Generating Torelli

Goal: \(I(S_g) \) is gen. by BP maps (and Dehn twists about sep curves)

Original proof: 1971 Birman gives presentation for \(Sp_{2g}(\mathbb{Z}) \)
1978 Powell interprets relations
1980 Johnson, lantern relation

Want a proof analogous to \(Mod(S_g) \) case.

Complex of homologous curves

Fix (primitive) \(x \in H_1(S_g; \mathbb{Z}) \)
\(C_x(S_g) = \) subgraph of \(C(S_g) \) spanned by (unoriented) reps of \(x \).

Goal: Connected.

Will use auxiliary complex \(B_x(S_g) \), the complex of cycles. Points of \(B_x(S_g) \) are simple, irredundant reps of \(x \).
The Complex of Cycles

$C = \text{oriented multicurve, } n \text{ components}$

$\mapsto [0, \infty)^n \rightarrow H_1(S_g; \mathbb{Z}) \text{ orthant } O(c)$

$A(S_g) = \prod_c O(c) / \sim$

example.

$A_x(S_g) \leq A(S_g) \text{ reps of } x.$

Say $x = [c_1]$
The cells of $A_x(S_g)$ are not necessarily compact:

If $[c_1] = x$ then $[c_1 + bc_2] = x \forall b \in \mathbb{R}$

Or:

An oriented multicurve is **reduced** if

1. the corresponding cell is compact
2. it has no homologically trivial subset
3. the dual directed graph is recurrent

Dual graphs:

The complex of cycles $B_x(S_g)$ is the subcomplex of $A_x(S_g)$ whose cells correspond to reduced oriented multicurves.

We'll show $B_x(S_g)$ is contractible.
Examples of cells

$X = [c_1]$

$X = [c_1] + [c_2]$

Q. Which polytopes arise?
Properties of Cells

Prop. The dim. of a cell $= \# \text{compl. comp.'s} - 1$

Pf. Defn of homology.

\Rightarrow vertices \leftrightarrow nonsep. multicurves.

Prop. Vertices of $B_x(S_g)$ are oriented multicurves with integral weights.

Pf. Given a vertex, consider a loop intersecting in one point.

Prop. $\text{Dim } B_x(S_g) = 2g-3$.

Pf. $x = [c,]$

$\Rightarrow B_x(S_2)$ is a graph.
Contractibility

Theorem. $B_x(S_g)$ is contractible.

Surgery on 1-cycles

Say $c, d \in A_x(S_g)$. Thicken c, d according to weights and then:

![Diagram of surgery on 1-cycles](image)

If $[c] = [d] = x$, this procedure will result in a 1-cycle rep'ing x. Why?

$$H_1(S_g; \mathbb{Z}) \cong H'_1(S_g; \mathbb{Z}) \cong \text{Hom}(H_1(S_g; \mathbb{Z}), \mathbb{Z}) \leftrightarrow [S_g, S']$$

The original c, d give maps $S_g \to S'$ by integrating against width of annuli. The surgered picture corresponds to the map $S_g \to S'$ obtained by integrating against both widths.
Prop. \(A_x(S_g) \) is contractible

Pf. Fix some \(c \in A_x(S_g) \). Consider:
\[
F_t(d) = \text{Surger} \left(tc + (1-t)d \right)
\]

Draining 1-cycles

Suppose \(c \in A_x(S_g) \) is not reduced.
\(\sim \) \{\(R_i \)\} subsurfaces with \(\partial R_i \leq c \)
\[
\text{Drain}_t(c) = c - t \Sigma \partial R_i
\]

Prop. \(A_x(S_g) \) def. retracts to \(B_x(S_g) \).
In partic. \(B_x(S_g) \) is contractible.

Pf. Drain

In particular, \(B_x(S_2) \) is a tree.
Connectivity of $C_x(S_g)$

Basic strategy

Define $\text{weight} : B_x(S_g) \rightarrow \mathbb{Z}$

$$\sum w_i c_i \mapsto \sum w_i$$

Note: $C_x(S_g) = \text{weight}^{-1}(1)$.

