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1. Introduction

We shall associate to each finitely generated group G a sphere S(G)~S""!,
where n=rank (G/G’) is the Z-rank of the abelianization of G, and a subset
2 = S(G) which, among other things, captures information about the finite gener-
ation of kernels of abelian quotients of G. More generally, to every finitely
generated G-operator group A on which G’ acts by inner automorphisms we
associate a subset X, = S(G). The set 2 is the special case 2 =2, with G acting
on G' by conjugation. These sets 2 and X, have previously been introduced
for metabelian G and abelian 4 by Bieri and Strebel [B-S 1] (see also [B-S 2]),
while 2 is closely related to the set fg(G) of all finitely generated kernels of
infinite cyclic quotients of G, studied by Neumann [N]. When G is a three-
manifold fundamental group, Thurston defined a subset of S(G) in [T], which
we describe later and show to equal X.

The definitions are as follows. The set Hom (G, R) of homomorphisms of
G to the additive group of the reals is an n-dimensional real vector space.
The positive reals IR, act on Hom (G, R)—{0} by multiplication and S(G) is
defined to be orbit space

S(G)=(Hom (G, R)— {0})/R .,

This is an (n—1)-sphere with the quotient topology inherited from the usual
topology on Hom (G, R)—{0}. Thus an element of S(G) is a ray [x]
={ry|reR,}. A non-trivial homomorphism x: G - R with discrete (and hence
infinite cyclic) image is said to be a discrete or rank one homomorphism. It
represents a rational point of S(G). The set

SQ(G)={[x1eS(G)|x is rank one}

of rational points is dense in S(G).

* The first and third named authors and the second named author thank the Deutsche Forschungsge-
meinschaft and the NSF respectively for financial support for this research
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Each point [x]e€S(G) gives rise to a submonoid

G,=x" ([0, 0))={geG| x(g) =0}
of G. We define

24={[x1€S(G)| A4 is finitely generated over some
finitely generated submonoid of G, }.

We shall give more practical “equational” criteria for [x] to be in X, in
Sect. 2. As a direct consequence we obtain:

Theorem A. X, is an open subset of S(G).

Note that if, in the definition of X,, G,=x"'([0, 0)) were replaced by
%~ ((0, 0)), this theorem would be easy, since a finite subset of y~!((0, c0))
is also a subset of 7 *((0, o0)) for any nearby y,. It will follow from the proof
of Theorem A that this is in fact a valid alternate definition of X ,.

To describe the relation of X, to finite generation we need the following
definition. For any subgroup H <G let

(G, H)={[x1eS(G)| x(H)=0}.

This is a rationally defined great subsphere of S(G) of codimension equal to
rank (HG'/G').

Theorem B. If H is a finitely generated subgroup of G then A is finitely generated
as an H-group if and only if S(G, H)=Z,.

Specializing to the case A=G, we obtain a criterion for finite generation
of kernels of abelian quotients of G:

Theorem B1. Let N be a normal subgroup of G with G/N abelian. Then N is
finitely generated if and only if S(G, NyX (recall =2 ). In particular, G’
is finitely generated if and only if £=S(G).

Indeed, we can choose a finitely generated subgroup H<G with HG'=N.
Then N is finitely generated if and only if G’ is finitely generated as an H-operator
group, so Theorem B1 follows from Theorem B. Theorem B1 implies the main
result of [N]: if N is finitely generated, then since X is open and S(G, N) is
compact, every normal subgroup N; for which S(G, N,) is sufficiently close to
S(G, N) will be finitely generated. Thus, for any k, having finitely generated
kernel is an “open condition” on epimorphisms of G to Z*. It is worth remarking
here that the problem, posed in [N], whether having finitely presented kernel
is also an open condition, was answered affirmatively by D. Fried and R. Lee
[F-L] (the papers [N] and [F-L] discuss the case k=1, from which the general
case follows easily).

The following theorem improves on a result of Bieri and Strebel [B-S 1,
Theorem 3.1].
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Theorem C. If G is finitely presented and has no non-abelian free subgroups
then
2u—-2=8(G)

where — X is the image of X under the antipodal map.

Neither of the assumptions in this theorem is redundant, since if G is either
free of free-metabelian of rank =2 then X is empty. However, as in [B—S 1],
the condition that G be finitely presented can be weakened to the condition
that G be of type (FP), over some commutative ring with 10.

Theorems A, B1l, and C imply a curious result concerning the existence
of finitely generated kernels of infinite cyclic quotients in finitely presented
groups.

Theorem D. Let G be a finitely presented group with no non-abelian free sub-
groups. Suppose also that rank (G/G’)=2. Then G contains a finitely generated
normal subgroup N <G with infinite cyclic quotient G/N. In fact, every normal
subgroup L=< G with G/L free abelian of rank 2 is contained in such an N.

Free-metabelian groups of rank =2, free groups of rank =2, and the group
G={a, x|a*=a*) show that none of the assumptions on G is redundant in
this theorem.

Proof of Theorem D. By Theorems A and C, ¥ and —2 form an open cover
of the connected space S(G, L)=S', so ¥ — X has non-empty intersection with
S(G, L). Since S(G, L) is rationally defined, its rational points are dense, so
we can find a rational point [x] in (X~ —2)nS(G, L). Then N=XKer(y) has
infinite cyclic quotient and contains L. Also {[x], —[x]} is the subsphere S(G, N),
so N is finitely generated by Theorem B1. (This “codimension one” case of
Theorem B1 is much easier to prove than the general case; see Corollary 4.2.)

If G is the fundamental group of a compact connected smooth n-manifold
Y then Hom (G, R)=H'(Y;R), so, using DeRham cohomology to compute
H'(Y; R), we can define

2(Y)={[x1€S(G)| x can be represented by a no-where vanishing 1-form on Y
whose restriction to 0Y is also no-where vanishing}.

The significance of X (Y) lies in the observation of Tischler [Ti] that a rational
point [x] of S(G) is in XZ(Y) if and only if y: G—>Z can be represented by
a smooth fibration Y- S'. It is quite easy to show that Z(Y)= X, . We shall
show:

Theorem E. If Y is a smooth compact 3-manifold containing no fake cells then
2(Y) equals X =X except possibly if n,(Y)=ZDZ/2.

The condition that Y have no fake cells is equivalent to the condition that
no counterexample to the Poincaré conjecture occur among the prime summands
of Y (this is a necessary technicality until the Poincaré conjecture is resolved:
taking connected sum of Y with a counterexample would not affect G or 2
but would make X(Y) empty). The exception Z@Z/2 is because of the possible
existence of an exotic homotopy RP? x §!, which would also contradict the
Poincaré conjecture.
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Corollary F. If G is the fundamental group of a compact 3-manifold then X satisfies
2= —2X and is a disjoint union of finitely many open convex rational polyhedra
in S(G). (A convex rational polyhedron in S(G) means an intersection of finitely
many rationally defined hemispheres.)

Indeed, that 2(Y)= — 2 (Y) is obvious while the polyhedral property was proved
for 2(Y) by Thurston [T, Theorem 5]. He also shows that any subset X< S" !
satisfying the conditions in Corollary F is the X of some 3-manifold.

