart x : M2(R)→ R4 given by

x

([
a b
c d

])
= (a, b, a− d, b + c).
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Exercise 5.4.13

Copy one of the proofs for the orthogonal group,
replacing the symmetric matrices with Hermi-
tian matrices.

Exercise 5.4.14

The space of orthogonal matrices is compact
since it is a closed subset of [−1, 1]n

2
. It has

at least two components since the sets of ma-
trices with determinant 1 is closed, as is the
complement: the set with determinant −1.

Each of these are connected since you can
get from any rotation to the identity through a
path of rotations. One way to see this is to use
the fact from linear algebra which says that any
element A ∈ SO(n) can be written in the form
A = BT B−1 where B and T are orthogonal,
and furthermore T is a block diagonal matrix
where the block matrices are either a single 1
on the diagonal, or of the form

T (θk) =

[
cos θk − sin θk
sin θk cos θk

]
.

So we see that replacing all the θk’s by sθk and
letting s vary from 1 to 0 we get a path from A
to the identity matrix.

Exercise 5.4.18

Consider a k-frame as a matrix A with the prop-
erty that AtA = I, and proceed as for the or-
thogonal group.

Exercise 5.4.20

Either just solve the equation or consider the
map

f : P3 → P2

sending y ∈ P3 to f(y) = (y′′)2 − y′ + y(0) +
xy′(0) ∈ P2. If you calculate the Jacobian in

obvious coordinates you get that

Df(a0 + a1x + a2x2 + a3x3) =



1 −1 8a2 0
0 1 24a3 − 2 24a2

0 0 0 72a3 − 3




The only way this matrix can be singular is if
a3 = 1/24, but the top coefficient in f(a0+a1x+
a2x2 + a3x3) is 36a2

3 − 3a3 which won’t be zero
if a3 = 1/24. By the way, if I did not calculate
something wrong, the solution is the disjoint
union of two manifolds M1 = {2t(1−2t)+2tx+
tx2|t ∈ R} and M2 = {−24t2 + tx2 + x3/12|t ∈
R}, both diffeomorphic to R.

Exercise 5.4.21

Yeah.

Exercise 5.4.22

Consider the function

f : Rn → R

given by

f(p) = ptAp.

The Jacobi matrix is easily calculated, and us-
ing that A is symmetric we get that Df(p) =
2ptA. But given that f(p) = b we get that
Df(p) · p = ptAp = b, and so Df(p) 6= 0 if
b 6= 0. Hence all values but b = 0 are regular.
The value b = 0 is critical since 0 ∈ f−1(0) and
Df(0) = 0.

Exercise 5.4.23

You don’t actually need theorem 5.4.3 to prove
this since you can isolate T in this equation,
and show directly that you get a submanifold
diffeomorphic to R2, but still, as an exercise
you should do it by using theorem 5.4.3.
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Exercise 5.4.24

Code a flexible n-gon by means of a vector
x0 ∈ R2 giving the coordinates of the first
point, and vectors xi ∈ S1 going from point
i to point i + 1 for i = 1, . . . , n − 1 (the vector
from point n to point 1 is not needed, since it
will be given by the requirement that the curve
is closed). The set R2×(S1)n−1 will give a flex-
ible n-gon, except, that the last line may not be
of length 1. To ensure this, look at the map

f : Rk × (Sk−1)n−1 → R

(x0, (x1, . . . , xn−1)) 7→
∣∣∣∣∣
n−1∑

i=1

xi
∣∣∣∣∣

2

and show that 1 is a regular value. If you let
xj = eiφj and x = (x0, (x1, . . . , xn−1)), you get
that

Djf(x) = Dj

(
(
n−1∑

k=1

eiφk)(
n−1∑

k=1

e−iφk )

)

= ieiφj (
n−1∑

k=1

e−iφk ) + (
n−1∑

k=1

eiφk)(−ie−iφj )

= −2Im

(
eiφj (

n−1∑

k=1

e−iφk)

)

That the rank is not 1 is equivalent to Djf(x) =
0 for all j. Analyzing this, we get that
x1, . . . , xn−1 must then all be parallel. But this

is impossible if n is odd and
∣∣∣
∑n−1
i=1 xi

∣∣∣
2

= 1.

(Note that this argument fails for n even. If
n = 4 LF4,2 is not a manifold: given x1 and
x2 there are two choices for x3 and x4: (either
x3 = −x2 and x4 = −x1 or x3 = −x1 and
x4 = −x2), but when x1 = x2 we get a crossing
of these two choices).

Exercise 5.4.25

The non-self-intersecting flexible n-gons form
an open subset.

Exercise 5.6.2

It is enough to prove that for any point p ∈ U
there is a point q ∈ U with all coordinates ratio-
nal and a rational r such that p ∈ C ⊆ U with
C the closed ball with center q and radius r.
Since U is open, there is an ǫ > 0 such that the
open ball with center p and radius ǫ is within U .
Since Qn ⊆ Rn is dense we may choose r ∈ Q

and q ∈ Qn such that |q − p| < r < ǫ/2.

Exercise 5.6.3

Let {Ci}i∈N be a countable collection of mea-
sure zero sets, let ǫ < 0 and for each i ∈ N

choose a sequence of cubes {Cij}j∈N with Ci ⊆⋃
j∈N Cij and

∑
j∈N volume(Cij) < ǫ/2i.

Exercise 5.6.4

By Exercise 5.6.2 we may assume that C is con-
tained in a closed ball contained in U . Choosing
ǫ > 0 small enough, a covering of C by closed
balls {Ci} whose sum of volumes is less than ǫ
will also be contained in a closed ball K con-
tained in U . Now, the mean value theorem as-
sures that there is a positive number M such
that |f(a) − f(b)| ≤ M |a − b| for a, b ∈ K.
Hence, f sends closed balls of radius r into
closed balls of radius Mr, and f(C) is covered
by closed balls whose sum of volumes is less than
Mǫ.

