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Consider the complex Ch(S
1
g ) for a primitive class h ∈ H1(S

1
g ), where S

1
g is the

surface of genus g with 1 boundary component. The vertices are homotopy classes
of oriented simple closed curves representing h. Two vertices u, v are connected if
they bound a genus 1 subsurface F . If ∂F = v− u, then the direction of the edge
points to v. Since Ch(S

1
g ) is connected, for any two vertices u, v, we can find a path

connecting them. Define the signed distance ds(u, v) to be the number of edges
traversed in the positive direction minus the number in the negative direction. We
will show that ds is well defined, that is, independent of the choice of path.

Define a map ϕ : I(S1
g ) × H1(S

1
g ) → Z by ϕ(τ, h) = ds(v, τv) where v is

a vertex in Ch(S
1
g ). We will show in that ϕ does not depend on the choice of

v. For a fixed τ , ϕ(τ, ·) is a map from H1(S
1
g ) to Z. We will see that this is a

homomorphism. Hence ϕ(τ, ·) defines an element in H1(S1
g ). Thus we get a map

ϕ : I(S1
g ) → H1(S1

g ). The main theorem is

Theorem 1. ϕ is equal to Ch /2, where Ch is the Chillingworth class.

1 Distance is well-defined

For two vertices u, v, fix a path (v0 = u, v1, · · · , vk = v). For each edge (vi−1, vi)
in the path, by definition there is a genus 1 subsurface Fi with ∂F = vi − vi−1.
Also by definition, the orientation of Fi is the same as the surface S1

g if the edge
points to vi and vice versa. Let H = F1 + · · · + Fk. Then H is a 2-chain with
boundary v − u. H is called the trace of the path.

Next we define the preimage function. For a 2-chain H and x ∈ S1
g \

∂H, define pH(x) = [H] ⌢ [x] ∈ H0(S
1
g )

∼= Z, where [H] ∈ H2(S
1
g , ∂H), [x] ∈

H2(S1
g , ∂H). Clearly, pH(x) is locally constant in S1

g \ ∂H.
To make the preimage function well behaved with respect to the addition of

2-chains, we need to define pH on ∂H. We assume ∂H = v− u where u and v are
smooth simple closed curves that intersect transversely. This is to make sure that
a small neighborhood of x ∈ ∂H is cut into exactly 2 or 4 pieces by u and/or v.
Then we define pH(x) to be the average of the function values of pH on the pieces.
With this definition, we have
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Lemma 1. If H =
∑

i Hi, then
∑

i pHi
= pH .

Since H2(S
1
g ) = 0, If two 2-chains have the same boundary, then the difference

is zero in homology. Therefore,

Lemma 2. pH only depends on ∂H.

We introduce the integral with respect to Euler characteristics (see [2]). For
a finite simplicial complex X and a function f which is constant on each open
simplex, define ∫

X

fdχ =
∑
σ

(−1)dimσf(σ),

where the sum ranges over simplices σ. Note the integral of 1 is the Euler char-
acteristic of X. More generally we define the geometric Euler characteristics for
a (not necessarily closed) subcomplex A by the alternating sum of numbers of
simplices of different dimensions. Then

∫
X
fdχ =

∑
c cχ(f

−1(c)) where the sum
is over function values of f . The integral is clearly linear.

Now return to the signed distance. We have

Lemma 3. The signed length of a path from u to v is −1
2

∫
X
pHdχ for the trace

H.

Proof. Let H = F1 + · · · + Fk be the trace, where the decomposition is as the
construction in the beginning of this section. Since Fi is a subsurface of genus 1
with 2 boundary components, we can compute by definition to get

∫
X
pFi

dχ = −2
if the corresponding edge is traversed in the positive direction and

∫
X
pFi

dχ = 2
otherwise. The result follows from the linearity of the integral and Lemma 1.

Corollary 1. ds(u, v) =
−1
2

∫
X
pHdχ for any H with ∂H = v− u. Thus ds is well

defined.

Proof. This follows directly from Lemma 2 and Lemma 3.

Since the boundary completely determines the preimage function, we will call
any 2-chain H with ∂H = v − u a trace from u to v.

Remark. Note we only defined ϕ(τ, h) for primitive classes h. An obvious definition
for all h is to factor h as kh1, where h1 is primitive, and define ϕ(τ, h) = kϕ(τ, h1).
A more natural way is to extend the definition of Ch(S

1
g ) to non-primitive classes.