We do not have as strong results about the shape of ¥, in general as in
the above case, but in all cases in which we have computed X, it is in fact
a polyhedral subset of S(G), that is, a finite union of finite intersections of open
hemispheres. For many classes of groups it is even rationally polyhedral: a
finite (not necessarily disjoint) union of convex rational polyhedra. This is true
for instance if A is nilpotent (for then X =X, , and 4/4" is a G/G'-module;
and for abelian 4 and G the rational polyhedral property was shown by Bieri
and Groves [B-G]).

If ¥, is rationally polyhedral then the complement 2% =S(G)—2 , is the
closure of the subset of its rational points. This is a very useful property, which
we had hoped would be general. However in Sect. 8 we give examples where
it fails: 2°=S8(G)— 2 consists of a pair of irrational points. These examples,
which can be finitely presented, are certain groups of PL-homeomorphisms of
the interval.

The proofs of Theorems C and E are based on the following topological
interpretation of the invariant X for a finitely presented group G. Let Y be
any connected finite CW-complex with fundamental group G and let X > Y
be the universal abelian cover of Y. To any homomorphism y: G —»IR we shall
associate a continuous map y': X =R, well defined up to a bounded homotopy.
Define

X, =yx"([0, )).

(Here is one description of y'. Take a map of Y to the n-torus which induces
an epimorphism of fundamental groups G —Z". Let a: X - R" be the induced
map of universal abelian covers. This R"” can be functorially identified with
(G/G')®zR, so x can be interpreted as a map R” > R ; ' is then the composition
of this with the map a.)

Theorem G. [x]€X if and only if the inclusion X, X induces an epimorphism
of fundamental groups. (If X, is not connected then use the component on which
¥ is unbounded, which exists by Lemma 5.2.)

We actually prove a more general version, Theorem 5.1, which gives a similar
interpretation of X; for an arbitrary finitely generated group G. To sketch
how Theorem C follows from Theorem G, suppose one has a y such that neither
[x] nor —[x]isin X. Assume that X ,, X _,, and X,=X,n X _, are connected
(this assumption is easily dispensed with). Then the Seifert-Van Kampen theorem
expresses G'=m,(X) as a non-trivial amalgamated free product of the images
in n,(X) of n,(X,) and m,(X _,), amalgamated along the image of 7, (X), and
the existence of a non-abelian free subgroup in G’ follows easily.
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Another basic result of this paper is the following theorem describing the
functorial nature of X' ,. Let f: H— G be a homomorphism of finitely generated
groups and let 4 be a G-operator group. Then A is also an H-group with
H acting on A via f. We write 2 4(G) and 2%(G)=S(G)— 2 4(G) or 2 (H) and

“(H)=S(H)—2 4(H) to distinguish the group of operators being considered.
Let

f*:8(G)—=S(G, f(H)) - S(H)

be the map f*[x]=[x-f].
Theorem H. If A is finitely generated as an H-group then:

2%(G)=S(G)—-S(G, f(H))
and
S*24(G)=2%(H).

The first equation of this theorem is immediate from the definition of X ,. It
is second equation which is the real content of the theorem and is in fact techni-
cally the most difficult result of this paper. For metabelian G and abelian 4
a stronger result is available: by using the valuation theoretic description in
[B-S 2] the set 2 can be defined for any (not necessarily finitely generated)
module 4 over the group ring of G and the second equation of Theorem H
still holds. The proof is given in [B-S 3] for rational points of X< and this
implies the general result, since 2% in a rational polyhedron [B-G].

Here is a brief plan of the remainder of the paper. In Sect. 2 we discuss
the “equational definition” of X' ,; Theorem A (openness) is an immediate conse-
quence. A related set 2’ is also briefly described, and its use for certain questions
of finite generation, particularly finite normal generation, is discussed. Sections
3 and 4 describe some basic properties of the invariant, including useful charac-
terizations of rational points in X, in Sect. 4. In Sect. 5, the geometric definition
of X~ (Theorem G) is deduced from an earlier characterization (Proposition 3.4)
of Xy for a normal subgroup satisfying G'<N <G, and Theorems C and E
are then derived from the geometric definition. In Sect. 6 we prove the functorial-
ity theorem and use it to prove Theorem B.

Finally, Sect. 7 describes miscellaneous examples while Sect. 8 describes the
PL homeomorphism group examples already mentioned. The basic result of
Sect. 8 is that for “sufficiently general” finitely generated subgroups G of the
group of orientation preserving PL-homeomorphisms of the interval [0, 1], 2¢
consists of a pair of (in general irrational) points. As a corollary one obtains
many subgroups of G which are finitely generated but not finitely presented.

Since the first draft of this paper there have been some further developments.

In [B] Kenneth S. Brown gives a description of X in terms of generalized
ascending HNN-extensions. This relates X to actions of G on R-trees. His results
suggested to us another characterization of X% which we have added as a final
Sect. 9. This characterization could be used instead of the equational character-
ization (Proposition 2.1) at a couple of points in the paper with some conceptual
advantage (but no significant shortening). For this reason, the reader may wish
to read Sect. 9 directly after Sect. 2.
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Gilbert Levitt has pointed out that if G is the fundamental group of a smooth
closed orientable manifold M, then X~ —2X is the set of y represented by a
“complete” 1-form on M, in the sense of [L]; moreover, he can give a similar
description of X itself. He also brought to our attention an elegant homological
characterization of X for a finitely presented group G, due to Jean-Claude Sikor-
av, one version of which follows (this characterization can also be deduced
from Theorem G). Let Z[G]" > Z[G]® - Z[G] be the exact sequence associated
to a presentation of G and let 4, be the ring of formal series Z n,-g, nel,

geG
having only finitely many non-zero coefficients n, with x(g)<c for any c. Then
[x]leZs if and only if the above sequence remains exact on tensoring with
A, over Z[G].

Notation. Throughout the paper G will be a finitely generated group and 4
will be a finitely generated right G-group. The action of G on A4 will be written
in exponential form: a® is the result of applying the operator geG to aeA.
We abbreviate (a~1)8 to a&.

We shall always assume, without specific mention, that the commutator sub-
group G’ of G acts on A by inner automorphisms. We do not know to what
extent this condition is needed for the results of this paper. Most of our argu-
ments use it essentially, though some minor results clearly do not use it. In
fact, with this assumption, the invariant X, only depends on the image of G/G’
in the outer automorphism group Out(A4) (c.f. Lemma 3.1), so we could have
formulated our investigations in terms of abelian subgroups of Out (4). Although
such a formulation is maybe better conceptually, it would have led to extra
notational complexity, so we did not do it.

If X and R are subsets of G and 4 then R* denotes the set of elements
a* with aeR and xeX, X~ ! denotes the set of x ™! with xeX, X*! denotes
XuX™!, etc. Finally, for a subset B of a group B, {(8B) and {B] respectively
denote the subgroup and submonoid generated by B.

2. Equational definition of X,

If X is a subset of the group G and w=x; x;_,...x, X, is a word in the alphabet
X*'=XuUX"!, then we will often use the same symbol for the word w and
its value in G. The set of non-empty terminal segments

{X1s X3 X1y eeey Xgooa Xy X1}

will be called the trace of w. It is empty for the empty word, which represents
the identity in G. If x: G >R is a homomorphism then the set of real numbers

{xGer), x(e2 x1)s ooy XXk X2 X4)}

is called the y-track of w. It is said to be positive (non-negative) if it is a set
of positive (resp. non-negative) real numbers.
The following condition on finite subsets X = G and R < A will be very useful
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to commute the action of operators from X; for given X it can always be achieved
by adding finitely many elements to ‘R if necessary:

Condition C. Each commutator [x, y] of elements x, yeX*! acts on A by conjuga-
tion by some element c(x, y)e (R).