Note the crucial importance of the mean
value theorem. The corresponding statements
are false if we just assume our maps are contin-
uous.

Exercise 5.6.6

Since [0, 1] is compact, we may choose a finite
subcover. Excluding all subintervals contained
in another subinterval we can assure that no
point in [0, 1] lies in more than two subintervals
(the open cover {[0, 1), (0, 1]} shows that 2 is
attainable).
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Exercise 5.6.7

It is enough to do the case where C is com-
pact, and we may assume that C ⊆ [0, 1]n.
Let ǫ > 0. Given t ∈ [0, 1], let dt : C → R

be given by dt(t1, . . . , tn) = |tn − t| and let
Ct = d−1

t (0). Choose a cover {Bt
i} of Ct

by open cubes whose sum of volumes is less
than ǫ/2. Let Jt : Rn−1 → Rn be given by
Jt(t1, . . . , tn−1) = (t1, . . . , tn−1, t) and Bt =
J−1
t (

⋃
i B

t
i). Since C is compact and Bt is

open, dt attains a minimum value mt > 0 out-
side Bt × R, and so d−1

t (−mt, mt) ⊆ Bt × It,
where It = (t − mt, t + mt) ∩ [0, 1]. By Ex-
ercise 5.6.6, there is a is a finite collection
{t1, . . . , tk} ∈ [0, 1] such that the Itj cover [0, 1]
and such that the sum of the diameters in less
than 2. From this we get the cover of C by
rectangles {Btj

i × Itj}j=1,...,k,i∈N whose sum of
volumes is less than ǫ = 2ǫ/2.

Exercise 5.6.8

Use the preceding string of exercises.

Exercise 5.6.9

Let C ′ = C0−C1. We may assume that C ′ 6= ∅
(excluding the case m ≤ 1). If p ∈ C ′, there
is a nonzero partial derivative of f at p, and
by permuting the coordinates, we may just as
well assume that D1f(p) 6= 0. By the inverse
function theorem, the formula

x(q) = (f1(q), q2, . . . , qm)

defines a chart x : V → V ′ in a neighborhood
V of p, and it suffices to prove that g(K)
has measure zero, where g = fx−1 : V ′ →
Rn and K is the set of critical points for g.
Now, g(q) = (q1, g2(q), . . . , gn(q)), and writ-
ing gq1

k (q2, . . . , qm) = gk(q1, . . . , qm) for k =
1, . . . , n, we see that since

Dg(q1, . . . , qm) =

[
1 0
? Dgq1(q2, . . . , qm)

]

the point (q1, . . . , qm) is a critical point for g if
and only if (q2, . . . , qm) is a critical point for gq1 .
By the induction hypothesis, for each q1 the set
of critical values for gq1 has measure zero. By
Fubini’s theorem 5.6.7, we are done.

Exercise 5.6.10

The proof is similar to that of Exercise 5.6.9,
except that the chart x is defined by

x(q) = (Dk1 . . . Dki
f(q), q2, . . . , qm),

where we have assumed that D1Dk1 . . . Dki
f(p) 6=

0 (but, of course Dk1 . . . Dki
f(p) = 0).

Exercise 5.6.11

By Exercise 5.6.2 U is a countable union of
closed cubes (balls or cubes have the same
proof), so it is enough to show that f(K ∩ Ck)
has measure zero, where K is a closed cube with
side s. Since all partial derivatives of order less
than or equal to k vanish on Ck, Taylor expan-
sion gives that there is a number M such that

|f(a)− f(b)| ≤M |a− b|k+1

for all a ∈ K ∩ Ck and b ∈ K. Sub-
divide K into Nm cubes {Kij}i,j=1,...,N with
sides s/N for some positive integer. If
a ∈ Ck ∩ Kij , then f(Kij) lies in a closed
ball centered at f(a) with radius M(

√
m ·

s/N)k+1. Consequently, f(K ∩ Ck) lies in a
union of closed balls with volume sum less

than or equal to Nm · 4π(M(
√
m·s/N)k+1)

n

3 =
4π(M(

√
m·s)k+1)

n

3 Nm−n(k+1). If nk ≥ m, this
tends to zero as N tends to infinity, and we
are done.

Exercise 5.6.12

By induction on m. When m = 0, Rm is a point
and the result follows. Assume Sard’s theorem
is proven in dimension less than m > 0. Then
the Exercises 5.6.8, 5.6.9, 5.6.10 and 5.6.11 to-
gether prove Sard’s theorem in dimension m.
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Exercise 5.7.2

It is clearly injective, and an immersion since it
has rank 1 everywhere. It is not an imbedding
since R

∐
R is disconnected, whereas the image

is connected.

Exercise 5.7.3

It is clearly injective, and immersion since it has
rank 1 everywhere. It is not an imbedding since
an open set containing a point z with |z| = 1 in
the image must contain elements in the image
of the first summand.

Exercise 5.7.6

If a/b is irrational then the image of fa,b is
dense: that is any open set on S1 × S1 inter-
sects the image of fa,b.

Exercise 5.7.7

Show that it is an injective immersion homeo-
morphic to its image. The last property follows
since both the maps in

M −−−−→ i(M) −−−−→ ji(M)

are continuous and bijective and the composite
is a homeomorphism.

Exercise 9.4.10

Prove that the diagonal M → M × M is an
imbedding by proving that it is an immersion
inducing a homeomorphism onto its image. The
tangent space of the diagonal at (p, p) is exactly
the diagonal of T(p,p)(M ×M) ∼= TpM × TpM .
For any vector space V , the quotient space
V × V/diagonal is canonically isomorphic to V
via the map given by sending (v1, v2) ∈ V × V
to v1 − v2 ∈ V .