Now, given $v, w \in C_x^{(0)}(S_g)$, we connect them in $B_x^{(1)}(S_g)$:

We then push the highest vertex down inductively until the path lies in $C_x(S_g)$.
Key idea: If we cut along a vertex of $B^0_x(Sg)$, we get "cobordism"

What does an edge in $B_x(Sg)$ look like?

The region between transfers weight from one side to the other \Rightarrow the new vertex will have smaller weight iff there are fewer interior curves than boundary curves.

Call the edge on the right a pants edge. This is the simplest way to reduce weight.
Proof that \(C_x(S_g) \) is connected

Step 1. Make maxima isolated, by making pants edges/triangles.

Step 2. Make highest edges into pants edges in same way

Step 3. Given

Connect \(uv \) to \(v \) by a seq of pants triangles

Can then push \(v \) down. Apply this process inductively.
To this end, consider the graph with vertices: pants edges emanating from \(v \)
\[\leftrightarrow \] certain arcs in \(S \setminus v \)
edges: disjoint arcs.

To show: connected

Notes. • Every vertex is adjacent to one connecting first two components of \(\partial (S \setminus v) \).
 • Push maps (corresponding to \(1^\text{st} \) \(\partial \) - comp act transitively on these.
 • \(\Pi_1 \) (punctured sphere) has a simple genset \(\{ x_i \} \)

So: suffices to show that each \(\text{Push}(x_i) \cdot \alpha \) lies in same component as \(\alpha \).

Sample case: \(x_i \) lies on LHS of \(S \setminus v \). Then if \(\beta \) lies on RHS we have

\[\alpha \quad \beta \quad \text{Push}(x_i) \cdot \alpha \]
Proving Torelli is gen. by BP maps

Ingredient #1. $C_x(S_g)$ is connected \checkmark

Ingredient #2. Fact. Say $G \subseteq X = \text{graph}$

$A \subseteq G$ s.t. \forall edges vw

$\exists \ g \in A$ with $g \cdot v = w$.

Then $G = \langle A, \text{vertex stabs} \rangle$

Pf. Same as before

Ingredient #3. If vw is an edge of $C_x(S_g)$

\exists BP map taking v to w.

Thus it suffices to show $\text{Stab}_{I(S_g)}(v)$ is gen. by BP maps and Dehn twists about sep curves.
Two Birman Exact Sequences for Torelli

One Marked Point

\[1 \rightarrow \pi_1(S_g, p) \rightarrow \Gamma(S_g, p) \rightarrow \Gamma(S_g) \rightarrow 1 \]

(restriction of usual BES)

Two Marked Points

\[1 \rightarrow K \rightarrow \Gamma(S_g, \{p, q\}) \rightarrow \Gamma(S_g, p) \rightarrow 1 \]

\[K = \{ \pi_1(S_g \setminus p, q) \} \]

What is defn of \(\Gamma(S_g, \{p, q\}) \)? It is the image of \(\Gamma(S_g, c) \) under the cutting map:

\[\rightarrow \Gamma(S_g, \{p, q\}) = \ker \left(\text{Mod}(S_g, \{p, q\}) \rightarrow \text{Aut} \: \Gamma_1(S_g, \{p, q\}) \right) \]

Can define \(\Gamma(S_g, p) \) in same way, as further image under forgetting \(q \). Get usual defn.
Stabilizers are gen. by BP maps...

First, $\text{Stab}_{I(S_g)}(c) \cong I(S_{g-1}, \{p, q\})$ since:

$$1 \rightarrow \langle T_c \rangle \rightarrow \text{Mod}(S_g, c) \rightarrow \text{Mod}(S_g, \{p, q\}) \rightarrow 1$$

and $T_c \notin I(S_g)$.