The following proposition gives an equational criterion for inclusion in X ,.
A rather sharper result will be given Proposition 2.3, but this version suffices
for most purposes.

Proposition 2.1. Let X and R be finite generating sets of the group G and the
G-group A respectively, such that X and R satisfy condition C. Then the following
conditions are equivalent :

(1) [xJeZ,

(i) Each ae A has an expression

a=ri..ry 2.1)

with ry, ..., r,e{R) and where the w; are X*'-words with positive nonempty
x-tracks.

(iii) For each reR and xeX*!, a=r* has an expression as in (ii).

(iv) Same as (iii), but with just non-negative tracks for the w;.

Proof. Clearly (ii)=>(iii)=>(iv). To show that (iv)=>(i), suppose we have an expres-
sion (2.1) for each r* and let I be the union of the traces of the w; occurring
in these finitely many equations. Note that any element u of the monoid (28]
is an X*'-word with trace contained in (2B]. We shall show that [y]eX, by
showing that the subgroup 4,=(R™), generated by R with operators in I,
is stable under X*! and hence equals A. It suffices to show, for re R and ue (B3]
and xeX*!, that r** is in 4,. We use for this the following Eq. (2.2) to pull
x to the left in the exponent until it can be eliminated by use of the expression
(2.1)for a=r~.
For X*!-words v and w and x, yeX*!:

rwyxvzc—vrwx.vv Cv, (22)

where c=c(x, y)~! is the element of (R given by Condition C.

Finally, to show (i)=>(ii), assume that [x]eX ,. Then we can find finite sets
Sc4 and PG, such that S generates A using operators in 9. For each
se S choose a representation

s=rit..ry (2.3)

with r;,e R and X*!-words u;. Since this is a finite system of equations, there
is a uniform lower bound aeZ on the tracks of the u;. For each ye9 choose
a representation of y as an ¥*!-word w(y):

y=w(y). (2.4)

We can assume that o is also a lower bound for the tracks of the w(y). Now,
any be A has a representation

b=s1...s (2.5)
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with 5,6 S and the v; being 9-words. If we use Eq. (2.4) to substitute in the
exponents of (2.5) and (2.3) to substitute for the s; we get a new equation

b=ry...ry", (2.6)

where the r; are in R and the w; are X*'-words with tracks bounded below
by a (indeed, each w; is a product of the form uw(y,)... w(y,) with u an exponent
from an Eq. (2.3) and the w(y;) as in (2.4)). Choose xeX*! with y(x)>0 and
BeN with By(x)+a>0 and set y=x"F. If, for any aec A one represents b=a’
as in (2.6) and then applies x* to this equation, one obtains the desired representa-
tion (2.1) of a.

Proof of Theorem A. Theorem A (openness) follows immediately from the above
proposition since condition (iii) is clearly an open condition on [x]. The remark
following Theorem A that X, could also have been defined using ¥~ ' (0, c0)
in place of G, =y~ '[0, o0) is also clear by applying the above proof that (iv)=>(i)
to (iii) instead of (iv).

We have seen the use of Property C for commuting the action of operators.
The following simple lemma gives a concrete aspect of this which we will need
later. We include it here for convenient reference.

Lemma 2.2. Suppose X< G and R < A satisfy Property C and W and B are sets
of X*'-words which are closed under formation of terminal segments of words
(e.g. subsets of X%1). Then (R™®> = (R and (KM = (RMUTD,

Proof. Given uell and ve®B, to show r* e (R?Y> we can assume inductively
that this has been shown already for shorter words than uv and then use Eq.
(2.2) to pull v letter by letter to the left in the exponent. For the second equation
it suffices to show that (R s stable under both U and B, which follows
by applying the first equation to (U] and {B].

We close this section with two digressions. The first is a refinement of the
“equational definition” of X, (Proposition 2.1). It is rarely needed in practice;
it can simplify computations for examples, but we include it mainly for its
elegance. The second digression discusses a set X', related to 2.

Proposition 2.3. Let X and R be finite generating sets of the group G and the
G-group A respectively, such that X and R satisfy condition C (or just the following
weaker Condition C(y)). Then [x]€ X , if and only if each reR has an expression

r=ry‘...rys (2.7

with ry, ..., r,€{R) and where the w; are X*'-words with non-negative y-track
and y(w;)>0.

Condition C(x). For each xe X*! with x(x) <0 and each yeX, one of the commuta-
tors [x, y] and [x, y~ '] acts on A by conjugation by some element ce (R).

Proof. We first assume that X and R satisfy condition C. Clearly any one of
the conditions (ii) to (iv) of Proposition 2.1 implies the condition of Proposition
2.3. Assume the condition of Proposition 2.3; we shall deduce condition (iv)
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of Proposition 2.1. If we take the finite system of Eq. (2.7) and substitute it
into itself, we obtain a new such system where each exponent u is a product
u=vw of two exponents v and w from the original system. By iterating this
process we may thus make the minimum of y(w;), taken over all exponents
in the system, as large as we wish. We may assume therefore that for each
Eq. (2.7) we have:

x(w)=yx(x) for each w; and each xeX*'.

Choose xeX*! and re®R and rewrite each exponent in Eq. (2.7) as xx~ ' w;.
Then use the following Eq. (2.8) to pull the x ™! to the right in the exponents
until eventually one has a new equation in which each exponent is either of
the form xw; x ™! for some exponent w; of the original equation or of the form
ux~! where u is a terminal segment of one of the w;. Applying x to this new
equation gives us an equation for r* as in part (iv) of Proposition 2.1, completing
the proof.
For X*!'-words w and v and x, ye X*1!:

-1 —x— 1 -1
pwxT I xT o wyx Tty

r e (2.8)

where c=c(x, y) ! is the element of (R ) given by Condition C.

We now describe how the above proofs of both Propositions 2.1 and 2.3
must be modified if one only has the weaker condition C(y). In the proof of
Proposition 2.1, if one replaces I by the monoid generated by WU (X*' N G)),
then one only needs to move elements xe X*! with y(x) <0 to the left in expo-
nents, and one can use a choice of equation (2.2) and the following (2.9) to
do so:

PR = (x, y T T e, y TP 29)

Similarly, in the proof of Proposition 2.3 one need only consider xeX*! with
x(x)<0 and one can use a choice of (2.8) and the following (2.10):

PRI o (x, T )Y T ey xT gy p lpET (2.10)

Comment on the definition of X ,. By definition, a point [x] of S(G) belongs
to X, if A is finitely generated over a finitely generated submonoid M of G,.
If we dispense with the requirement that M be finitely generated we obtain
the closely related invariant

'w=1{[x]1€S(G)| A is finitely generated over G,}.

Obviously 2 , = 2",, but the two sets do not in general coincide, as later examples
will show. However we have the following Proposition which shows, in particu-
lar, that the X , defined in this paper is a true generalization of the one introduced
in [B-S 1] for abelian A.

Proposition 2.4. (i) 2, is open in S(G).
(ii) If the image of G' in Aut(A) is finitely generated (e.g. if G' is finitely
generated or if A is abelian) then X ,=2,.