Chapter 6

Exercise 6.1.3

For the first case, you may assume that the
regular value in question is 0. Since zero is a
regular value, the derivative in the “fiber direc-
tion” has got to be nonzero, and so the values
of f are positive on one side of the zero sec-
tion. . . but there IS no “one side” of the zero
section! This takes care of all one-dimensional
cases, and higher dimensional examples are ex-
cluded since the map won’t be regular if the
dimension increases.

Exercise 6.2.3

See the next exercise. This refers the problem
away, but the same reference helps you out on
this one too!

Exercise 6.2.4

This exercise is solved in the smooth case in ex-
ercise 6.3.15. The only difference in the con-
tinuous case is that you delete every occur-
rence of “smooth” in the solution. In particular,
the solution refers to a “smooth bump function
φ : U2 → R such that φ is one on (a, c) and zero
on U2 \ (a, d)”. This can in our case be chosen
to be the (non smooth) map φ : U2 → R given
by

φ(t) =





1 if t ≤ c
d−t
d−c if c ≤ t ≤ d

0 if t ≥ d

Exercise 6.4.4

Use the chart domains on RPn from the mani-
fold section:

Uk = {[p] ∈ RPn|pk 6= 0}
and construct bundle charts π−1(Uk)→ Uk×R

sending ([p], λp) to ([p], λpk). The chart trans-
formations then should look something like

([p], λ) 7→ ([p], λ
pl
pk

)
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If the bundle were trivial, then ηn \ σ0(RPn)
would be disconnected. In particular ([e1], e1)
and ([e1],−e1) would be in different compo-
nents. But γ : [0, π]→ ηn \ σ0(RPn) given by

γ(t) = ([cos(t)e1 + sin(t)e2], cos(t)e1 + sin(t)e2)

is a path connecting them.

Exercise 6.3.13

Check locally by using charts: if (h, U) is a bun-
dle chart, then the resulting square

E|U h−−−−→∼=
U ×Rk

aE

y idU ×a·
y

E|U h−−−−→∼=
U ×Rk

commutes.

Exercise 6.3.14

Smoothen up the proof you gave for the same
question in the vector bundle chapter, or use
parts of the solution of exercise 6.3.15.

Exercise 6.3.15

Let π : E → S1 be a one-dimensional smooth
vector bundle (one-dimensional smooth vec-
tor bundles are frequently called line bundles).
Since S1 is compact we may choose a finite bun-
dle atlas, and we may remove superfluous bun-
dle charts, so that no domain is included in an-
other. We may also assume that all chart do-
mains are connected. If there is just one bundle
chart, we are finished, otherwise we proceed as
follows. If we start at some point, we may order
the charts, so that they intersect in a nonempty
interval (or a disjoint union of two intervals if
there are exactly two charts). Consider two
consecutive charts (h1, U1) and (h2, U2) and let
(a, b) be (one of the components of) their inter-
section. The transition function

h12 : (a, b)→ R \ {0} ∼= GL1(R)

must take either just negative or just positive
values. Multiplying h2 by the sign of h12 we get
a situation where we may assume that h12 al-
ways is positive. Let a < c < d < b, and choose
a smooth bump function φ : U2 → R such that
φ is one on (a, c) and zero on U2 \ (a, d). Define
a new chart (h′

2, U2) by letting

h′
2(t) =

(
φ(t)

h12(t)
+ 1− φ(t)

)
h2(t)

(since h12(t) > 0, the factor by which we multi-
ply h2(t) is never zero). On (a, c) the transition
function is now constantly equal to one, so if
there were more than two charts we could merge
our two charts into a chart with chart domain
U1 ∪ U2.

So we may assume that there are just two
charts. Then we may proceed as above on one
of the components of the intersection between
the two charts, and get the transition function
to be the identity. But then we would not be left
with the option of multiplying with the sign of
the transition function on the other component.
However, by the same method, we could only
make it plus or minus one, which exactly corre-
spond to the trivial bundle and the unbounded
Möbius band.

Just the same argument shows that there
are exactly two isomorphism types of n-
dimensional smooth vector bundles over S1 (us-
ing that GLn(R) has exactly two components).
The same argument also gives the correspond-
ing topological fact.

Exercise 6.4.5

You may assume that p = [0, . . . , 0, 1]. Then

any point [x0, . . . , xn−1, xn] ∈ X equals
[
x

|x| ,
xn

|x|
]

since x = (x0, . . . , xn−1) must be different from
0. Consider the map

X → ηn−1

[x, xn] 7→
([

x

|x|

]
,

xnx

|x|2
)

with inverse ([x], λx) 7→ [x, λ].
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Exercise 6.5.8

View S3 as the unit quaternions, and copy the
argument for S1.

Exercise 6.5.9

Lie group is a smooth manifold equipped with a
smooth associative multiplication, having a unit
and possessing all inverses, so the proof for S1

will work.

Exercise 6.5.13

If we set zj = xj + iyj, x = (x0, . . . , xn) and
y = (y0, . . . , yn), then

∑n
i=0 z2 = 1 is equiv-

alent to x · y = 0 and |x|2 − |y|2 = 1. Use
this to make an isomorphism to the bundle
in example 6.5.10 sending the point (x, y) to
(p, v) = ( x

|x| , y) (with inverse sending (p, v) to

(x, y) = (
√

1 + |v|2p, v)).

Exercise 6.5.15

Consider the isomorphism

T Sn ∼= {(p, v) ∈ Sn ×Rn+1 | p · v = 0}.

Any path γ̄ in RPn through [p] lifts uniquely
to a path γ trough p and to the corresponding
path −γ through −p.

Exercise 6.5.17

Use the trivialization to pass the obvious solu-
tion on the product bundle to the tangent bun-
dle.

Exercise 6.5.18

Any curve to a product is given uniquely by its
projections to the factors.

