Torelli groups and the complex of minimizing cycles

Dan Margalit joint work with Mladen Bestvina and Kai-Uwe Bux

Informal Seminar

February 25, 2009

Torelli groups

 $S_g = \text{surface of genus } g$

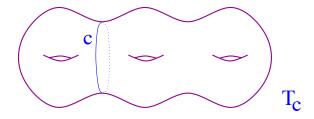
$$MCG(S_g) = \pi_0(Homeo^+(S_g))$$

Definition of the Torelli group $\mathcal{I}(S_g)$:

$$1 o \mathcal{I}(S_g) o \mathsf{MCG}(S_g) o \mathsf{Sp}(2g,\mathbb{Z}) o 1$$

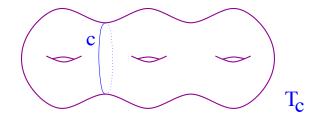
Elements of the Torelli group

Dehn twists about separating curves

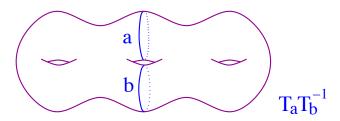


Elements of the Torelli group

Dehn twists about separating curves

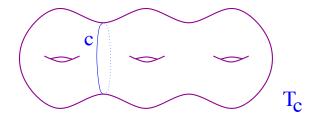


Bounding pair maps

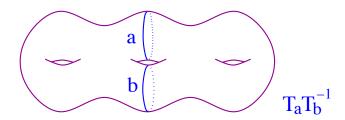


Elements of the Torelli group

Dehn twists about separating curves



Bounding pair maps



Theorem (Birman '71 + Powell '78, Putman '07)

These elements generate $\mathcal{I}(S_g)$.

Finite generation

Finite presentability

Finite generation of homology

Finite generation

Johnson 1983: $\mathcal{I}(S_g)$ finitely generated $g \geq 3$

Finite presentability

Finite generation of homology

Finite generation

Johnson 1983: $\mathcal{I}(S_g)$ finitely generated $g \geq 3$

McCullough–Miller 1986, Mess 1992: $\mathcal{I}(S_2) \cong F_{\infty}$

Finite presentability

Finite generation of homology

Finite generation

Johnson 1983: $\mathcal{I}(S_g)$ finitely generated $g \geq 3$

McCullough–Miller 1986, Mess 1992: $\mathcal{I}(S_2) \cong F_{\infty}$

Question 1: geometric group theory proof?

Finite presentability

Finite generation of homology

Finite generation

Johnson 1983: $\mathcal{I}(S_g)$ finitely generated $g \geq 3$

McCullough–Miller 1986, Mess 1992: $\mathcal{I}(S_2) \cong F_{\infty}$

Question 1: geometric group theory proof?

Finite presentability

Finite generation of homology

Harer 1986, Culler–Vogtmann 1986 + Mess 1990:
$$vcd(MCG(S_g)) = 4g - 5$$

Finite generation

Johnson 1983: $\mathcal{I}(S_g)$ finitely generated $g \geq 3$

McCullough–Miller 1986, Mess 1992: $\mathcal{I}(S_2) \cong F_{\infty}$

Question 1: geometric group theory proof?

Finite presentability

Finite generation of homology

Cohomological dimension

Harer 1986, Culler-Vogtmann 1986 + Mess 1990:

$$vcd(MCG(S_g)) = 4g - 5$$

Mess 1990: $\operatorname{cd}(\mathcal{I}(S_g)) \geq 3g - 5$

Finite generation

Johnson 1983: $\mathcal{I}(S_g)$ finitely generated $g \geq 3$

McCullough–Miller 1986, Mess 1992: $\mathcal{I}(S_2) \cong F_{\infty}$

Question 1: geometric group theory proof?

Finite presentability

Finite generation of homology

Cohomological dimension

Harer 1986, Culler-Vogtmann 1986 + Mess 1990:

$$vcd(MCG(S_g)) = 4g - 5$$

Mess 1990: $\operatorname{cd}(\mathcal{I}(S_g)) \geq 3g - 5$

Finite generation

Johnson 1983: $\mathcal{I}(S_g)$ finitely generated $g \geq 3$

McCullough–Miller 1986, Mess 1992: $\mathcal{I}(S_2) \cong F_{\infty}$

Question 1: geometric group theory proof?

Finite presentability

Finite generation of homology

Johnson-Millson-Mess 1992: $H_3(\mathcal{I}(S_3), \mathbb{Z})$ not f.g.

Cohomological dimension

Harer 1986, Culler-Vogtmann 1986 + Mess 1990:

$$vcd(MCG(S_g)) = 4g - 5$$

Mess 1990: $\operatorname{cd}(\mathcal{I}(S_g)) \geq 3g - 5$

Finite generation

Johnson 1983: $\mathcal{I}(S_g)$ finitely generated $g \geq 3$

McCullough–Miller 1986, Mess 1992: $\mathcal{I}(S_2) \cong F_{\infty}$

Question 1: geometric group theory proof?

Finite presentability

Finite generation of homology

Johnson-Millson-Mess 1992: $H_3(\mathcal{I}(S_3), \mathbb{Z})$ not f.g.

Hain 2005: $H_4(\mathcal{I}(S_3), \mathbb{Z})$ not f.g.

Cohomological dimension

Harer 1986, Culler-Vogtmann 1986 + Mess 1990:

$$vcd(MCG(S_g)) = 4g - 5$$

Mess 1990: $\operatorname{cd}(\mathcal{I}(S_g)) \geq 3g - 5$

Finite generation

Johnson 1983: $\mathcal{I}(S_g)$ finitely generated $g \geq 3$

McCullough-Miller 1986, Mess 1992: $\mathcal{I}(S_2) \cong F_{\infty}$

Question 1: geometric group theory proof?

Finite presentability

Finite generation of homology

Johnson-Millson-Mess 1992: $H_3(\mathcal{I}(S_3), \mathbb{Z})$ not f.g.

Hain 2005: $H_4(\mathcal{I}(S_3), \mathbb{Z})$ not f.g.

Akita 2001: $H_{\star}(\mathcal{I}(S_g), \mathbb{Z})$ not f.g., $g \geq 7$

Cohomological dimension

Harer 1986, Culler-Vogtmann 1986 + Mess 1990:

$$vcd(MCG(S_g)) = 4g - 5$$

Mess 1990: $\operatorname{cd}(\mathcal{I}(S_g)) \geq 3g - 5$

Finite generation

Johnson 1983: $\mathcal{I}(S_g)$ finitely generated $g \geq 3$

McCullough–Miller 1986, Mess 1992: $\mathcal{I}(S_2) \cong F_{\infty}$

Question 1: geometric group theory proof?

