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Torelli groups

Sg = surface of genus g

MCG(S;) = mo(Homeo™(S;))

Definition of the Torelli group Z(S;):

1 — Z(S55) = MCG(S;) — Sp(2g,Z) — 1
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Elements of the Torelli group

Dehn twists about separating curves

Bounding pair maps

Theorem (Birman '71 + Powell '78, Putman '07)
These elements generate Z(Sg).
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Main theorems

Theorem (Mess, BBM)
For g > 2, we have cd(Z(S;)) = 3g — 5.

Theorem (BBM)
For g > 2, we have Hzgz_5(Z(Sg),Z) is infinitely generated.

Theorem (Mess, new proof BBM)

Z(S,) is an infinitely generated free group, with one Dehn twist
generator for each symplectic splitting of H1(52,7Z).

IC(Sg) = (T¢ : ¢ separating)

Theorem (BBM)
For g > 2, we have cd(K(S54)) = 2g — 3.
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Dimensions of mapping class groups

ved(MCG(Sg)) = 4g -5
cd(Z¥(S;)) = 4g—5—k (Conjecture)
cd(Z(Sg)) = 3g—5
cd(K(Sg)) = 28-3
cd(SZ(5¢)) =

g—1

(Brendle-M)
{Nk(Sg)} =the Johnson filtration. For g, k > 2, we have
g —1<cd(Nk(Sg)) <2g —3 (Farb, BBM)

= =
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Proofs
Generalities from Spectral Sequences
G = group

X = contractible CW-complex
GOX

~» Cartan—Leray Spectral Sequence
Suppose

sup{cd(Stab(o)) + dim(o)} < D

where the supremum is over cells o of X.
Then

1. cd(G) < D (Quillen)

2. ®&Hp(Stabg(v)) — Hp(G)

where the sum is over a set of reps of vertices of X/G.
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The complex of minimizing cycles

Informal definition

Fix any nonzero x € Hi(S5,7Z).

B(S) = space of isotopy classes of simple nonnegative 1-cycles,
with no null-homologous subcycles, representing x.

Example: x =3y + 2z

m
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Nonnegativity ~ 0 < t < 2.
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The complex of minimizing cycles

Informal definition

Fix any nonzero x € Hi(S5,7Z).

B(S) = space of isotopy classes of simple nonnegative 1-cycles,
with no null-homologous subcycles, representing x.

Example: x =3y + 2z

W
y zZ

Nonnegativity ~ 0 < t < 2. Resulting cell:

= = -
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The complex of minimizing cycles
Cells

Let x € H1(S,7Z) be fixed.
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The complex of minimizing cycles
Cells
Let x € H1(S,7Z) be fixed.

¥ = the set of isotopy classes of oriented curves in S.

{1-cycles} <+ R”

Let M be an oriented multicurve w/ no null-homologous subcycles

Cel(M)={ ceR”

C positive,

¢ supported in M,

Cc represents x }
Fact: Cell(M) is a polytope.
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Examples of cells

/\

a 0,2 1
b
d c
| | (0,0)

(2,0)

2.1

x = [d] + 2[e] + [f]



The complex of minimizing cycles
Definition

B(S) = the complex of minimizing cycles
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The complex of minimizing cycles
Definition

B(S) = the complex of minimizing cycles

B(S) = [] Cell(m)/ ~
M

Equivalence relation: identify faces that are equal in R

Z(Sg) © B(5)

Theorem (BBM)
B(Sg) is contractible.
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Genus 2

The quotient tree B(S2)/Z(Sz) is infinitely many copies of

glued along their distinguished vertices
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Genus 2

The quotient tree B(S2)/Z(Sz) is infinitely many copies of

%“

/ \)/i’b;,
é) ) \ %

1 — I‘*
l«& A o
subspace of Hy(5;,

glued along their distinguished vertices (one for each isotropic

) containing x)
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The Complex of Minimizing Cycles

Surgery proof of contractibility

Surgery on 1-cycles

Let ¢ be a nonsimple 1-cycle representing x.

c = Zk,-c,-
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The Complex of Minimizing Cycles

Surgery proof of contractibility

A deformation retraction a la Hatcher

Choose a 1-cycle ¢ as a basepoint for B(S)

H(d,t) =

tc+ (1 —t)d
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The complex of minimizing cycles

Teichmuller space proof of contractibility

Fix x € Hl(S,Z).

“Morse function” on Teichmiller space 7(S): length of x.
X € T(S) ~ minimizing multicurve for x

Let M be an oriented multicurve w/ no null-homologous subcycles

Chamber(M) = { X € T(S)

M is the minimizing multicurve}
Key Fact 1: Chambers are contractible.

Key Fact 2: Chamber(M) N Chamber(M') # ()

< Cell(M) N Cel(M") # ()
Proof that B(S) is contractible:
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The complex of minimizing cycles

Teichmuller space proof of contractibility
Fix x € H1(5,7Z).
“Morse function” on Teichmiller space 7(S): length of x.
X € T(S) ~ minimizing multicurve for x

Let M be an oriented multicurve w/ no null-homologous subcycles.
Chamber(M) ={ X € T(S) : M is the minimizing multicurve}

Key Fact 1: Chambers are contractible.
Key Fact 2: Chamber(M) N Chamber(M’) # ()
< Cell(M) N Cel(M") # ()

Proof that B(S) is contractible:  Its (contractible) cells {Cell(M)}

are glued in the same way as the contractible chambers are glued
to form T(S)
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The complex of minimizing cycles

Teichmuller space proof of contractibility
Fix x € H1(5,7Z).
“Morse function” on Teichmiller space 7(S): length of x.
X € T(S) ~ minimizing multicurve for x

Let M be an oriented multicurve w/ no null-homologous subcycles.
Chamber(M) ={ X € T(S) : M is the minimizing multicurve}

Key Fact 1: Chambers are contractible.
Key Fact 2: Chamber(M) N Chamber(M’) # ()
< Cell(M) N Cel(M") # ()

Proof that B(S) is contractible:  Its (contractible) cells {Cell(M)}
are glued in the same way as the contractible chambers are glued
to form 7(S), which is contractible. Q.E.D.
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Proof that cd(Z(S5,)) <3g —5

Quillen:
cd(Z(Sz)) < sup{cd(Stab(o)) + dim(o)}

o a cell of B(Sg)
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o a cell of B(Sg)

In genus 2, stabilizers of vertices are 1-dimensional
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and stabilizers of edges are trivial (0-dimensional).
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Proof that cd(Z(S5,)) < 3g —5
Quillen:

cd(Z(Sz)) < sup{cd(Stab(o)) + dim(o)}

o a cell of B(Sg)

In genus 2, stabilizers of vertices are 1-dimensional

(D

and stabilizers of edges are trivial (0-dimensional).

(=9

Higher genus: induction, Birman exact sequence.
O

=
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Infinite generation of top homology

Say G O X, where X is contractible

DA



Infinite generation of top homology

Say G O X, where X is contractible, and

sup{cd(Stab(o) + dim(o)} < 1.

Let {v} be a set of representatives for vertices of G/X

Cartan—Leray Spectral Sequence =

D H; (Stab(v)) — Hl(G)
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Infinite generation of top homology

Say G O X, where X is contractible, and

sup{cd(Stab(o) + dim(o)} < 1.

Let {v} be a set of representatives for vertices of G/X.

Cartan—Leray Spectral Sequence =

D H; (Stab(v)) — Hl(G)

Therefore, to prove that (H;y of) Z(S,) is infinitely generated, we
just need to show that H; of some vertex stabilizer is infinitely
generated.
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