Proof. Let R < A be a finite G-generating set of A. We first show.
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[x1eZ’, if and only if the following condition (*) holds: (*) each reR has
an expression:

r=r§...r% (2.11)
with the r; in {R) and the g; in G with y(g;)>0.

This is clearly an open condition on [x], so (i) then follows. To prove it,
suppose [y]e2’,. Choose he G with y(h)<O0. Any element of A4, in particular
the element r*, has an expression

rr=ri

with the r; in (R) and with x(h)=0. Applying h~! to this gives the desired
representation of r. Conversely, if the condition () holds, let he G be arbitrary.
By substituting the system of Eq. (2.11) into itself sufficiently often we can replace
it by one in which the exponents g; all satisfy y(g;)+ x(h)>0. Then applying
h to this system shows that r” is in (R%x) for each reR. Since h was arbitrary,
(RO =A.

To prove part (ii) of the Proposition let A, be a finitely generated subgroup
of A such that each element of G’ acts on 4 by conjugation by an element
of Ay. Choose R to include a generating set of 4,. Then Condition C is satisfied
for R and any set X< G. Thus if condition (*) is satisfied we can choose X
to include the exponents occurring in (2.11) and the condition of Proposition
2.3 is then trivially satisfied. The converse is trivial.

The significance of X',. Most results for X, have analogs for X', with finite
generation with respect to a set of operators always replaced by finite generation
with respect to the same operator set union G'. In particular, the analog of
the functoriality theorem (Theorem H) holds for 2/, and the analogs of Theorems
B and B1 are:

Proposition 2.5. Suppose G'<N <G. Then A is finitely generated as an N-group
if and only if S(G, N)=X',. In particular, N is finitely generated as an N-group
(that is, N can be killed by finitely many relations ), if and only if S(G, Ny Z§..

We omit proofs; they parallel the corresponding proofs for ¥ ,, but are
much easier in that less care need be taken with commutation of operators.
Alternatively, note that everything in this paper can be carried out with an
additional group H of operators always acting on A if the images of H and
G in Aut (A) satisfy [H, G] < H. The case that H= G’ gives X/,.

3. Elementary properties of X,

In this section we discuss how X, changes under change of 4 or G. A useful
concept for this discussion will be the concept of a subset X of G being sufficient
for A, by which we shall mean that A is finitely generated as a group with
operators X. The set X ,<S(G) might be considered to be a first step in an
analysis of the structure of the set of finite subsets of G which are sufficient
for A.
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Lemma 3.1. (i) Let NG be a normal subgroup which acts on A by inner
automorphisms. Then whether a finite subset X G is sufficient for A only depends
on the image of X in G/N.

(i) If X=X, u{x} is sufficient for A then so is X, U {x?} for any peN.

Proof. (i) Suppose X, be sufficient for 4 and let R< A be a finite X,-generating
set for A. If X< G is a finite subset with the same image in G/N as X,, then
each element of X, can be written in the form n(x) x with n(x)e N and xeX.
Moreover n(x) acts on A by conjugation by some element a(x). Clearly, anything
one can generate from R using operators in X, can also be generated from
R U {a(x)| xe X) using operators in X.

(ii) Let R be a finite X-generating set for A such that the pair X, R satisfies
Property C (Sect. 2). By Lemma 2.2, 4 is generated by elements of the form
r* with reR and u an X-word of the form x*v with v an X,-word. This r*
is in the subgroup generated by

S=RUR*U...UR"'

using operators in (X, U {x?}), so & is a (X, U {x?})-generating set of A.

If a group A has different groups of operators G, G,, etc., acting on it,
recall that we write X ,(G), 2 ,(G,), etc., to distinguish the various X ,’s. The
above lemma has the following immediate consequences for X .

Proposition 3.2. (i) If NG is a normal subgroup which acts on A by inner
automorphisms then S(G)— S(G, N) = X ,.
(i) If G, =G is a subgroup of finite index then

[x1G11e24(G)=[x]€Z4(G).

Proof. (i) Choose a finite set X =G which is sufficient for A. Then [x]eS(G)
—S(G, N) means that x| N+0, so we can find a finite set X, =G, such that
X and X, have the same image in G/N. Then by Lemma 3.1, X, is sufficient
for A,so [x]eZ,.

(i) The implication “=>" is trivial. For the converse, suppose that ye ,(G).
Let X< G, be a finite sufficient set for 4 and let p be the index [G:G,]. Then,
by Lemma 3.1 (ii), the set X? of p-th powers of elements of X will still be sufficient
for A. But X?c(G,),, so [x|G;]1€Z 4(G,).

In the following Proposition recall that the notation X¢ represents the com-

plement of X, in S(G). Part (ii) is a special case of the functoriality Theorem
H.

Proposition 3.3. (i) Suppose that A and B are finitely generated G- and H-groups
respectively and n: H—»G and p: B-» A are epimorphisms compatible with the
group actions. Then the induced embedding

n*: S(G)— S(H),

with image S(H, Ker nr), maps X< into X%.
(i) If p is an isomorphism in (i) then n* (2%)=2X%.
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Proofs. Part (i) can be reformulated: [yon]eXz=[x]eX,. It is then immediate
from the fact that if B is generated by R using operators X< H then A will
be generated over n(X) by p(R). Given (i), the conclusion of part (ii) can be
reformulated as the two statements:

(a) *(2)S2p;

(b) S(H)—n*(S(G)) = 25.
(a) is trivial, while (b) is Proposition 3.2 (i) with N =Ker =.

We now discuss the case that A= N is a normal subgroup of G, containing
G, and acted on by conjugation. The set X is then completely determined
by Y=2; and we can give a new characterization of it. Let X be a finite
generating set of the group G.

Proposition 3.4. If G SN <G then:

(1) Zy=2¢ U (S(G)—S(G, N)).

(i) Choose c<0; then [x]eZynS(G, N) if and only if each element of N
can be represented by an X*'-word with y-track bounded below by c.

Proof of (i). Since N/G is finitely generated, Xy =2 ., and by Proposition 3.2(i),
Zn2(S(G)—S(G,N)). It remains to show 2ZynS(G,N)cx,;. If
[x1eZynS(G, N), note that NcG,. If XcG, is sufficient for N, the following
lemma (with 4=G’) shows that we can enlarge X by a finite subset of N to
make it sufficient for G'.

Lemma 3.5, Let A>> N —Q be a short exact sequence of X-operator-groups, where
X is a finite set, such that Q is finitely presented as a group without operators.
YN is a finite set which generates N as an X-group and whose image in Q
generates Q as a group. Then A is a finitely generated (X U 9 *1)-group.

Proof. If X =0 this lemma is standard. Namely, choose a finitely generated free
group F with an epimorphism F—»N. If R=Ker(F-»N-»(Q), one can form
a commutative diagram with exact rows:

R>- > F »Q

L

A——os> N—»Q.

Since Q is finitely presented, R is finitely generated as an F-group, so A is
finitely generated as an N-group.