Finite presentability

Finite generation of homology

Johnson-Millson-Mess 1992: $H_3(\mathcal{I}(S_3), \mathbb{Z})$ not f.g.

Hain 2005: $H_4(\mathcal{I}(S_3), \mathbb{Z})$ not f.g.

Akita 2001: $H_{\star}(\mathcal{I}(S_g), \mathbb{Z})$ not f.g., $g \geq 7$

Question 3: which ones are infinitely generated?

Cohomological dimension

Harer 1986, Culler-Vogtmann 1986 + Mess 1990:

$$vcd(MCG(S_g)) = 4g - 5$$

Mess 1990: $\operatorname{cd}(\mathcal{I}(S_g)) \geq 3g - 5$

Finite generation

Johnson 1983: $\mathcal{I}(S_g)$ finitely generated $g \geq 3$

McCullough–Miller 1986, Mess 1992: $\mathcal{I}(S_2) \cong F_{\infty}$

Question 1: geometric group theory proof?

Finite presentability

Central open question

Finite generation of homology

Johnson-Millson-Mess 1992: $H_3(\mathcal{I}(S_3), \mathbb{Z})$ not f.g.

Hain 2005: $H_4(\mathcal{I}(S_3), \mathbb{Z})$ not f.g.

Akita 2001: $H_{\star}(\mathcal{I}(S_g), \mathbb{Z})$ not f.g., $g \geq 7$

Question 3: which ones are infinitely generated?

Cohomological dimension

Harer 1986, Culler-Vogtmann 1986 + Mess 1990:

$$vcd(MCG(S_g)) = 4g - 5$$

Mess 1990: $\operatorname{cd}(\mathcal{I}(S_g)) \geq 3g - 5$

Finite generation

Johnson 1983: $\mathcal{I}(S_g)$ finitely generated $g \geq 3$

McCullough–Miller 1986, Mess 1992: $\mathcal{I}(S_2) \cong F_{\infty}$

Question 1: geometric group theory proof? Yes

Finite presentability

Central open question

Finite generation of homology

Johnson-Millson-Mess 1992: $H_3(\mathcal{I}(S_3), \mathbb{Z})$ not f.g.

Hain 2005: $H_4(\mathcal{I}(S_3), \mathbb{Z})$ not f.g.

Akita 2001: $H_{\star}(\mathcal{I}(S_g), \mathbb{Z})$ not f.g., $g \geq 7$

Question 3: which ones are infinitely generated?

Cohomological dimension

Harer 1986, Culler-Vogtmann 1986 + Mess 1990:

$$vcd(MCG(S_g)) = 4g - 5$$

Mess 1990: $\operatorname{cd}(\mathcal{I}(S_g)) \geq 3g - 5$

Finite generation

Johnson 1983: $\mathcal{I}(S_g)$ finitely generated $g \geq 3$

McCullough–Miller 1986, Mess 1992: $\mathcal{I}(S_2) \cong F_{\infty}$

Question 1: geometric group theory proof? Yes

Finite presentability

Central open question

Finite generation of homology

Johnson-Millson-Mess 1992: $H_3(\mathcal{I}(S_3), \mathbb{Z})$ not f.g.

Hain 2005: $H_4(\mathcal{I}(S_3), \mathbb{Z})$ not f.g.

Akita 2001: $H_{\star}(\mathcal{I}(S_g), \mathbb{Z})$ not f.g., $g \geq 7$

Question 3: which ones are infinitely generated?

Cohomological dimension

Harer 1986, Culler-Vogtmann 1986 + Mess 1990:

$$vcd(MCG(S_g)) = 4g - 5$$

Mess 1990: $\operatorname{cd}(\mathcal{I}(S_g)) \geq 3g - 5$

Finite generation

Johnson 1983: $\mathcal{I}(S_g)$ finitely generated $g \geq 3$

McCullough-Miller 1986, Mess 1992: $\mathcal{I}(S_2) \cong F_{\infty}$

Question 1: geometric group theory proof? Yes

Finite presentability

Central open question

Finite generation of homology

Johnson-Millson-Mess 1992: $H_3(\mathcal{I}(S_3), \mathbb{Z})$ not f.g.

Hain 2005: $H_4(\mathcal{I}(S_3), \mathbb{Z})$ not f.g.

Akita 2001: $H_{\star}(\mathcal{I}(S_g), \mathbb{Z})$ not f.g., $g \geq 7$

Question 3: which ones are infinitely generated? H_{3g-5}

Cohomological dimension

Harer 1986, Culler-Vogtmann 1986 + Mess 1990:

$$vcd(MCG(S_g)) = 4g - 5$$

Mess 1990: $\operatorname{cd}(\mathcal{I}(S_g)) \geq 3g - 5$

Theorem (Mess, BBM)

For $g \ge 2$, we have $cd(\mathcal{I}(S_g)) = 3g - 5$.

Theorem (Mess, BBM)

For $g \ge 2$, we have $cd(\mathcal{I}(S_g)) = 3g - 5$.

Theorem (BBM)

For $g \geq 2$, we have $H_{3g-5}(\mathcal{I}(S_g),\mathbb{Z})$ is infinitely generated.

Theorem (Mess, BBM)

For $g \ge 2$, we have $\operatorname{cd}(\mathcal{I}(S_g)) = 3g - 5$.

Theorem (BBM)

For $g \geq 2$, we have $H_{3g-5}(\mathcal{I}(S_g), \mathbb{Z})$ is infinitely generated.

Theorem (Mess, new proof BBM)

 $\mathcal{I}(S_2)$ is an infinitely generated free group, with one Dehn twist generator for each symplectic splitting of $H_1(S_2, \mathbb{Z})$.

Theorem (Mess, BBM)

For $g \ge 2$, we have $\operatorname{cd}(\mathcal{I}(S_g)) = 3g - 5$.

Theorem (BBM)

For $g \geq 2$, we have $H_{3g-5}(\mathcal{I}(S_g), \mathbb{Z})$ is infinitely generated.