Exercise 6.5.20

Let x : U → U ′ be a chart for M . Show that the
assignment sending an element (q, v1, v2, v12) ∈

U ′ ×Rn ×Rn ×Rn to

[t 7→ [s 7→ x−1(q + tv1 + sv2 + stv12)]] ∈ T (T U)

gives an isomorphism

U ′ ×Rn ×Rn ×Rn ∼= T (T U),

so that all elements in T (T M) are represented
by germs of surfaces. Check that the equiva-
lence relation is the one given in the exercise so
that the resulting isomorphisms T (T U) ∼= E|U
give smooth bundle charts for E.

Exercise 6.6.1

Check that each of the pieces of the definition
of a pre-vector bundle are accounted for.

Exercise 6.6.7

Choose a chart (x, U) with p ∈ U and write out
the corresponding charts on T ∗M and T ∗(T ∗M)
to check smoothness. It may be that you will
find it easier to think in terms of the “dual bun-
dle” (T M)∗ rather than the isomorphic cotan-
gent bundle T ∗M and avoid the multiple occur-
rences of the isomorphism α, but strictly speak-
ing the dual bundle will not be introduced till
example ??.

Exercise 5.7.9

Prove that the diagonal M → M × M is an
imbedding by proving that it is an immersion
inducing a homeomorphism onto its image. The
tangent space of the diagonal at (p, p) is exactly
the diagonal of T(p,p)(M ×M) ∼= TpM × TpM .

Exercise 5.7.10

Show that the map

f × g : M × L→ N ×N

is transverse to the diagonal (which is discussed
in exercise 5.7.9), and that the inverse image of
the diagonal is exactly M ×N L.
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Exercise 5.7.11

Since π is a submersion, Exercise 5.7.10 shows
that E ×M N → N is smooth. If (e, n) ∈
E×M N , then a tangent vector in T(e,n)E×M N
is represented by a curve γ = (γE , γN ) : J →
E ×M N with πγE = fγN with γE(0) = e and
γN (0) = n. In effect, this shows that the obvi-
ous map T(e,p)(E ×M N) → TeE ×Tπ(e))M TnN
is an isomorphism. Furthermore, since TeE →
Tπ(e)M is a surjection, so is the projection
TeE ×Tπ(e)M TnN → TnN .

Chapter 7

Exercise 7.1.4

As an example, consider the open subset U0,0 =
{eiθ ∈ S1| cos θ > 0}. The bundle chart
h : U0,0×C→ U0,0×C given by sending (eiθ, z)
to (eiθ, e−iθ/2z). Then h((U0,0 × C) ∩ η1) =
U0,0×R. Continue this way all around the cir-
cle. The idea is the same for higher dimensions:
locally you can pick the first coordinate to be
on the line [p].

Exercise 7.1.11

Let Xk = {p ∈ X|rkpf = k}. We want to show
that Xk is both open and closed, and hence ei-
ther empty or all of X since X is connected.

Let P = {A ∈ Mm(A)|A = A2}, then
Pk = {A ∈ P |rk(A) = k} ⊆ P is open. To
see this, write Pk as the intersection of P with
the two open sets

{A ∈Mn(R)|rkA ≥ k}
and





A ∈Mn(R)

∣∣∣∣∣∣∣∣∣∣∣

A has less than
or equal to k

linearly independent
eigen vectors with

eigenvalue 1





.

But, given a bundle chart (h, U), then the map

U
p 7→hpfph

−1
p−−−−−−−→ P

is continuous, and hence U ∩Xk is open in U .
Varying (h, U) we get that Xk is open, and
hence also closed since Xk = X \⋃i6=k Xi.

Exercise 7.1.12

Use Exercise 7.1.11 to show that the bundle
map 1

2(idE − f) has constant rank (here we use
that the set of bundle morphisms is in an obvi-
ous way a vector space).

Exercise 7.1.13

Identifying T R with R×R in the usual way, we
see that f corresponds to (p, v) 7→ (p, p) which
is a nice bundle morphism, but

∐
p ker{v 7→

pv} = {(p, v) | p · v = 0} and
∐
p Im{v 7→ pv} =

{(p, pv)} are not bundles.

Exercise 7.1.14

The tangent map T f : T E → T M is locally the
projection U×Rk×Rn×Rk → U×Rn sending
(p, u, v, w) to (p, v), and so has constant rank.
Hence Corollary 7.1.10 gives that V = ker{T f}
is a subbundle of T E → E.

Exercise 7.2.5

A×X E = π−1(A).

Exercise 7.2.6

This is not as complex as it seems. For instance,
the map Ẽ → f∗E = X ′ ×X E must send e to
(π̃(e), g(e)) for the diagrams to commute.

Exercise 7.2.7

If h : E → X ×Rn is a trivialization, then the
map f∗E = Y ×X E → Y ×X (X×Rn) induced
by h is a trivialization, since Y ×X (X×Rn)→
Y ×Rn sending (y, (x, v)) to (y, v) is a homeo-
morphism.

Exercise 7.2.8

X ×Y (Y ×Z E) ∼= X ×Z E.
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Exercise 7.2.9

The map

E \ σ0(X)→ π∗
0E = (E \ σ0(X)) ×X E

sending v to (v, v) is a nonvanishing section.

Exercise 7.3.3

The transition functions will be of the type
U 7→ GLn1+n2(R), which sends p ∈ U to the
block matrix

[
(h1)p(g1)−1

p 0

0 (h2)p(g2)−1
p

]

which is smooth if each of the blocks are
smooth. More precisely, the transition function
is a composite of three smooth maps

1. the diagonal U → U × U ,

2. the product

U × U −−−−→ GLn1(R) ×GLn2(R)

of the transition functions, and

3. the block sum (A, B) 7→ [
A 0
0 B

]

GLn1(R) ×GLn2(R) −→ GLn1+n2(R)

Similarly for the morphisms.

Exercise 7.3.5

Use the map ǫ → Sn × R sending (p, λp) to
(p, λ).