This same proof applies with operator set X+ to show that A4 is finitely
generated as an (XU N)-group; let R= A4 be a finite generating set. We must
show that A is finitely generated as an (XU P *!)-group. Since the image of
9 generates Q as a group, for each ye Y *! and xe X the element of Q represented
by y* can also be represented by a P*1-word v(x, y). Thus in N we have y*
=b(x, y) v(x, y) with b(x, y)eA. Let A, be the (XU PT!)-group generated by
S=RuU{b(x,y)|xeX, yeP*!}; we claim that A,=A. It suffices to show that
a"eA, for any aeA, and neN. We need only show this for n of the form
y¥ with yeP*! and w=x,...x, an X-word, since such elements n generate
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N. We use induction on k. For k=0 we have a"=a"e€A,. Assume a" is in
A, for any ae A, and any n=y" with ye9*! and w an X-word of length k—1.
Then if w=x,...x, we have y"=bov*2>* with b=b(x,, y)****€A4, and v
=v(x;,y) a Pl-word. Now a"=b ™a™b™ with m=0v*2* By induction
assumption, each of a™ and b™ is in A, so a" is in A, completing the proof.

Proof of 3.4(ii). Suppose [x]eZynS(G, N). Let R N be a finite set such that
R generates N as an X-group and X and R satisfy Property C. Choose a represen-
tation of each reR*' as an X*!'-word u(r) and let « be a lower bound on
the tracks of these words. By Proposition 2.1 (ii) any element ae N has a represen-

tation
a=ryt...ry’

with the r; in R*! and w; being X*!-words with positive y-track. Thus a can
be represented by the X*'-word

w=wy lu(r)w,..w;lu(r)w,

which has track bounded below by a. Choose an X*!-word v with non-negative
track and x(v)>a. Then v~ 'av is represented by the word v~ ! wv with non-
negative track. Since v~ ' av is arbitrary in N, this suffices.

Conversely, suppose each element of N has a representation as in the proposi-
tion. By conjugating by a suitable word v as above, we may assume c¢=0.
Then no element of N has negative y-value, so certainly [x]eS(G, N). Let F
be the free group on X and let S be the preimage of N under the obvious
epimorphism from F to G. Let S be any finite subset S which generates S
modulo [F, F]. We assume each se S has non-positive y-track; since y vanishes
on N, we may reorder s to achieve this. We shall show that condition (iv)
of Proposition 2.1 holds for the finite set R=S U[X*!, X*1].

We begin with a preliminary calculation. Suppose w is an X*!-word with
non-negative y-track which has exponent sum 0 with respect to each element
of X. We claim that w is freely equal to a product of commutators

C'{'C'éz...ij (%)

with each ¢; in [X*!, X*!] and each v; being an X*!-word with non-negative
x-track. The proof will be by induction on the number m of letters in w. The
claim is obvious if m=0. If m>0 we choose the rightmost letter y in w with
x(») L0 (“letter” means element of X*') and choose also an occurrence of y~!
in w. Putting x equal to the rightmost of this y and y~! lets us write w as

a product .
w=w; X~ 'w,; xws,

where the w; are subwords of w and either (x)<0 or w, has positive x-track.
Then w is freely equal to w, w,[w,, x] w; and hence to

Wy Wy Wy [W2s XJW3a

and w, w, w; has non-negative y-track and is shorter than w, so it has a represen-
tation of the desired form (*) by induction assumption. On the other hand
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[w,, x]** has a representation of the form (*), since, if w, is the word x,...x; x,
then
[wy, XI™2 =[x, XIPem ™2 [, X572 [y, X]™2

This proves the claim.

Now, given reR and xeX*!, there exists, by assumption, an X*'-word
v with non-negative y-track that represents r*. Find an &*'-word s, s,...5,
which equals v modulo [F, F] and set w=(s, ...s,,) " ' v. Then the above calcula-
tion applies to w, so r* has a representation

r* =81 5y...5m CY' CP...CY,

which has the form required by Proposition 2.1.

4. Rational points

For rational points we can give a different characterization of X ,. Recall that
a rational point [x]€eSQ(G) is one for which the homomorphism y: G >R is
rank one, i.¢. has infinite cyclic image. By multiplying y be a positive real number,
we may assume that the image of y is Z<R.

Proposition 4.1. Let y: G—»Z <R be a rank one homomorphism and let teG be
an element with x(t)=1. Then [x]eZX , if and only if there is a finitely generated
subgroup Y =Ker y and a finitely generated Y-subgroup B= A such that

..€B"'cBcB'c... and | ) B'=A4.
j>0
Proof. The “if” is trivial; to show “only if” assume [y]e2,. Let X< G, be
sufficient for A. Since G = (Ker y, t), we may assume X=9*' U {t} with Pc
Ker x. Let R be a finite X-generating set of 4 such that X and R satisfy Property
C (Sect. 2). Let Y=<9)> and B,=(R">. Then by Lemma 2.2, 4 is generated
by B§", so, since R is finite, there exists a keIN such that R'"' is contained

mn K
B={(ByUByu...UBy>.

Lemma 2.2 with U={1,¢,...,t*} and B=Y shows that B is generated as a
Y-group by the finite set R™. Also, since B is Y-stable, R' 'Y< B, but by Lemma
2.2 again, {R*"'¥)=By '. Hence B''< B, so B'cB”"'forall jand | ) B’=4.
j>0
As an easy corollary we obtain the special case of Theorem B which we
used in the proof of Theorem D:

Corollary 4.2. If [y] is a rational point and both [x] and —[x] are in X, then
A is finitely generated over a finitely generated subgroup of Ker .

Proof. In the above proof of 4.1 we may assume that R also generates 4 using
operators in Y*1u{t!}. Then B, generates 4 as a {t~'}-group, so B also
does, which clearly implies that B= A.
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Proposition 4.1 leads to characterizations of the rational points in X'=2,
in terms of HNN-extensions.

Proposition 4.3. If y: G—>»Z <R is a rank one homomorphism and N =Ker y and
teG has y(t)=1 then the following are equivalent :
1) [x]eZ;
(i1) N is finitely generated over {t];
(iil) G is an ascending HN N-extension G={B, t; B} = B) with finitely gener-
ated base group BS N. That is:

..SB<B'c... and |)B“=N.
j>0
(iv) If G is an ascending HN N-extension G=<{C, s; C5=C) with s=t"! and
C< N then this extension is trivial: C=N.

Proof. By Proposition 3.4 [y]eX if and only if [y]eZy and by Lemma 3.1,
this 1s equivalent to (ii). To see the equivalence of (i) and (iii) one need just
observe that in the proof of Proposition 4.1 applied to 4 =Ker y one can choose
R to include ¥ and then B is finitely generated. Next, if (iii) holds and G
is an HNN-extension as in (iv) then B< C** for some k so B' < C¥"=C" ' C*
for all i=0, so C=N. Finally if (iv) holds and X< N is a finite {t)-generating
set, put C=(X). Then ...cC<= C*<... and UC* =N, so by assumption C=N,
that is (ii) holds.
There is an interesting partial converse to Proposition 4.3.

Proposition 4.4. Let G be an HN N-extension (B, t; B} = B,) over a finitely gener-
ated base group B with associated subgroups B,, B, and stable letter t. If y: G—»
Zc<R is the homomorphism with y(B)=0 and y(t)=1 then [x] is in X if and
only if B=B,.

Proof. Assume [y]eX. Then N =Ker g is finitely generated over {t]; let R be
a finite generating set. Since B<"” generates N there exists m, such that R is

contained in ;
L,=(B"|j>mg).