Theorem (Mess, new proof BBM)

 $\mathcal{I}(S_2)$ is an infinitely generated free group, with one Dehn twist generator for each symplectic splitting of $H_1(S_2, \mathbb{Z})$.

$$\mathcal{K}(S_g) = \langle T_c : c \text{ separating} \rangle$$

Theorem (Mess, BBM)

For $g \ge 2$, we have $\operatorname{cd}(\mathcal{I}(S_g)) = 3g - 5$.

Theorem (BBM)

For $g \geq 2$, we have $H_{3g-5}(\mathcal{I}(S_g), \mathbb{Z})$ is infinitely generated.

Theorem (Mess, new proof BBM)

 $\mathcal{I}(S_2)$ is an infinitely generated free group, with one Dehn twist generator for each symplectic splitting of $H_1(S_2, \mathbb{Z})$.

$$\mathcal{K}(S_g) = \langle T_c : c \text{ separating} \rangle$$

Theorem (BBM)

For $g \geq 2$, we have $\operatorname{cd}(\mathcal{K}(S_g)) = 2g - 3$.

$$vcd(MCG(S_g)) = 4g - 5$$

$$vcd(MCG(S_g)) = 4g - 5$$

$$cd(\mathcal{I}(S_g)) = 3g - 5$$

$$vcd(MCG(S_g)) = 4g - 5$$

$$cd(\mathcal{I}(S_g)) = 3g - 5$$

$$cd(\mathcal{K}(S_g)) = 2g - 3$$

$$vcd(MCG(S_g)) = 4g - 5$$

$$cd(\mathcal{I}(S_g)) = 3g - 5$$

$$cd(\mathcal{K}(S_g)) = 2g - 3$$

$$\mathcal{SI}(S_g) = \{ f \in \mathcal{I}(S_g) : if = fi \}$$

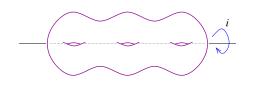
$$vcd(MCG(S_g)) = 4g - 5$$

$$cd(\mathcal{I}(S_g)) = 3g - 5$$

$$cd(\mathcal{K}(S_g)) = 2g - 3$$

$$\operatorname{cd}(\mathcal{SI}(S_g)) = g - 1$$
 (Brendle-M)

$$\mathcal{SI}(S_g) = \{ f \in \mathcal{I}(S_g) : if = fi \}$$



$$vcd(MCG(S_g)) = 4g - 5$$

$$cd(\mathcal{I}(S_g)) = 3g - 5$$

$$cd(\mathcal{K}(S_g)) = 2g - 3$$

$$cd(\mathcal{SI}(S_g)) = g-1$$
 (Brendle-M)

$$vcd(MCG(S_g)) = 4g - 5$$

$$cd(\mathcal{I}(S_g)) = 3g - 5$$

 $cd(\mathcal{K}(S_g)) = 2g - 3$

$$cd(\mathcal{SI}(S_g)) = g-1$$
 (Brendle-M)

 $\mathcal{I}^k(S_g) = \text{subgroup of MCG}(S_g)$ fixing the homology of k handles.

$$\operatorname{vcd}(\operatorname{MCG}(S_g)) = 4g - 5$$
 $\operatorname{cd}(\mathcal{I}^k(S_g)) = 4g - 5 - k$ (Conjecture) $\operatorname{cd}(\mathcal{I}(S_g)) = 3g - 5$ $\operatorname{cd}(\mathcal{K}(S_g)) = 2g - 3$ $\operatorname{cd}(\mathcal{SI}(S_g)) = g - 1$ (Brendle-M)

 $\mathcal{I}^k(S_g) = \text{subgroup of MCG}(S_g)$ fixing the homology of k handles.

$$\operatorname{vcd}(\operatorname{MCG}(S_g)) = 4g - 5$$

$$\operatorname{cd}(\mathcal{I}^k(S_g)) = 4g - 5 - k \quad \text{(Conjecture)}$$

$$\operatorname{cd}(\mathcal{I}(S_g)) = 3g - 5$$

$$\operatorname{cd}(\mathcal{K}(S_g)) = 2g - 3$$

$$\operatorname{cd}(\mathcal{SI}(S_g)) = g - 1 \quad \text{(Brendle-M)}$$

Dimensions of mapping class groups

$$\operatorname{vcd}(\operatorname{MCG}(S_g)) = 4g - 5$$
 $\operatorname{cd}(\mathcal{I}^k(S_g)) = 4g - 5 - k$ (Conjecture) $\operatorname{cd}(\mathcal{I}(S_g)) = 3g - 5$ $\operatorname{cd}(\mathcal{K}(S_g)) = 2g - 3$ $\operatorname{cd}(\mathcal{SI}(S_g)) = g - 1$ (Brendle-M)

 $\{\mathcal{N}_k(S_g)\}$ =the Johnson filtration. For $g,k\geq 2$, we have

$$g-1 \leq \operatorname{cd}(\mathcal{N}_k(S_g)) \leq 2g-3$$
 (Farb, BBM)

Generalities from Spectral Sequences

Generalities from Spectral Sequences

 $G = \mathsf{group}$

X =contractible CW-complex

 $G \circlearrowleft X$

 \sim Cartan–Leray Spectral Sequence

Generalities from Spectral Sequences

G = group

X = contractible CW-complex

 $G \circlearrowleft X$

Suppose

$$\sup\{\operatorname{cd}(\operatorname{Stab}(\sigma)) + \dim(\sigma)\} \le D$$

where the supremum is over cells σ of X.

Generalities from Spectral Sequences

G = group

X = contractible CW-complex

 $G \circlearrowleft X$

Suppose

$$\sup\{\operatorname{cd}(\operatorname{Stab}(\sigma)) + \dim(\sigma)\} \le D$$

where the supremum is over cells σ of X.

Then

1.
$$cd(G) \leq D$$
 (Quillen)

Generalities from Spectral Sequences

G = group

X = contractible CW-complex

 $G \circlearrowleft X$

Suppose

$$\sup\{\operatorname{cd}(\operatorname{Stab}(\sigma)) + \dim(\sigma)\} \leq D$$

where the supremum is over cells σ of X.

Then

- 1. $cd(G) \leq D$ (Quillen)
- 2. $\oplus H_D(\operatorname{Stab}_G(v)) \hookrightarrow H_D(G)$ where the sum is over a set of reps of vertices of X/G.

Informal definition

Fix any nonzero $x \in H_1(S, \mathbb{Z})$.

Informal definition

Fix any nonzero $x \in H_1(S, \mathbb{Z})$.