Exercise 7.3.7

Consider T Sn⊕ ǫ, where ǫ is gotten from Exer-
cise 7.3.5. Construct a trivialization T Sn⊕ ǫ→
Sn ×Rn+1.

Exercise 7.3.8

ǫ1 ⊕ ǫ2
h1⊕h2−−−−→∼=

X × (Rn1 ⊕Rn2)

(E1 ⊕ E2)⊕ (ǫ1 ⊕ ǫ2) ∼= (E1 ⊕ ǫ1)⊕ (E2 ⊕ ǫ2)

Exercise 7.3.9

Given f1 and f2, let f : E1 ⊕ E2 → E3 be
given by sending (v, w) ∈ π−1

1 (p) ⊕ π−1
2 (p) to

f1(v) + f2(w) ∈ π−1
3 (p). Given f let f1(v) =

f(v, 0) and f2(w) = f(0, w).

Exercise 7.4.4

Send the bundle morphism f to the section
which to any p ∈ X assigns the linear map
fp : Ep → E′

p.

Exercise 7.4.5

For the bundle morphisms, you need to extend
the discussion in Example 7.4.3 slightly and
consider the map Hom(V1, V2)×Hom(V3, V4)→
Hom(Hom(V2, V3), Hom(V1, V4)) obtained by
composition.

Exercise 7.4.6

Let F ⊆ E be a k-dimensional subbundle of the
n-dimensional vector bundle π : E → X. Define
as a set

E/F =
∐

p∈X
Ep/Fp

with the obvious projection π̄ : E/F → X. The
bundle atlas is given as follows. For p ∈ X
choose bundle chart h : π−1(U)→ U ×Rn such
that h(π−1(U) ∩ F ) = U ×Rk × {0}. On each
fiber this gives a linear map on the quotient
h̄p : Ep/Fp → Rn/Rk × {0} via the formula
h̄p(v̄) = hp(v) as in 2. This gives a function

h̄ : (π̄)−1(U) =
∐

p∈U
Ep/Fp

→
∐

p∈U
Rn/Rk × {0}

∼= U ×Rn/Rk × {0}
∼=U ×Rn−k.

You then have to check that the transition func-
tions p 7→ ḡph̄

−1
p = gph

−1
p are continuous (or

smooth).
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As for the map of quotient bundles, this fol-
lows similarly: define it on each fiber and check
continuity of “up, over and down”.

Exercise 7.4.8

Just write out the definition.

Exercise 7.4.9

First recall the trivializations we used to define
the tangent and cotangent bundles. Given a
chart (x, U) for M we have trivializations

(T M)U ∼= U ×Rn

sending [γ] ∈ TpM to (γ(0), (xγ)′(0)) and

(T ∗M)U ∼= U × (Rn)∗

sending dφ ∈ T ∗
pM to (p, D(φx−1)(x(p))·) ∈

U × (Rn)∗. The bundle chart for the tangent
bundle has inverse

U ×Rn ∼= (T M)U

given by sending (p, v) to [t 7→ x−1(x(p)+vt)] ∈
TpM which gives rise to the bundle chart

(T M)∗
U
∼= U × (Rn)∗

on the dual, sending f ∈ (TpM)∗ to

(p, v 7→ f([t 7→ x−1(x(p) + vt)]).

The exercise is (more than) done if we show that
the diagram

(T ∗M)U
dφ 7→{[γ] 7→(φγ)′(0)}−−−−−−−−−−−−→ (T M)∗

U

∼=
y ∼=

y

U × (Rn)∗ U × (Rn)∗

commutes, which it does since if we start with
dφ ∈ T ∗

pM in the upper left hand corner, we
end up with D(φx−1)(x(p))· either way (check
that the derivative at t = 0 of φx−1(x(p) + vt)
is D(φx−1)(x(p)) · v).

Exercise 7.4.10

The procedure is just as for the other cases. Let
SB(E) =

∐
p∈X SB(Ep). If (h, U) is a bun-

dle chart for E → X define a bundle chart
SB(E)U → U × SB(Rk) by means of the com-
posite

SB(E)U
∐
p∈USB(Ep)

∐
SB(h−1

p )

y

U × SB(Rk)
∐
p∈USB(Rk).

Exercise 7.4.12

Altk(E) =
∐
p∈X AltkEp and so on.

Exercise 7.4.13

The transition functions on L → M are maps
into nonzero real numbers, and on the tensor
product this number is squared, and so all tran-
sition functions on L⊗L→M map into positive
real numbers.

Exercise 7.6.1

The conditions you need are exactly the ones
fulfilled by the elementary definition of the de-
terminant: check your freshman introduction.

Exercise 7.7.1

Check out e.g., [9] page 59.

Exercise 7.7.3

Check out e.g., [9] page 60.

Chapter 8

Exercise 8.1.4

Check the two defining properties of a flow. As
an aside: this flow could be thought of as the
flow R×C→ C sending (t, z) to e−z−t/2, which
obviously satisfies the two conditions.
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Exercise 8.1.9

Symmetry (Φ(0, p) = p) and reflexivity
(Φ(−t, Φ(t, p)) = p) are obvious, and transitiv-
ity follows since if

pi+1 = Φ(ti, pi), i = 0, 1

then

p2 = Φ(t1, p1) = Φ(t1, Φ(t0, p0)) = Φ(t1 + t0, p0)

Exercise 8.1.11

i) Flow lines are constant. ii) All flow lines out-
side the origin are circles. iii) All flow lines out-
side the origin are rays flowing towards the ori-
gin.

Exercise 8.1.20

Consider one of the “bad” injective immersions
that fail to be imbeddings, and force a discon-
tinuity on the velocity field.