There is no loss in assuming my=0. Then N=<(RD IS =L, so N=L,.
On the other hand, N is the amalgamated free product

L—*Btz“=81 Bxp,_p L.,

where L_=(B"|j{0), so L, =N implies B, = B, as asserted.

S. Geometric interpretation of X

In this section we describe a geometric interpretation of X and use it to prove
theorems C and E.

Choose an epimorphism {: H-»G of a finitely presented group H to G
and let Y be a finite connected CW-complex with fundamental group n,(Y)=H.
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Let X —Y be the covering corresponding to the subgroup K=y ~!(G')<H.
It is a regular covering with covering transformation group H/K = G/G’. Given
a homomorphism y: G - R, we get an induced action of G/G’ on R by transla-
tions: rl&1=r+ y(g).

Construction. To any x: G >R we shall construct a continuous map y': X >R
which is compatible with the G/G' actions on X and R and is well defined up
to a (G/G')-equivariant homotopy.

We postpone the details of this construction to give its application. Let
X,=x"1([0, c)). This X, may not be connected, but we will see later (Lemma

5.2) that it has a unique component, which we call X(x), on which y' is
unbounded.

Theorem 5.1. [y]1e X if and only if Yoiy: n,(X () — G’ is an epimorphism, where
i: X(x)— X is the inclusion.

One way of constructing ¥’ was described in the introduction. We use here
a different approach which is more convenient for our purposes. To describe
it, we first describe the simple case that G=H=Z" and Y is the n-torus T"
Then X is the universal cover R” of T". If y, is a rank one homomorphism,
Xo: Z"—Z, then we can represent it by a map T"— S' and lift this map to
the universal covers R” and R to obtain y;. However, if y, is not rank one,
this construction needs modification. We can identify Hom (Z", R)=H!(T"; R).
Using DeRham cohomology to compute H!(T"; R), we can thus associate to
Xo a closed 1-form w on T If we lift w to R" it becomes exact, that is, w
lifts to d(yp) for some map y,: IR" >R, which is the desired map.

The compatibility of y, with the Z"-actions on IR” and R follows from
following the equation, in which xeR", geZ" is a covering transformation, and
7¢ 18 @ closed loop in T" representing the element g considered as an element
of n, (T"): -
Xo(F)—xo(x)= | dyo= | o=x(g).

Ve

Here the last equality is the definition of the identification Hom (Z", R)
=H'(T"; R). The map y, depends on the choice of w, but a different choice
would differ from @ by an exact form dg on T”", and a deformation of the
real-valued function g on T" to the constant function would induce a deforma-
tion between the two forms w and hence a (G/G’)-equivariant deformation be-
tween the two maps .

In the general case, if G/G’ has rank n, let G—»Z" be an epimorphism and
let o: H—»Z" be its composition with . Since the n-torus T" is a classifying
space for Z", we can find a continuous map Y — T”", unique up to homotopy,
which realizes the homomorphism ¢. This map lifts to the covers X and R”
of Yand T" to give

X—2 LR"

Y—T",
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with a: X - R" unique up to equivariant homotopy. Any homomorphism
x: G—>R factors over a homomorphism y,: Z"—R and, as above, this then
induces a map y,: IR" —» IR. The desired map y’ is the composition y,oa.

Note that an equivariant homotopy of y’ is bounded, since the amount
a point x of X moves under the homotopy only depends on the image of
x in Y, which is compact. Thus, although the subspace X,cX depends on
the choice of ', any two such subspaces can be mapped inside each other
by suitable covering transformations of X, and it follows that the same holds
also for X (x). Thus the epimorphism condition of Theorem 5.1 does not depend
on these choices. We must still prove the existence of the unique component
X(y) of X, on which y’ is unbounded.

Lemma 5.2. There exists a constant C=0 such that ¥~ '([r+ C, o)) is con-
tained in a single component of x'~'([r, ®©)) for any reR. In particular, X (x)
exists, and it contains '~ ' ([C, o0)).

Proof. For any path y: [0, 1] - Y, choose a lift y: [0, 1] — X of y and define
lyl=max {y'F(e)—x'¥(t)le=00r 1,0=t<1};

this does not depend on the choice of lift j. Choose a basepoint *€Y. For
any yeY define

ly|=min {|y||y: [0, 1] - Y is a path from =* to y}.
This is a continuous function on the compact space Y so it has a maximum
C,=max {|y||yeY}.

Let I' be a finite set of closed loops y:[0,1]— Y based at * which represent
a generating set for H=m,(Y, *) and put

C,=max {|y||yel}.

Now any point xeX can be connected to a lift of the basepoint by a path
whose y'-image never goes below y'(x)—C,, and any two lifts %, and *, of
the basepoint can be connected by a path whose y'-image never goes below
min (' (*,), ' (*;))—C,. Thus C=C, + C, satisfies the Lemma.

Proof of Theorem 5.1. We show first that the condition of Theorem 5.1 only
depends on the homotopy type of Y. Suppose Y’ is a finite CW-complex homo-
topy equivalent to Y. Let X’ and X/, be constructed analogously to X and
X,. Let h: X’ > X be a lift of a homotopy equivalence Y'— Y. Then a'=ach
can play the role for X' that a plays for X, so, assuming this choice of a’,
we have h(X})= X, and hence h(X'(y)) <X (x). Thus the condition of Theorem
5.1 for Y’ implies the condition for Y. By symmetry, the reverse is also true.

By collapsing a maximal tree in the 1-skeleton of Y, we can replace Y by
a homotopy equivalent complex with just one 0-cell. We therefore assume that
Y has just one O-cell, which we denote . The 1-cells of Y then form a finite
collection I' of closed paths in Y which represent a generating set of H =m, (Y, *).
Let X be the image of this set of generators in G. Choose a lift of the basepoint
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*€ Y to a basepoint, also called *, in X. We may assume y'(*)=0. Any X*'-word
w is represented by a cellular path in Y (obtained by concatenating the corre-
sponding elements of I') and this path lifts to a cellular path y, in X starting
at the basepoint *. Using the constant C, from the proof of Lemma 5.2 we

have: ) ) i
min (x'|y,,) < min (x-track of w)<min (y'|7y,)+C,.

Thus, if we apply a suitable covering transformation to X to move the y-image
of X(x) down by at least C, then *€X(y) and every X¥*!'-word w with non-
negative y-track is represented by a path in X (y). The “only if” of Theorem
5.1 then follows directly from Proposition 3.4(ii). The “if” would also follow
if we knew that every element of n,(X (), *) were represented by a cellular
path. This would be so if X(y) were a subcomplex of X, but this may not
be true: X (x) may include some incomplete cells of X. Let X9 be the largest
subcomplex of X contained in X,. Then, since the diameters of cells of X,
with respect to y’ are bounded, X9 contains some translate of X, by a covering
transformation. Thus X9 has a unique component X°(x) on which y is
unbounded, and this component contains some translate of X (y). We can thus
replace X (y) by X°(y) without changing the epimorphism condition of the Theo-
rem, and the proof is then complete.