The vertices are homotopy classes of oriented multicurves with integral weights.
Two vertices u, v are connected if v and u differ by the boundary of a genus 1
subsurface. The direction is defined by the orientation of the subsurface as before.
The proof in the section only uses the correspondence between edges and genus 1
subsurfaces. Therefore, they work for non-primitive classes as well.
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2 Signed stable length is a cohomology class

Recall ϕ(τ, h) = ds(v, τv) for some v ∈ Ch(S
1
g ). We have shown that ds(v, τv)

does not depend on the path from v to τv. We still need to show that it does not
depend on the choice of v to make ϕ well defined.

Lemma 4. For a fixed τ ∈ I(S1
g ), h 7→ ϕ(τ, h) is a well-defined homomorphism.

Proof. Let u, v ∈ Ch(S
1
g ). Let Hv be the trace from v to τv. Since u and v are

homologous, there is a 2-chain F0 such that ∂F = v − u. Let Hu = F +Hv − τF .
Then Hu is a 2-chain with ∂Hu = τu− u. Thus

ds(u, τu) =
−1

2

∫
X

pHudχ =
−1

2

∫
X

pHvdχ = ds(v, τv).

The integrals of pF and pτF cancel because τ is an orientation preserving homeo-
morphism.

The same argument can be used to show the homomorphism property. Let
h1, h2 ∈ H1(S

1
g ). Let u1 ∈ Ch1(S

1
g ), u2 ∈ Ch2(S

1
g ), v ∈ Ch1+h2(S

1
g ). Let Hu1

and Hu2 be the corresponding traces. As before, there exists a 2-chain G with
∂G = u1 + u2 − v. Then G+Hu1 +Hu2 − τG is a trace from v to τv. Taking the
integral shows ds(u1, τu1) + ds(u2, τu2) = ds(v, τv).

By identifying H1(S1
g ) with Hom(H1(S

1
g ),Z), we get a map ϕ : I(S1

g ) →
H1(S1

g ).

Lemma 5. ϕ : I(S1
g ) → H1(S1

g ) is a homomorphism.

Proof. I(S1
g ) acts on Ch(S

1
g ) since it acts on curves and 2-chains. The action

clearly preserves the length of paths. For τ, σ ∈ I(S1
g ), h ∈ H1(S

1
g ), v ∈ Ch(S

1
g ),

ds(v, (στ)v) = ds(v, σv) + ds(σv, σ(τv)) = ds(v, σv) + ds(v, τv).

Thus ϕ(στ, h) = ϕ(σ, h) + ϕ(τ, h).

Proof of the Theorem. Since I(S1
g ) is generated by bounding pair maps of genus

1, we only need to verify that they agree on these generators. Let τ = TcT
−1
d

where c and d bound a genus 1 subsurface. Choose a geometric symplectic basis
a1 = c, b1, · · · , ag, bg. Clearly τ fixes a1 and a2, b2, · · · , ag, bg. b1 and τb1 are disjoint
simple closed curves that bound a subsurface F of genus 1, and ∂F = τb1 − b1.
Thus ϕ(τ, b1) = 1. This shows ϕ(τ, ·) = î(a1, ·), which agrees with Ch(τ)/2.

3 Topological proof

Recall that originally the Chillingworth class is defined using vector fields and
winding numbers. Let X be a nonsingular vector field on S1

g . Then Ch(τ)([γ])
for τ ∈ I(S1

g ) and γ a simple closed curve is defined as ωX(τγ) − ωX(γ) where
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ωX denotes the winding number of X relative to the tangent vector of the curve.
Since γ and τγ are connected in C[γ](S

1
g ), we can evaluate the difference in winding

numbers one edge at a time. An edge u → v in C[γ](S
1
g ) is a genus 1 subsurface as

in the figure. We cap off the boundary components and fill in the vector field such
that on each radial lines the vectors are parallel and that the centers of the disks
are zeros of the vector fields. The index of a zero is the winding number of X
relative to a constant vector field along a small counterclockwise circle. Since the
tangent vector makes a full counterclockwise turn, we see ωX(u) = index(u) − 1,
ωX(v) = −ωX(−v) = 1− index(v). By the Poincaré-Hopf theorem, the sum of the
indices is the Euler characteristics. Thus ωX(v)− ωX(u) = 2− (2− 2g) = 2g = 2,
i.e., each edge contributes 2 to the winding number. Therefore, the signed distance
is half the Chillingworth class.
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