Exercise 8.2.4

Consider a bump function φ on the sphere which
is 1 near the North pole and 0 near the South

pole. Consider the vector field
→
Φ = φ

→
ΦN + (1−

φ)
→
ΦS . Near the North pole

→
Φ =

→
ΦN and near

the South pole
→
Φ =

→
Φ, and so the flow associ-

ated with
→
Φ has the desired properties (that t

is required to be small secures that we do not
flow from one one pole to another).

Exercise 8.2.5

The vector field associated with the flow

Φ: R × (S1 × S1)→ (S1 × S1)

given by Φ(t, (z1, z2)) = (eiatz1, eibtz2) exhibits
the desired phenomena when varying the real
numbers a and b.

Exercise 8.2.6

All we have to show is that X is the velocity
field of Φ. Under the diffeomorphism

T O(n)→E

[γ]→(γ(0), γ′(0))

this corresponds to the observation that

∂

∂s

∣∣∣∣
s=0

Φ(s, g) = gA.

Exercise 8.4.3

Do a variation of example 8.3.5.

Exercise 8.5.3

There is no hint beyond: use the definitions!

Exercise 8.5.4

Use the preceding exercise: notice that T πMξ =
πTMξ is necessary for things to make sense since
γ̈ had two repeated coordinates.

Chapter 9

Exercise 9.2.8

The conditions the sections have to satisfy are
“convex”, see the proof of existence of fiber met-
rics Theorem 9.3.5 in the next section.

Exercise 9.2.9

The thing to check is that T is an open neigh-
borhood of the zero section.

Exercise 9.2.3

Consider a partition of unity {φi}i∈N as dis-
played in the proof of theorem 9.2.2 where
supp(φ) = x−1

i E(2) for a chart (xi, Ui) for each
i. Let fi be the composite

E(2)
∼=−→ x−1

i (E(2)) = supp(φi)
f |supp(φi)−−−−−−→ R
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and choose a polynomial gi such that |fi(x) −
gi(x)| < ǫ for all x ∈ E(2). Let g(p) =∑
i φi(p)gi(xi(p)) which is gives a well defined

and smooth map. Then

|f(p)− g(p)| =|
∑

i

φi(p)(f(p)− gi(xi(p)))|

=|
∑

i

φi(p)(fi(xi(p))− gi(xi(p)))|

≤
∑

i

φi(p)|fi(xi(p))− gi(xi(p))|

<
∑

i

φi(p)ǫ = ǫ.

Exercise 9.2.4

By Exercise 7.4.13, all the transition functions
U ∩V → GL1(R) in the associated bundle atlas
on L⊗ L→ M have values in the positive real
numbers. Use partition of unity to glue these
together and scale them to be the constantly 1.

Exercise 9.4.8

Use lemma 9.4.2 to show that the bundle in
question is isomorphic to (T Rn)|M →M .

Exercise 9.4.9

You have done this exercise before!

Exercise 9.5.10

Since fΦi(t, q′) = f(q′)+eit for all q′ ∈ E we get
that fφ(t, q) = f(q)+ t = r0 + t for q ∈ f−1(r0).
This gives that the first coordinate of φ−1φ(t, q)
is t, and that the second coordinate is q follows
since Φi(−ti, Φi(ti, q′)) = q′. Similarly for the
other composite.

Exercise 9.5.11

Concerning the map ℓ : S1 → CP1: note
that it maps into a chart domain on which
Lemma 9.5.8 tells us that the projection is triv-
ial.

Exercise 9.4.11

Analyzing Hom(ηn, η⊥
n ) we see that we may

identify it with the set of pairs (L, α : L→ L⊥),
where L ∈ RPn and α a linear map. On
the other hand, Exercise 6.5.15 identifies T RPn

with {(p, v) ∈ Sn × Rn+1 | p · v = 0}/(p, v) ∼
(−p,−v). This means that we may consider
the bijection Hom(ηn, η⊥

n ) → T RPn given by
sending (L, α : L → L⊥) to ±(p, α(p)) where
±p = L ∩ Sn. This bijection is linear on each
fiber. Check that it defines a bundle morphism
by considering trivializations over the standard
atlas for RPn.

Exercise 9.5.3

If s : M → E is a nonvanishing vector field, then
m 7→ s(m)

|s(m)| is a section of S(E)→M .

Exercise 9.5.4

Let π : E → M be a locally trivial smooth fi-
bration with M a connected non-empty smooth
manifold. Choose a p ∈M and let F = π−1(p).
Consider the set

U = {x ∈M |π−1(x) ∼= F},

and let V be the complement. We will show that
both U and V are open, and so U = M since
p ∈ U and M is connected. If x ∈ U choose a
trivializing neighborhood x ∈W ,

h : π−1(W )→W × π−1(x).

Now, if y ∈W , then h induces a diffeomorphism
between π−1(y) and π−1(x) ∼= F , so U is open.
Likewise for V .

Exercise 9.5.12

Write R as a union of intervals Jj so that for
each j, γ(Uj) is contained within one of the open
subsets of M so that the fibration trivializes.
On each of these intervals the curve lifts, and
you may glue the liftings using bump functions.
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Chapter 10

Exercise 10.1.5

Consider the union of the closed intervals
[1/n, 1] for n ≥ 1)

Exercise 10.1.7

Consider the set of all open subsets of X con-
tained in U . Its union is open.

Exercise 10.1.9

By the union axiom for open sets, int A is open
and contains all open subsets of A.

Exercise 10.1.10

The intersection of two open balls is the union
of all open balls contained in the intersection.

Exercise 10.1.11

All open intervals are open balls!

Exercise 10.2.2

Hint one way: the “existence of the δ” assures
you that every point in the inverse image has a
small interval around it inside the inverse image
of the ǫ ball.

a

U

f  (U)
−1

Exercise 10.2.3

f−1(g−1(U)) = (gf)−1(U).

Exercise 10.2.6

Use first year calculus.

