Proposition 1. The only \(n \)-gons in the complex \(B_x(S_g) \) have \(n = 3, 4, 5, 6 \).

Proof. Let \(C \) be a reduced multicurve which represents \(x \) with some weight. Since we want 2-cells, we assume \(S_g \setminus C \) has 3 components. We can ignore curves which are not part of the boundary of some component of \(S_g \setminus C \), since the weights cannot be shifted to other curves.

Consider the dual graph of \(C \). Since \(C \) is reduced, the graph is recurrent. If we ignore the directions and multiplicities of edges, the new graph is connected. There are two possibilities.

Case 1: \(\cdots \). The surface is homeomorphic to the picture below.

\[
\begin{array}{c}
\includegraphics[width=1in]{diagram.png}
\end{array}
\]

Here the curves on the left are labeled \(a_1, \ldots, a_n \), not necessarily in order. Similarly, the curves on the right are labeled \(b_1, \ldots, b_m \). The components of \(S_g \setminus C \) provides two relations

\[
\sum_{i=1}^{n} s_i [a_i] = 0, \quad \sum_{j=1}^{m} t_j [b_j] = 0,
\]

where \(s_i, t_j = \pm 1 \) depend on the orientations of the curves. By relabeling the curves, we can assume

\[
\begin{align*}
s_1 = \cdots = s_k &= 1, & s_{k+1} = \cdots = s_n &= -1, \\
t_1 = \cdots = t_l &= 1, & t_{l+1} = \cdots = t_m &= -1
\end{align*}
\]
for some $1 \leq k < n$ and $1 \leq l < m$. This is possible since C is reduced. Let $p = \sum_{i=1}^{n} \alpha_i a_i + \sum_{j=1}^{m} \beta_j b_j$ be a point in the 2-cell. Using the relations, we can eliminate $[a_1]$ and $[b_1]$ in $[p]$ to get

$$[p] = \sum_{i=2}^{n}(\alpha_i - s_i \alpha_1)[a_i] + \sum_{j=2}^{m}(\beta_j - t_j \beta_1)[b_j].$$

Let $x = \sum_{i=2}^{n} u_i[a_i] + \sum_{j=2}^{m} v_j[b_j]$. Comparing the coefficients with x, we see

$$\alpha_i - s_i \alpha_1 = u_i, \quad i = 2, \cdots, n,$$

$$\beta_j - t_j \beta_1 = v_j, \quad j = 2, \cdots, m.$$

Thus every coefficient is determined by α_1 and β_1. Since all the coefficients are non-negative, we get the constraints on α_1.

$$\alpha_1 \geq 0,$$

$$\alpha_1 \geq -u_i, \quad i = 2, \cdots, k,$$

$$\alpha_1 \leq u_i, \quad i = k + 1, \cdots, n$$

and similar constraints on β_1. This shows α_1 and β_1 take values in intervals independently. Thus the 2-cell is a rectangle.

Case 2: The surface is homeomorphic to the picture below.

As before, the three families of curves are labeled $\{a_i\}_{i=1}^{m}$, $\{b_j\}_{j=1}^{n}$, $\{c_k\}_{k=1}^{l}$. The components provide relations

$$\sum_{i=1}^{n} s_i[a_i] + \sum_{j=1}^{m} t_j[b_j] = 0, \quad \sum_{i=1}^{n} s_i[a_i] + \sum_{k=1}^{l} r_k[c_k] = 0,$$

where $s_i, t_j, r_k = \pm 1$. Next we show we can assume $s_1 = -1$ and $t_1 = r_1 = 1$ by relabeling or changing the signs of both equation simultaneously. If all
the curves on each prong are pointing in the same way, i.e., \(s_1 = \cdots = s_m, \) \(t_1 = \cdots = t_n, \) \(r_1 = \cdots = r_l, \) the only possibility where \(C \) is reduced is \(t_1 = r_1 = -s_1. \) Thus we only need to adjust the sign. If there is a prong on which the curves point in different directions, we label that prong \(a. \) The only way we cannot arrange \(t_1 = r_1 \) is if \(t_j = -r_k \) for all \(j, k, \) and that implies \(b \cup c \) is trivial in homology, which is forbidden. By our choice of \(a, \) we can make \(s_1 = -1. \)

As before, let
\[
p = \sum_{i=1}^{m} \alpha_i a_i + \sum_{j=2}^{n} \beta_j b_j + \sum_{k=2}^{l} \gamma_k c_k
\]
be a point in the 2-cell. Then
\[
[p] = \sum_{i=1}^{m} (\alpha_i - s_i \beta_1 - s_i \gamma_1) [a_i] + \sum_{j=2}^{n} (\beta_j - t_j \beta_1) [b_j] + \sum_{k=2}^{l} (\gamma_k - r_k \gamma_1) [c_k].
\]

Let
\[
x = \sum_{i=1}^{m} u_i [a_i] + \sum_{j=2}^{n} v_j [b_j] + \sum_{k=2}^{l} w_k [c_k].
\]
Comparing the coefficients with \(x, \) we see
\[
\begin{align*}
\alpha_i - s_i \beta_1 - s_i \gamma_1 &= u_i, \quad i = 1, \cdots, m, \\
\beta_j - t_j \beta_1 &= v_j, \quad j = 2, \cdots, n, \\
\gamma_k - r_k \gamma_1 &= w_k, \quad k = 2, \cdots, l.
\end{align*}
\]
When \(i = 1, \) we get \(\alpha_1 + \beta_1 + \gamma_1 = u_1. \) We can rewrite the first set of equations as
\[
\alpha_i + s_i \alpha_1 = u_i + s_i u_1, \quad i = 2, \cdots, m.
\]
Similar to Case 1, all coefficients are determined by \(\alpha_1, \beta_1, \gamma_1. \) The other equations may provide cutoff for \(\alpha_1, \beta_1, \gamma_1 \) individually. Thus we can only get \(n \)-gons up to \(n = 6. \)

With this information, it is not hard to construct examples to realize all of these possibilities. \(\square \)