Theorem G of the Introduction is immediate: if G itself is finitely presented
then we can take n,(Y)=G so ¥ : H—»G is the identity map. A proof of Theorem
C can now be completed just as in [B-S 1]. It was sketched in the Introduction;
since it is short we give a precise version here for completeness. Let Y be chosen
as above with 7,(Y)=G. Suppose we can find a y such that neither [x] nor
[—x] is in 2. Then neither of the inclusions X (y)>— X or X(—y)>— X induces
an epimorphism of fundamental groups. On the other hand, by replacing X (—y)
by a suitable translate we may assume that X (—y)u X (y)=X and X(— )~ X (¥)
is connected, so by the Seifert-Van Kampen theorem, G'=n,(X) is the free
product of N_=Im (n,(X(—y)) = n,(X)) and N, =Im (7, (X (y)) - 7, (X)), amal-
gamated along Ny=Im (7,(X(—x)» X () — n,(X)). We claim N, has infinite
index in each of N_ and N, , whence G’ has non-abelian free subgroups. Indeed,
for each ¢ > 0 choose a translate X (— ), of X (— y) which contains ¥’ ((— o0, c]).
Then any element of N, is in the image of 7, (X (x) » X (—x).) for some sufficiently
large c. Thus if N, had finite index in N,, we could replace X (—y) by X(—x).
with ¢ large enough that the new Ny=Im (7, (X () X(—yx).) = 7, (X)) would
contain a complete set of coset representatives of the old N, in N, . It would
hence equal N,. So =,(X) would equal N_, contradicting the fact that [ —x]
is not in X.

We now finally come to the proof of Theorem E. Recall that Y is a compact
connected smooth 3-manifold containing no fake cells with #n,(Y)=G and X(Y)
is the set of [y]JeHom (G, R)= H!(Y;IR) which can be represented by a closed
1-form w which is nowhere vanishing on Y and 0 Y. We first show: 2(Y) = X=2..
We shall apply Theorem 5.1 using this Y and its universal abelian cover X.
Let [x]eZ(Y) and represent y by a closed 1-form w as above on Y. This form
lifts to an exact form, df say, on X and, rather than going through T", we
can use the real valued function f: X —IR directly to construct X, as X,
=f"1([0, ). Let {, be any vector field on Y, tangent to JY, with w({,)=1
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and let { be its lift to X. {, is complete since Y is compact so { is complete.
Moreover, by construction, { is a lift via f of the constant vector field d/dt
on R. For any xe X let g(x)ef ~*(0) be the intersection of the {-flow line through
x with f71(0). Then (f,g): X >R x f~'(0) is a diffefomorphism which maps
X, to [0, 00) x f~1(0), so the inclusion X X induces an isomorphism on
fundamental groups, and [y]€2 by Theorem 5.1.

As described in the Introduction, Thurston showed in [Th] that X(Y) is
a rational polyhedral subset of S(G). In particular, rational points are dense
in the complement of X(Y). To finish the proof of Theorem E it therefore suffices
to show that no rational point of X is in the complement of X(Y), that is:
2N SQ(G)=Z(Y), where SQ(G) is the set of rational points of S(G).

Let [x]€Z be a rational point. We can take the representative ye Hom (G, Z)
to be an epimorphism. Now Hom (G, Z)=[Y, S!]=H'(Y;Z). Let (F,0F)c
(Y,0Y) be a properly embedded incompressible surface dual to y and having
the least number of components among such surfaces (F being dual to yx is
equivalent to F=¢ () for some map ¢: Y— S! representing y with regular
value t). Cutting Y along F represents Y as a union of pieces Y; pasted along
components F; of F. Thus G=m=,(Y) is the fundamental group of a graph of

groups (I; {n,(Y)}, {n,(F)}) and  factors as nl(Y)~»n1(F)—i>Z. Since [x]eZq,

Lemma 3.3 (i) shows that [{]e X, . But =, (I') is free, so X, ) would be empty
unless 7, (I')=Z. Since y was an epimorphism it follows that some component
of F is already dual to y and since F had as few components as possible,
F is connected. Cutting Y along F gives a manifold Y, with two copies F,
and F, of F in 0Y, such that Y is obtained from Y, by identifying F, to F.
By incompressibility of F, the fundamental groups of F, and F; inject into
7,(Y,). Hence G=mx,(Y) is an HNN-extension {n(Yy), t| 7, (F,)'=mn(F;)) with
x: G—Z equal to the homomorphism which is trivial on n,(Y,) and maps ¢
to 1. By Proposition 4.4 this HNN-extension must be ascending, that is, 7, (Y,)
coincides with n, (F;). By Stallings [St], this implies that (Y,, F;) is homeomorph-
ic to (FxI, Fx{1}) (except possibly if f~IRP?, in which case we are in the
excluded case n,(Y)=Z @ Z/2). In particular, F,:=0Y,—int (F,) is homeomorph-
ic to F,. The inclusion F, S F, is an inclusion of mutually homeomorphic compact
connected surfaces, and it induces an injection on 7, since 7, (F,)=m,(Y,). Now
F,—int (F,) has no closed components since F, is connected and no disc compo-
nents since 7, (F,) = ; (F;) in injective, so it is a (possibly empty) union of compo-
nents with non-positive euler characteristic. but it has euler characteristic zero
since F, is homeomorphic to F,, so its components have zero euler characteristic;
that is, they are annuli or m6bius bands. The occurrence of mobius bands
would give F, more boundary components than F,, so F,—int(F;) is a union
of annuli. It follows that (Y,, FyUF,) is homeomorphic to (F x I, F x {0, 1}).
Thus Y is homeomorphic, and hence diffeomorphic, to the total space of a
fibration over S!, and y can be represented by the fibration map. Thus [x]eZ(Y),
completing the proof.

6. Functoriality

In this section we first show how Theorem B follows using Theorem H (functoria-
lity of X ,) and then prove Theorem H.
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Proof of Theorem B. Let H<G be a finitely generated subgroup. If the group
A is finitely generated over H then certainly S(G, H)< 2 ,(G), since H< G, for
all [x]=S(G, H).

To prove the converse suppose S(G, H)< X ,(G). For any subgroup K<G
let K° be the largest subgroup of K which acts on A by inner automorphisms.
In particular G'<G° and K=K G° for any K. We shall show that A is
finitely generated over H by induction on k=rankz(G/HG®). If k=0 then A4
is finitely generated over HG® by Proposition 3.2(ii) and hence finitely generated
over H by Lemma 3.1(i). If k=1 choose a finitely generated N with HEN <G
and G/NG®°=Z. Then S(G, N)=S(G, H =X ,(G), so A is finitely generated over
a finite subset of NG°® by Corollary 4.2, and hence over N by Lemma 3.1 (i).
We claim:

(i) S(N, H)=SZ 4(N);

(i) rank,(N/HN®)=k—1;
so then the induction hypothesis applies to show A is finitely generated over
H, as desired. Indeed for (i) consider the map

f*:8(G)—S(G, N)-S(N)

induced by the inclusion N = G. Now (f*)~ ! S(N, H)< S(G, H), which is disjoint
from X%(G) by assumption. Thus S(N, H) is disjoint from f*2(G), but
f*25(G)=2%(N) by functoriality, so this proves (i). For (ii) note that
N/HN°= NG°/HG° which has free abelian rank k— 1.