Exercise 10.3.3

Can you prove that the set containing only the
intervals (a, b) when a and b varies over the ra-
tional numbers is a basis for the usual topology
on the real numbers?

Exercise 10.3.4

Show that given a point and an open ball con-
taining the point there is a “rational” ball in
between.

Exercise 10.3.5

Use note 10.3.2.

Exercise 10.3.6

f−1(
⋃
α Vα) =

⋃
α f−1(Vα).

Exercise 10.5.2

Use that (
⋃
α Uα) ∩ A =

⋃
α (Uα ∩A) and

(
⋂
α Uα) ∩A =

⋂
α (Uα ∩A).

Exercise 10.5.3

Use 10.2.3 one way, and that if f−1(U ∩ A) =
f−1(U) the other.

Exercise 10.5.4

The intersections of A with the basis elements
of the topology on X will form a basis for the
subspace topology on A.

Exercise 10.5.5

Separate points in A by means of disjoint neigh-
borhoods in X, and intersect with A.
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Exercise 10.6.4

Inverse image commutes with union and inter-
section.

Exercise 10.6.5

Use 10.2.3 one way, and the characterization of
open sets in X/ ∼ for the other.

Exercise 10.6.6

Show that open sets in one topology are open
in the other.

Exercise 10.7.2

Cover f(X) ⊆ Y by open sets i.e., by sets of
the form V ∩ f(X) where V is open in Y . Since
f−1(V ∩ f(X)) = f−1(V ) is open in X, this
gives an open cover of X. Choose a finite sub-
cover, and select the associated V ’s to cover
f(X).

Exercise 10.7.5

The real projective space is compact by 10.7.2.
The rest of the claims follows by 10.7.11, but
you can give a direct proof by following the out-
line below.

For p ∈ Sn let [p] be the equivalence class of
p considered as an element of RPn. Let [p] and
[q] be two different points. Choose an ǫ such
that ǫ is less than both |p− q|/2 and |p + q|/2.
Then the ǫ balls around p and −p do not in-
tersect the ǫ balls around q and −q, and their
image define disjoint open sets separating [p]
and [q].

Notice that the projection p : Sn → RPn

sends open sets to open sets, and that if V ⊆
RPn, then V = pp−1(V ). This implies that the
countable basis on Sn inherited as a subspace of
Rn+1 maps to a countable basis for the topol-
ogy on RPn.

Exercise 10.7.9

You must show that if K ⊆ C is closed, then(
f−1

)−1
(K) = f(K) is closed.

Exercise 10.7.10

Use Heine-Borel 10.7.3 and exercise 10.7.2.

Exercise 10.8.2

One way follows by Exercise 10.2.3. For the
other, observe that by Exercise 10.3.6 it is
enough to show that if U ⊆ X and V ⊆ Y
are open sets, then the inverse image of U × V
is open in Z.

Exercise 10.8.3

Show that a square around any point contains
a circle around the point and vice versa.

Exercise 10.8.4

If B is a basis for the topology on X and C is a
basis for the topology on Y , then

{U × V |U ∈ B, V ∈ C}

is a basis for X × Y .

Exercise 10.8.5

If (p1, q1) 6= (p2, q2) ∈ X × Y , then either
p1 6= p2 or q1 6= q2. Assume the former, and
let U1 and U2 be two open sets in X separating
p1 and p2. Then U1 × Y and U2 × Y are. . .

Exercise 10.9.2

The inverse image of a set that is both open and
closed is both open and closed.

Exercise 10.9.4

Both X1 and X2 are open sets.



204 CHAPTER 11. HINTS OR SOLUTIONS TO THE EXERCISES

Exercise 10.9.5

One way follows by Exercise 10.2.3. The other
follows since an open subset of X1

∐
X2 is the

(disjoint) union of an open subset of X1 with
an open subset of X2.

Exercise 10.10.4

If p ∈ f(f−1(B)) then p = f(q) for a q ∈
f−1(B). But that q ∈ f−1(B) means simply
that f(q) ∈ B!

Exercise 10.10.5

These are just rewritings.

Exercise 10.10.7

We have that p ∈ f−1(B1∩B2) iff f(p) ∈ B1∩B2

iff f(p) is in both B1 and B2 iff p is in both

f−1(B1) and f−1(B2) iff p ∈ f−1(B1)∩f−1(B2).
The others are equally fun.
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≈, 57

αM,p, 64
alternating forms, 128
atlas, 25

bundle, 99
good, 154
maximal, 34
smooth bundle, 102

bad taste, 99
base space, 99
basis for the topology, 174
βM,p, 69
bijective, 179
Borromean rings, 47
bump function, 55
bundle

atlas, 99
smooth, 102

chart, 99
chart transformation, 101
morphism, 100

smooth, 104

canonical n-plane bundle, 134
canonical one-form, 114
chain rule, 57

flat, 58
chart, 25

domain, 25
transformation, 29

C∞=smooth, 34
C∞(M), 40
C∞(M,N), 40
closed set, 172

closure, 172
cochain rule, 62
compact space, 177
complement, 172, 179
complex projective space, CPn, 32
complex structure, 163
connected space, 178
connected sum, 20
constant rank, 119
continuous

map, 173
coordinate functions

standard, 52
cotangent space, 62
cotangent bundle, 131
cotangent vector, 62
countable basis, 174
CPn, complex projective space, 32
critical, 74

D, 33
d : OM,p → T ∗

p (M), 63
De Morgan’s formulae, 180
derivation, 63, 67
determinant function, 133
diffeomorphic, 38
diffeomorphism, 30, 38
differentiable map, 37
differential, 63
differential=smooth, 34
disjoint union, 47, 179
double cover, 165
D|pf , 68
D|pM , 67
dual

basis, 65
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bundle, 130
linear map f ∗, 64
space, 127
vector space, 64