 $\mathcal{B}(S) = \text{space of isotopy classes of simple nonnegative 1-cycles,}$ with no null-homologous subcycles, representing x.

Informal definition

Fix any nonzero $x \in H_1(S, \mathbb{Z})$. $\mathcal{B}(S) = \text{space of}$

simple nonnegative 1-cycles representing x.

Informal definition

Fix any nonzero $x \in H_1(S, \mathbb{Z})$.

 $\mathcal{B}(S) = \text{space of isotopy classes of simple nonnegative 1-cycles}$ representing x.

Informal definition

Fix any nonzero $x \in H_1(S, \mathbb{Z})$.

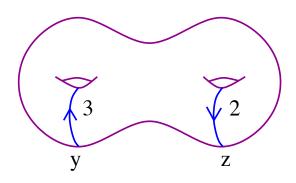
 $\mathcal{B}(S) = \text{space of isotopy classes of simple nonnegative 1-cycles,}$ with no null-homologous subcycles, representing x.

Informal definition

Fix any nonzero $x \in H_1(S, \mathbb{Z})$.

 $\mathcal{B}(S) = \text{space of isotopy classes of simple nonnegative 1-cycles,}$ with no null-homologous subcycles, representing x.

Example: x = 3y + 2z

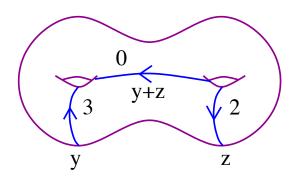


Informal definition

Fix any nonzero $x \in H_1(S, \mathbb{Z})$.

 $\mathcal{B}(S) = \text{space of isotopy classes of simple nonnegative 1-cycles,}$ with no null-homologous subcycles, representing x.

Example: x = 3y + 2z

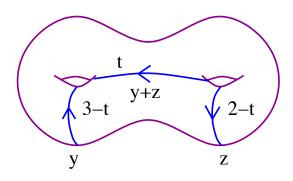


Informal definition

Fix any nonzero $x \in H_1(S, \mathbb{Z})$.

 $\mathcal{B}(S) = \text{space of isotopy classes of simple nonnegative 1-cycles,}$ with no null-homologous subcycles, representing x.

Example: x = 3y + 2z

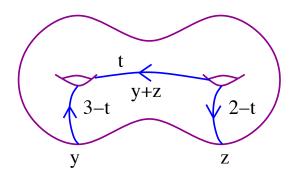


Informal definition

Fix any nonzero $x \in H_1(S, \mathbb{Z})$.

 $\mathcal{B}(S) = \text{space of isotopy classes of simple nonnegative 1-cycles,}$ with no null-homologous subcycles, representing x.

Example: x = 3y + 2z



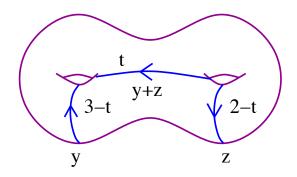
Nonnegativity $\sim 0 \le t \le 2$.

Informal definition

Fix any nonzero $x \in H_1(S, \mathbb{Z})$.

 $\mathcal{B}(S) = \text{space of isotopy classes of simple nonnegative 1-cycles,}$ with no null-homologous subcycles, representing x.

Example: x = 3y + 2z



Nonnegativity $\sim 0 \le t \le 2$. Resulting cell:

Let $x \in H_1(S, \mathbb{Z})$ be fixed.

Let $x \in H_1(S, \mathbb{Z})$ be fixed.

 $\mathscr{S}=$ the set of isotopy classes of oriented curves in S.

$$\{ ext{1-cycles}\} \leftrightarrow \mathbb{R}^\mathscr{S}$$

Let $x \in H_1(S, \mathbb{Z})$ be fixed.

 $\mathscr{S} =$ the set of isotopy classes of oriented curves in S.

$$\{1\text{-cycles}\} \leftrightarrow \mathbb{R}^{\mathscr{S}}$$

Let M be an oriented multicurve w/ no null-homologous subcycles.

Let $x \in H_1(S, \mathbb{Z})$ be fixed.

 \mathscr{S} = the set of isotopy classes of oriented curves in S.

$$\{1\text{-cycles}\} \leftrightarrow \mathbb{R}^\mathscr{S}$$

Let M be an oriented multicurve w/ no null-homologous subcycles.

```
\mathsf{Cell}(M) = \{ \ c \in \mathbb{R}^{\mathscr{S}} \ : \ c \ \mathsf{positive}, \\ c \ \mathsf{supported in} \ M, \\ c \ \mathsf{represents} \ x \ \}
```


Let $x \in H_1(S, \mathbb{Z})$ be fixed.

 \mathscr{S} = the set of isotopy classes of oriented curves in S.

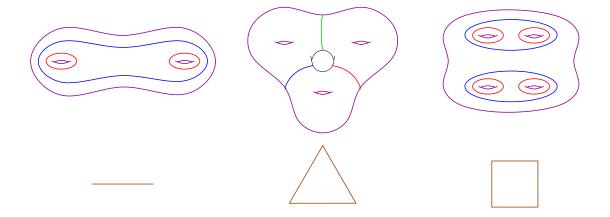
$$\{1\text{-cycles}\} \leftrightarrow \mathbb{R}^\mathscr{S}$$

Let M be an oriented multicurve w/ no null-homologous subcycles.

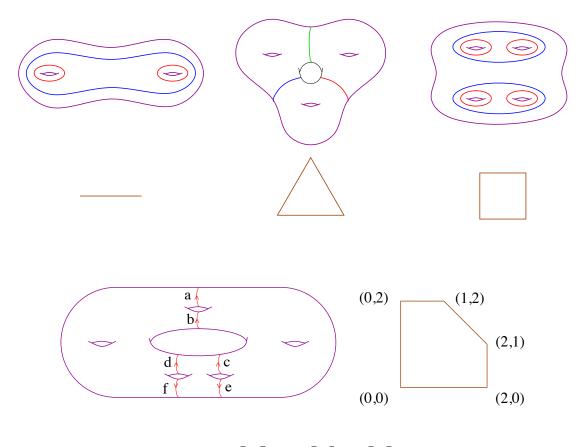
```
\mathsf{Cell}(M) = \{ \ c \in \mathbb{R}^{\mathscr{S}} \ : \ c \ \mathsf{positive}, \\ c \ \mathsf{supported in} \ M, \\ c \ \mathsf{represents} \ x \ \}
```

Fact: Cell(M) is a polytope.