Step 1. K gen by BP maps & Dehn twists about seps.

$$\pi_1(S_g \setminus p, q) \cong H_1(S_g, \{p, q\}) \cong H_1(S_g) \oplus \mathbb{Z}$$

- trivial on first factor,
- action on 2nd factor is $\alpha \cdot v = [\alpha] + v$.

Check:

$$\Rightarrow K = [\pi_1, \pi_1].$$

Now need: K gen. by simple (sep) loops.
Realize S_g as 4g-gon with opp sides id
d and use the fact that commutator subgps
are normally gen. by commutators of gens.
Step 2. \(\mathcal{H}_i(\Sigma_g,p) \leq I(\Sigma_g,p) \) gen. by BP maps.

Even better:

Thm. \(I(\Sigma_g) \) is gen. by BP maps of genus one.

Pf.

\[Ta T_b^{-1} = (Ta T_c^{-1})(T_c T_d^{-1})(T_d T_b^{-1}) \]

Still need to address base case \(g=2 \)!
Genus 2

$C_x(S_2)$ is not connected 😐
Will instead use $I(S_2) \cong B_x(S_2)$.
Already showed $B_x(S_2)$ is a tree.
Will show $B_x(S_2)/I(S_2)$ is a tree.

Fact. If $G \triangleleft T = \text{tree}$ and $T/G = \text{tree}$
then G is (freely) gen. by vertex stabilizers.

Pf. Key point: $T/G \hookrightarrow T$
So T covered by translates of T/G

![Diagram]

Fix X, a copy of T/G in T. (“tile”)
Let $g \in G$. Suppose first that $g \cdot X \cap X \neq \emptyset$
$\Rightarrow g \cdot X \cap X = \{v\} \Rightarrow g \in \text{Stab}(v)$
(otherwise T/G would have a loop). Induct on tile distance. Free b/c no loops
Remains: ① $\mathbf{Bx}(S_2) / \mathbf{I}(S_2) = \text{tree}$
 ② Stab's gen by Dehn twists (and free)

Proof of ① Weight fn. descends to quotient.
 And $\exists!$ vertex of weight 1 (in quotient).

To show: if $\text{weight}(v) > 1 \exists! w$ with
 \[\text{weight}(w) < \text{weight}(v) \text{ and } \vDash_w \vDash_v \]

v looks like:

\[\vDash_a a b \vDash_p p, q \in \mathbb{Z} \]

w given by nonsep curve C in middle.

\[\leftrightarrow \text{curve in cut surface.} \]

C nonsep \implies C does not sep. left from right

$\text{weight}(w) < \text{weight}(v) \implies C$ separates top from bottom.

Can think of C as an arc connecting top two circles.

Make a graph: vertices: arcs as above
 edges: disjointness.

This connected (use usual trick with $\mathbf{PMod}(S_{0,4})$ action).
 Adjacent vertices differ by sep twist.
Proof of \(\circ \) Two kinds of vertices

Connected multicurves: Use Birman exact seq. as before (no change).

Disconnected multicurves: By above argument can assume (up to Dehn twists about sep curves) that a stabilizer of \(a \) & \(b \) also fixes \(c \).

\[\Rightarrow \text{it is trivial} . \]

Note: \(\pi_1 (S^1, 1) \) is free.

Note: \(PMod (S_0, 4) \) free.

We have shown \(\mathbb{I}(S_2) = \langle T_c \mid c \text{ sep} \rangle \)

With some more bookkeeping, we show it is freely gen. by Dehn twists, one for each symplectic splitting. \(\square \)
The Farey Graph and $B_x(S_2)/I(S_2)$.

Vertices of $B_x(S_2)/I(S_2)$ are minimal bases for Lagrangian subspaces of $H_1(S_2; \mathbb{Z})$ containing x.

(Minimal means that if the basis contains two elts, neither is x.)

Edges are for $\{a, b\} \rightarrow \{a, a+b\}$
(If one of these is x, just drop it.)