Ehresmann’s fibration theorem, 168
Ehresmann’s fibration theorem, 165
embedding=imbedding, 44
En: the open n-disk, 26
equivalence

class, 176
relation, 176

Euclidean space, 173
Euler angle, 85
Euler characteristic, 23
existence of maxima, 178
exponential map, 159
exterior power, 127

f̄ , germ represented by f , 52
family, 180
fiber, 98
fiber metric, 159
fiber product, 93, 122
fixed point free involution, 40
flow

global, 138
local, 147
maximal local, 148

flow line, 140, 148
forms, 131
function germ, 52
fusion reactor, 112

[γ] = [γ̄], 57
generalized Gauss map, 135
generate (a topology), 174
genus, 20
geodesic, 158
germ, 52
gimbal lock, 85
Gk
n, 86

GLn(R), 43
GL(V ), 43

good atlas, 154
Grassmann manifold, 86

handle, 20
Hausdorff space, 175
Heine–Borel’s theorem, 177
hom-space, 126
homeomorphic, 174
homeomorphism, 173
Hopf fibration, 16, 168
horror, 173

image, 179
of bundle morphism, 121
of map of vector spaces, 120

imbedding, 44
immersion, 80
induced bundle, 122
injective, 179
inner product, 159
Integrability theorem, 144, 149
interior, 172
intermediate value theorem, 179
inverse function theorem, 76
inverse image, 179
invertible germ, 53
isomorphism of smooth vector bundles, 104

Jacobian matrix, 50
J2
p , 62
Jp = JpM , 62

k-frame, 85
kernel

of bundle morphism, 121
of map of vector spaces, 120

k-form, 131
kinetic energy, 67
Klein bottle, 18

L : R ×R → R, 138
labeled flexible n-gons, 86
Leibniz condition, 63
Leibniz rule, 67
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Lie group, 47
O(n), 84
SLn(R), 84
S1, 47
U(n), 84
GLn(R), 46

line bundle, 195
line bundle, 102, 105
Liouville one-form, 114
local diffeomorphism, 40
local flow, 147
local trivialization, 99
locally trivial fibration, 164
locally finite, 154
locally homeomorphic, 25
locally trivial, 99

Möbius band, 20
magnetic dipole, 112
manifold

smooth, 34
topological, 25

maximal local flow, 148
maximal (smooth) bundle atlas, 103
maximal atlas, 34
metric topology, 172
Mm×nR, 43
M r

m×nR, 43
MnR, 43
momentum

conjugate, 161
generalized, 161

morphism
of bundles, 100

neighborhood, 172
nonvanishing vector field, 111
nonvanishing section, 100
normal bundle

with respect to a fiber metric, 161
of a submanifold, 131, 163
of an imbedding, 132, 163

O(n), 82

one-to-one, 179
onto, 179
open ball, 173
open set, 172
open submanifold, 43
orbit, 140, 149
orientable, 19
orientable bundle, 134
orientable manifold, 134
orientation

of a vector bundle, 134
on a vector space, 133

orientation preserving isomorphism, 133
orientation reversing isomorphism, 133
orientation class, 133
oriented vector space, 133
orthogonal matrices, 82

parallelizable, 109
partial derivative, 50
partition of unity, 156
periodic immersion, 142
permutation of the coordinates, 77
phase change, 15
phase space, 161
positive definite, 159
pre-bundle atlas, 106
pre-vector bundle, 106
precomposition, 54
preimage, see inverse image
pri, 52
product

smooth, 45
space, 178
topology, 178

product bundle, 99
projections (from the product), 178
projective space

complex, 32
projective plane, 20
projective space

real, 27
proper, 165
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qbit, 15
quadric, 86
quotient

bundle, 130
space, 62, 87, 126, 176
topology, 176

rank, 73
constant, 73

rank theorem, 78
real projective space, RPn, 27
real projective space, RPn, 32
reduction of the structure group, 163
refinement, 154
reflexivity, 176
regular

point, 74
value, 74

represent, 52
restriction, 175
restriction of bundle, 118
Riemannian manifold, 160
Riemannian metric, 159
rkpf , 73
RPn, real projective space, 27

second order differential equation, 150
section, 99
simply connected, 17
singular, 74
skew matrix, 84
SLn(R), 81
smooth

bundle morphism, 104
bundle atlas, 102
manifold, 34
map, 37
map, at a point, 37
pre-vector bundle, 106
structure, 34
vector bundle, 103

smooth manifold, 34
Sn: the n-sphere, 26

solution curve
for first order differential equation, 144
for second order differential equation, 151

SO(n), 84
special linear group, 81
special orthogonal group, 84
sphere bundle, 165
sphere, (standard smooth), 35
stably trivial, 125
state space, 15
stereographic projection, 31
Stiefel manifold, 85
subbundle, 117
submanifold, 41

open, 43
submersion, 80
subordinate, 156
subspace, 175
sum, of smooth manifolds, 47
U(n), 84
supp(f), 55
support, 55
surjective, 179
symmetric bilinear form, 128
symmetric bilinear forms bundle, 131
symmetric power, 128
symmetry, 176
symplectic potential, 114

tangent space
geometric definition, 57

tautological line bundle, 98, 107
tautological one-form, 114
tensor product, 127
topological space, 172
topology, 172

on a space, 172
torus, 11, 45
total space, 98
Tpf , 57
T ∗
pM , 62
TpM , 57
TpM ∼= D|pM , 69, 71
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transition function, 101
transitivity, 176
transverse, 87
trivial

smooth vector bundle, 103
trivial bundle, 99

unbounded Möbius band, 97
unitary group, 84

V ∗, 64
van der Waal’s equation, 86
vector bundle

n-dimensional (real topological), 97
smooth, 103

vector field, 111
velocity vector, 141
velocity field, 139, 148
vertical bundle, 121
V k
n , 85

Whitney sum, 124

f ∗ : Of(p) → Op, 54
OM,p, 52

zero section, 99
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