Examples of cells



Examples of cells



$$x = [d] + 2[e] + [f]$$

The complex of minimizing cycles Definition

 $\mathcal{B}(S)$ = the complex of minimizing cycles

The complex of minimizing cycles Definition

 $\mathcal{B}(S)$ = the complex of minimizing cycles

$$\coprod_{M} \operatorname{Cell}(M)$$

Definition

 $\mathcal{B}(S)$ = the complex of minimizing cycles

$$\mathcal{B}(S) = \coprod_{M} \operatorname{Cell}(M) / \sim$$

Equivalence relation: identify faces that are equal in $\mathbb{R}^{\mathscr{S}}$.

Definition

 $\mathcal{B}(S)$ = the complex of minimizing cycles

$$\mathcal{B}(S) = \coprod_{M} \operatorname{Cell}(M) / \sim$$

Equivalence relation: identify faces that are equal in $\mathbb{R}^{\mathscr{S}}$.

$$\mathcal{I}(S_g) \circlearrowleft \mathcal{B}(S_g)$$

Definition

 $\mathcal{B}(S)$ = the complex of minimizing cycles

$$\mathcal{B}(S) = \coprod_{M} \operatorname{Cell}(M) / \sim$$

Equivalence relation: identify faces that are equal in $\mathbb{R}^{\mathscr{S}}$.

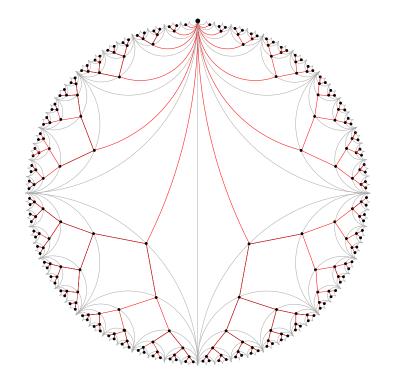
$$\mathcal{I}(S_g) \circlearrowleft \mathcal{B}(S_g)$$

Theorem (BBM)

 $\mathcal{B}(S_g)$ is contractible.

Genus 2

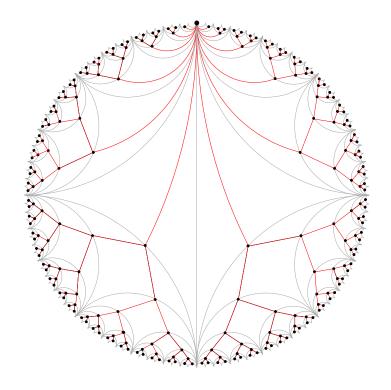
The quotient tree $\mathcal{B}(S_2)/\mathcal{I}(S_2)$ is infinitely many copies of



glued along their distinguished vertices

Genus 2

The quotient tree $\mathcal{B}(S_2)/\mathcal{I}(S_2)$ is infinitely many copies of



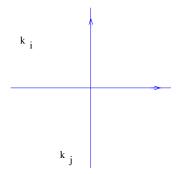
glued along their distinguished vertices (one for each isotropic subspace of $H_1(S_2, \mathbb{Z})$ containing x).

Two proofs of contractibility

Surgery proof of contractibility

Surgery on 1-cycles

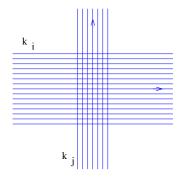
$$c = \sum k_i c_i$$



Surgery proof of contractibility

Surgery on 1-cycles

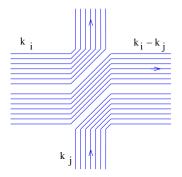
$$c = \sum k_i c_i$$



Surgery proof of contractibility

Surgery on 1-cycles

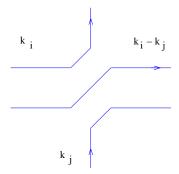
$$c = \sum k_i c_i$$



Surgery proof of contractibility

Surgery on 1-cycles

$$c = \sum k_i c_i$$



Surgery proof of contractibility

A deformation retraction à la Hatcher

$$H(d,t) = tc + (1-t)d$$

Surgery proof of contractibility

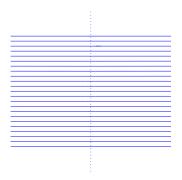
A deformation retraction à la Hatcher

$$H(d,t) = \operatorname{Surger}(tc + (1-t)d)$$

Surgery proof of contractibility

A deformation retraction à la Hatcher

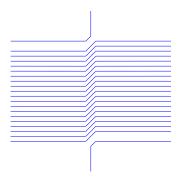
$$H(d,t) = \operatorname{Surger}(tc + (1-t)d)$$



Surgery proof of contractibility

A deformation retraction à la Hatcher

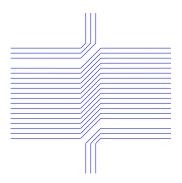
$$H(d,t) = \operatorname{Surger}(tc + (1-t)d)$$



Surgery proof of contractibility

A deformation retraction à la Hatcher

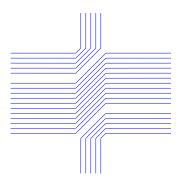
$$H(d,t) = \operatorname{Surger}(tc + (1-t)d)$$



Surgery proof of contractibility

A deformation retraction à la Hatcher

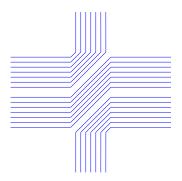
$$H(d,t) = \operatorname{Surger}(tc + (1-t)d)$$



Surgery proof of contractibility

A deformation retraction à la Hatcher

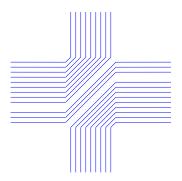
$$H(d,t) = \operatorname{Surger}(tc + (1-t)d)$$



Surgery proof of contractibility

A deformation retraction à la Hatcher

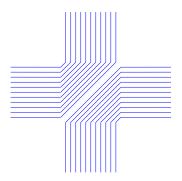
$$H(d,t) = \operatorname{Surger}(tc + (1-t)d)$$



Surgery proof of contractibility

A deformation retraction à la Hatcher

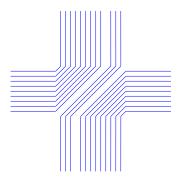
$$H(d,t) = \operatorname{Surger}(tc + (1-t)d)$$



Surgery proof of contractibility

A deformation retraction à la Hatcher

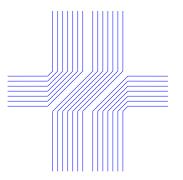
$$H(d,t) = \operatorname{Surger}(tc + (1-t)d)$$



Surgery proof of contractibility

A deformation retraction à la Hatcher

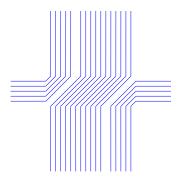
$$H(d,t) = \operatorname{Surger}(tc + (1-t)d)$$



Surgery proof of contractibility

A deformation retraction à la Hatcher

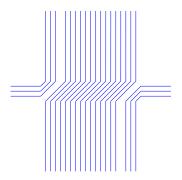
$$H(d,t) = \operatorname{Surger}(tc + (1-t)d)$$



Surgery proof of contractibility

A deformation retraction à la Hatcher

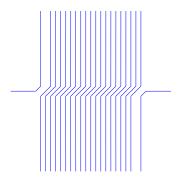
$$H(d,t) = \operatorname{Surger}(tc + (1-t)d)$$



Surgery proof of contractibility

A deformation retraction à la Hatcher

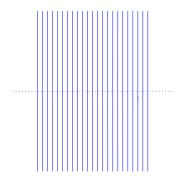
$$H(d,t) = \operatorname{Surger}(tc + (1-t)d)$$

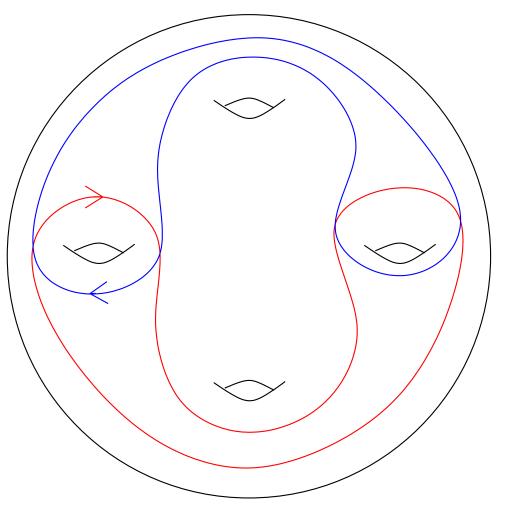


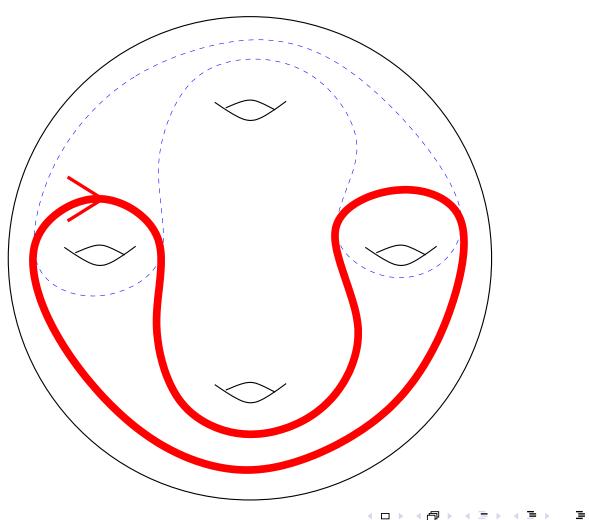
Surgery proof of contractibility

A deformation retraction à la Hatcher

$$H(d,t) = \operatorname{Surger}(tc + (1-t)d)$$





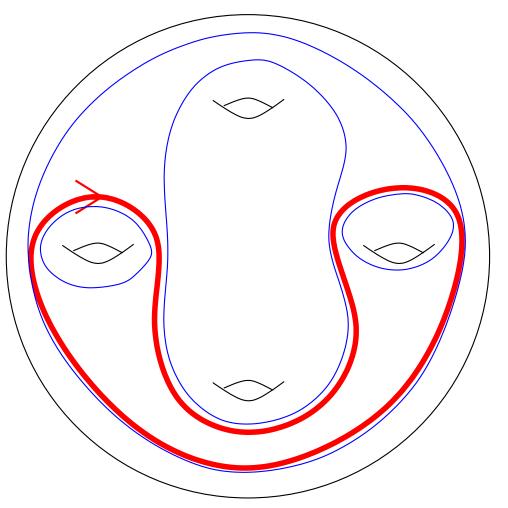


Surgery proof of contractibility

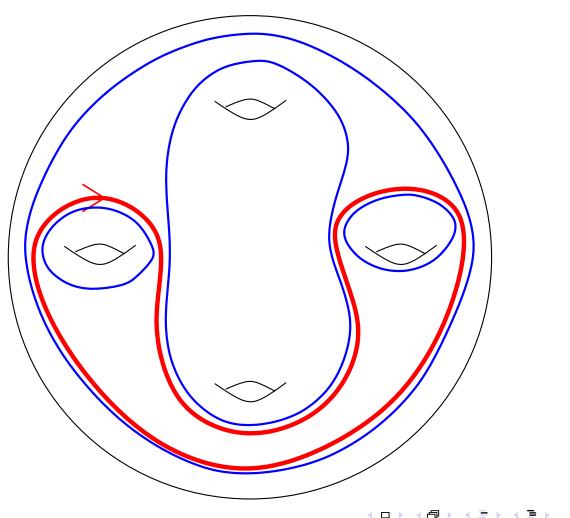


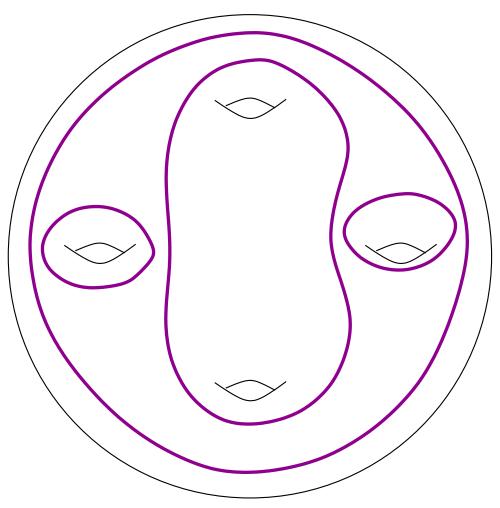
<□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ </p>

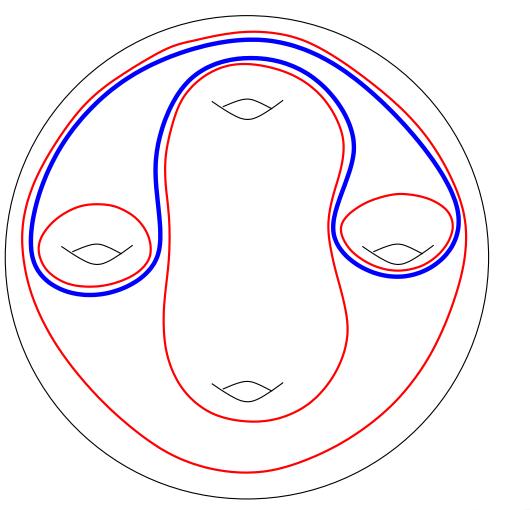
Surgery proof of contractibility

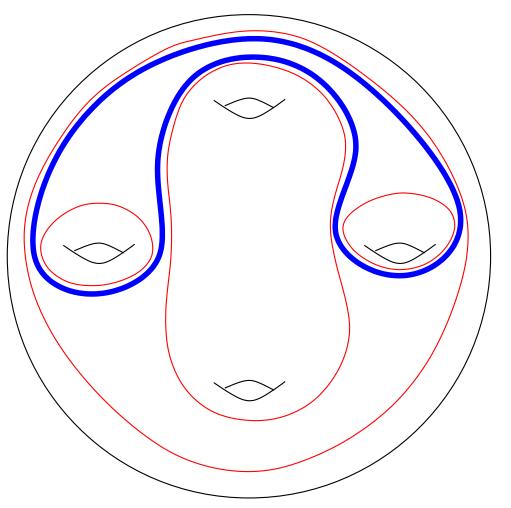


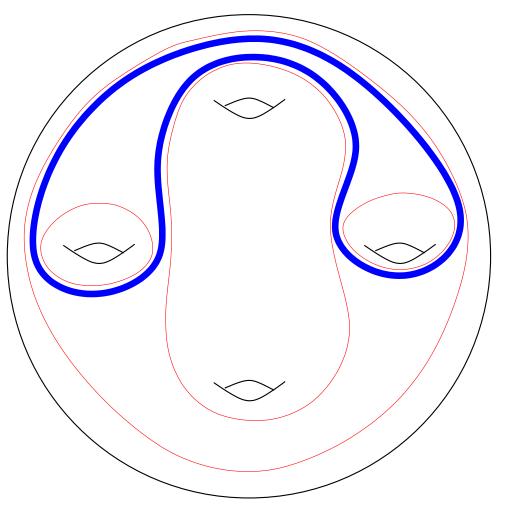
<□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ </p>

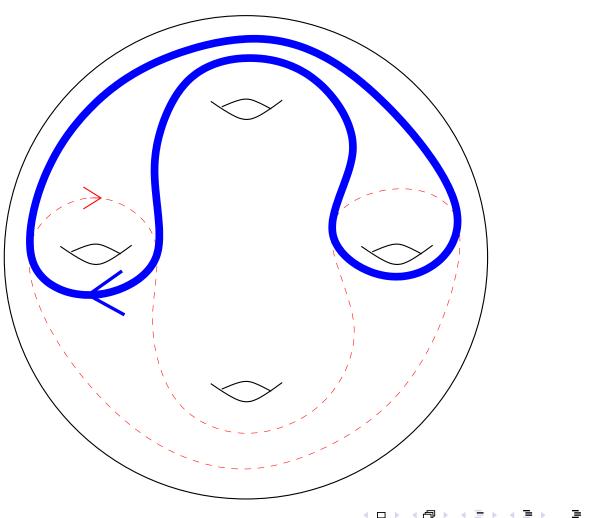












Teichmüller space proof of contractibility

Fix
$$x \in H_1(S, \mathbb{Z})$$
.

Teichmüller space proof of contractibility

Fix
$$x \in H_1(S, \mathbb{Z})$$
.

"Morse function" on Teichmüller space $\mathcal{T}(S)$: length of x.

Teichmüller space proof of contractibility

Fix $x \in H_1(S, \mathbb{Z})$.

"Morse function" on Teichmüller space $\mathcal{T}(S)$: length of x.

 $X \in \mathcal{T}(S) \sim$ minimizing multicurve for x

Teichmüller space proof of contractibility

Fix
$$x \in H_1(S, \mathbb{Z})$$
.

"Morse function" on Teichmüller space $\mathcal{T}(S)$: length of x.

$$X \in \mathcal{T}(S) \sim$$
 minimizing multicurve for x

Let M be an oriented multicurve w/ no null-homologous subcycles.

Teichmüller space proof of contractibility

Fix
$$x \in H_1(S, \mathbb{Z})$$
.

"Morse function" on Teichmüller space $\mathcal{T}(S)$: length of x.

$$X \in \mathcal{T}(S) \sim$$
 minimizing multicurve for x

Let M be an oriented multicurve w/ no null-homologous subcycles.

Chamber(M) = { $X \in \mathcal{T}(S)$: M is the minimizing multicurve}

Teichmüller space proof of contractibility

Fix
$$x \in H_1(S, \mathbb{Z})$$
.

"Morse function" on Teichmüller space $\mathcal{T}(S)$: length of x.

$$X \in \mathcal{T}(S) \sim \text{minimizing multicurve for } x$$

Let M be an oriented multicurve w/ no null-homologous subcycles.

Chamber(M) = { $X \in \mathcal{T}(S)$: M is the minimizing multicurve}

Key Fact 1: Chambers are contractible.

Teichmüller space proof of contractibility

Fix
$$x \in H_1(S, \mathbb{Z})$$
.

"Morse function" on Teichmüller space $\mathcal{T}(S)$: length of x.

$$X \in \mathcal{T}(S) \sim \text{minimizing multicurve for } x$$

Let M be an oriented multicurve w/ no null-homologous subcycles.

Chamber(M) = { $X \in \mathcal{T}(S)$: M is the minimizing multicurve}

Key Fact 1: Chambers are contractible.

Key Fact 2: Chamber(M) ∩ Chamber(M') $\neq \emptyset$

 \iff Cell(M) \cap Cell(M') $\neq \emptyset$

Teichmüller space proof of contractibility

Fix
$$x \in H_1(S, \mathbb{Z})$$
.

"Morse function" on Teichmüller space $\mathcal{T}(S)$: length of x.

$$X \in \mathcal{T}(S) \sim$$
 minimizing multicurve for x

Let M be an oriented multicurve w/ no null-homologous subcycles.

Chamber(M) = { $X \in \mathcal{T}(S)$: M is the minimizing multicurve}

Key Fact 1: Chambers are contractible.

Key Fact 2: Chamber $(M) \cap$ Chamber $(M') \neq \emptyset$

 \iff Cell(M) \cap Cell(M') $\neq \emptyset$

Proof that $\mathcal{B}(S)$ is contractible:

Teichmüller space proof of contractibility

Fix
$$x \in H_1(S, \mathbb{Z})$$
.

"Morse function" on Teichmüller space $\mathcal{T}(S)$: length of x.

$$X \in \mathcal{T}(S) \sim$$
 minimizing multicurve for x

Let M be an oriented multicurve w/ no null-homologous subcycles.

Chamber(M) = { $X \in \mathcal{T}(S)$: M is the minimizing multicurve}

Key Fact 1: Chambers are contractible.

Key Fact 2: Chamber $(M) \cap$ Chamber $(M') \neq \emptyset$ \iff Cell $(M) \cap$ Cell $(M') \neq \emptyset$

Proof that $\mathcal{B}(S)$ is contractible: Its (contractible) cells $\{Cell(M)\}$ are glued in the same way as the contractible chambers are glued to form $\mathcal{T}(S)$

Teichmüller space proof of contractibility

Fix
$$x \in H_1(S, \mathbb{Z})$$
.

"Morse function" on Teichmüller space $\mathcal{T}(S)$: length of x.

$$X \in \mathcal{T}(S) \sim$$
 minimizing multicurve for x

Let M be an oriented multicurve w/ no null-homologous subcycles.

Chamber(M) = { $X \in \mathcal{T}(S)$: M is the minimizing multicurve}

Key Fact 1: Chambers are contractible.

Key Fact 2: Chamber $(M) \cap$ Chamber $(M') \neq \emptyset$ \iff Cell $(M) \cap$ Cell $(M') \neq \emptyset$

Proof that $\mathcal{B}(S)$ is contractible: Its (contractible) cells $\{Cell(M)\}$ are glued in the same way as the contractible chambers are glued to form $\mathcal{T}(S)$, which is contractible.

Teichmüller space proof of contractibility

Fix
$$x \in H_1(S, \mathbb{Z})$$
.

"Morse function" on Teichmüller space $\mathcal{T}(S)$: length of x.

$$X \in \mathcal{T}(S) \sim \text{minimizing multicurve for } x$$

Let M be an oriented multicurve w/ no null-homologous subcycles.

Chamber(M) = { $X \in \mathcal{T}(S)$: M is the minimizing multicurve}

Key Fact 1: Chambers are contractible.

Key Fact 2: Chamber $(M) \cap$ Chamber $(M') \neq \emptyset$ \iff Cell $(M) \cap$ Cell $(M') \neq \emptyset$

Proof that $\mathcal{B}(S)$ is contractible: Its (contractible) cells $\{Cell(M)\}$ are glued in the same way as the contractible chambers are glued to form $\mathcal{T}(S)$, which is contractible. Q.E.D.

Proof that
$$\operatorname{cd}(\mathcal{I}(S_g)) \leq 3g-5$$

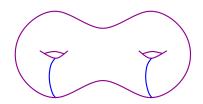
Quillen:
$$\operatorname{cd}(\mathcal{I}(S_g)) \leq \sup\{\operatorname{cd}(\operatorname{Stab}(\sigma)) + \dim(\sigma)\}$$
 σ a cell of $\mathcal{B}(S_g)$

Proof that
$$cd(\mathcal{I}(S_g)) \leq 3g - 5$$

Quillen:

$$\operatorname{cd}(\mathcal{I}(S_g)) \leq \sup\{\operatorname{cd}(\operatorname{Stab}(\sigma)) + \dim(\sigma)\}$$
 $\sigma \text{ a cell of } \mathcal{B}(S_g)$

In genus 2, stabilizers of vertices are 1-dimensional

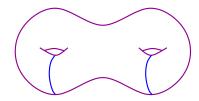


Proof that
$$cd(\mathcal{I}(S_g)) \leq 3g - 5$$

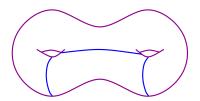
Quillen:

$$\operatorname{cd}(\mathcal{I}(S_g)) \leq \sup\{\operatorname{cd}(\operatorname{Stab}(\sigma)) + \dim(\sigma)\}$$
 $\sigma \text{ a cell of } \mathcal{B}(S_g)$

In genus 2, stabilizers of vertices are 1-dimensional



and stabilizers of edges are trivial (0-dimensional).

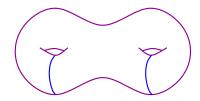


Proof that
$$cd(\mathcal{I}(S_g)) \leq 3g - 5$$

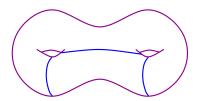
Quillen:

$$\operatorname{cd}(\mathcal{I}(S_g)) \leq \sup\{\operatorname{cd}(\operatorname{Stab}(\sigma)) + \dim(\sigma)\}$$
 $\sigma \text{ a cell of } \mathcal{B}(S_g)$

In genus 2, stabilizers of vertices are 1-dimensional



and stabilizers of edges are trivial (0-dimensional).



Higher genus: induction, Birman exact sequence.

Infinite generation of top homology

Say $G \circlearrowleft X$, where X is contractible

Infinite generation of top homology

Say $G \circlearrowleft X$, where X is contractible, and

$$\sup\{\operatorname{cd}(\operatorname{Stab}(\sigma)+\dim(\sigma)\}\leq 1.$$

Let $\{v\}$ be a set of representatives for vertices of G/X.

Cartan–Leray Spectral Sequence ⇒

$$\oplus H_1(\operatorname{Stab}(v)) \hookrightarrow H_1(G)$$

Infinite generation of top homology

Say $G \circlearrowleft X$, where X is contractible, and

$$\sup\{\operatorname{cd}(\operatorname{Stab}(\sigma)+\dim(\sigma)\}\leq 1.$$

Let $\{v\}$ be a set of representatives for vertices of G/X.

Cartan–Leray Spectral Sequence ⇒

$$\oplus H_1(\operatorname{Stab}(v)) \hookrightarrow H_1(G)$$

Therefore, to prove that $(H_1 \text{ of}) \mathcal{I}(S_2)$ is infinitely generated, we just need to show that H_1 of some vertex stabilizer is infinitely generated.