Proof of Theorem H (functoriality ). Functoriality has already been proved for
epimorphisms (Proposition 3.3), so, since any homomorphism is the composition
of an epimorphism and an inclusion, it suffices to prove it for an inclusion
H>->G. We may assume therefore that H<G is a finitely generated subgroup.
We can also reduce to the case of an inclusion H<G with G/HG?® finite or
infinite cyclic: replace the inclusion H <G by a sequence of inclusions H=H,
<H,<...£H,=G with H;,, G°/H;G° finite or infinite cyclic for each i; since
H;,,,GH;G°=H,, /H;(H,;.,)° each inclusion H;< H;, is of the desired type.
Now if G/HGP is finite then the functoriality statement follows easily from Propo-
sition 3.2. We will assume therefore from now on that G/HG° ~Z.

The map f*:S(G)—S(G, H)— S(H) induced by the inclusion f: H—G is
given by f*[x]1=[x<f1=[x| H]. Proving the inclusion f* ¥%(G) < 2 (H) is thus
easy: if A is not finitely generated over a finite subset of G, then it is certainly
not finitely generated over a finite subset of H, |y =G, H. The reverse inclusion
f*25(G)= 2% (H) is equivalent to the two statements:

(a) SH)—Im(f*) <=2 4(H);

(b) if [xol€Im (f*) and (f*)7 ! [xo] = Z 4(G) then [yo]eZ ,(H).

Statement (a) is a special case of Proposition 3.2(i), since Im (f*)=S(H,
G’ n H). The crux of the proof is thus to prove (b).

Statement (b) can be rewritten:

(b) If [3]1€Z ,(G) for every [¥]1€S(G) with y| H=y,, then [x,]€Z ,(H).

By Proposition 3.2, any j: G— R or xo: H— R which does not vanish on
G° or H® is in X 4(G) or X 4(H) respectively, so in (b) we may restrict to homo-
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morphisms ¥ and x, which do vanish on G° and H°. Denote by ¢ and 3
the projections

®:G—>G/HG*—-5Z and 9:G—(G/G°)/Torsion——Z".

Choose teG with ¢(t)=1 and then choose X={x,, ..., x,_,} = H such that XU
{t} maps to a basis of Z" under 3. By Lemma 3.1, we can replace H and
G by the groups (X) and (Xu{t})> without changing the truth or falsity of
(b), so from now on we assume that H=<X) and G=(XuU{t}). A is finitely
generated over X*! so choose a finite X*'-generating set S of A with
[(Xu{h*L, Eu{th*F]c=s.

As already remarked, we may assume that y,(H®)=0. Since H/H°=HG°/G°,
there is a unique extension of y, to y: HG° >R with y(G%=0. Assume the
premise of (b). Since S(G, HG®) is by assumption contained in X ,(G), the set

D(r)-={[x1eS(G) | x| HG® =y} v S(G, HG")

is contained X ,(G). This set is a closed great half-circle with boundary S(G, HGP).

We shall think of Z" as embedded in R” and we endow IR" with the euclidean
metric having 3(Xu {¢t}) as orthonormal basis. Thus 9 is a map from G to
IR". Any j: G—R factors as jg-9 for a unique map jr:R"—>IR. Let (R"),
denote the half space on which jg =0. Similarly y induces a map yg: R""! > R.
By exchanging x; and x; ! if necessary, we may assume that y(x;)<0 for each
i. Put y;= — x(x;). By multiplying y by a positive constant if necessary, we may
assume that y2+...+x2_,=1, 50 (x;, ..., Xx—,) is the point on the unit sphere
in R"~! with minimal yg-value.

Form=(m,, ..., m,)eZ" we denote by x™ the lexicographically ordered word

xM=xTt.. . xpnitt™
For subsets B, C, etc. of R" we denote by B, €, etc. the set of x™ with meB, C,
etc. In particular, B(r) will denote the closed ball of radius r in R", so B(r)
is the set of lexicographically ordered representative words for lattice points
in B(r). Finally, if u=y,y,_;...y; is a (XU {t})*!-word, we call the subset of
]Rn
{31, 32y -5 S+ Y2 Y1)}

the 3-track of u.

Lemma 6.1. If u is a (XU {t})*'-word with 3-track in B(r), then s*e{(S®") for
any seS.

Proof. If one assumes the Lemma proven for shorter words than u or words
of the same length which are closer to lexicographic ordering, then the proof
is an easy induction using Eq. (2.2) to reorder the exponent w.

For each jeX ,(G) we can find a ball B(j)=IR" which is tangent at 0eIR”
to the plane Ker (fg) and contained in the half-space (IR"); and such that the
corresponding set B () of words satisfies:

exxl...xn_,§<68(z)>. (*)
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The minimal radius of B(}) is a continuous function of j, so it has an upper
bound r say on the compact set D(y). Let B=B(2r) be the ball centered at
the origin of radius 2r and B the corresponding set of representative words.
We shall show that X and R=GS® satisfy the criterion of Proposition 2.1(iv)
to complete the proof.

For any se &, weB, and xeX*! we must show that s** is in 4,={(SB)*),
where P is the set of ¥*!-words with non-negative y-track. If xeX~! then
x(x)=0 and s** is obviously in 4,. So assume xeX. Suppose we have shown
that s*¥ is in A4, and that, inductively, s** is in A, for every final segment
w' of w. Then we can use Eq. 2.2 to pull x across w to get the desired result
that s** is in 4.

To show that s** is in A, we proceed as follows. First we construct an
element veB having the same ¢-value, a say, as w and whose y-value is close
to the minimum of y on

(0~ ()nB)-t7"

Specifically, let y,=(@r2—a?)?y,fori=1,...,n—1,and put y=(y,, ..., Yn—1, @),
so y is the point on the boundary of ¢~ '(«)n®B for which (y,, ..., y,—) has
least yg-value. Let m;=int (y;) for each i and put

v=Xx7t...xpny
and
U+=x1 ...xn_l v.

From the fact that yg(yy, ..., Vo) <x(Wt~% for all w' in @~ '(x) B and the
construction of v and v, it follows that

ywovi)=0 forall weop '(a)nB.

We exploit this inequality as follows. Let p be the unique lexicographically
ordered word with 3(w)=3(vp). Then p is an X*!-word and the inequality
shows that y(px,t;...x; ' x7)=0. Now px,,...x; ' x;! may not have non-
negative y-track, but the letters making up p can be reordered so that the
resulting word g satisfies:

q-=qx; 1 ...x;'x7'  has non-negative y-track.

Of course w is still the lexicographically ordered representative of vq.

Our next aim is to prove that s*+9- is in A,=<{(&®>®>. Since g_ has
non-negative y-track, it suffices to show that s*'+ is in 4,. This follows from
the following Lemma.

Lemma 6.2. There exists a ball B(}) as above, such that
(ml) s My g, a)+B(X-)CB
Indeed, granting this Lemma, we then have

sEv+ =Sxxl...x"-lve<5$x,...xn_,vg <G$(x)>v§ <6%>’
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where the first inclusion is by property (*) of B(j) and the second follows
by using Lemma 6.1 to straighten exponents into lexicographic order, noting
that Lemma 6.2 implies that the 3-track of any element uv with ueB(y) is
in B.

The proof is then easily completed. Knowing that s**+ and hence s*’+9-
is in A,, use Eq. 2.2 to reorder the vq in the exponent xv, q_
=XXg...Xp— 1 VgX,; 2, ...x; ! to lexicographic order by pulling letters off the left
of q to the left. This introduces extra factors of the form c¢"'% where v and
q are final segments of v and of g_=gqx,!,...x7'. These factors are in
(SBYPcA,, so

— 1 -1
XX reeXp~ {1 WXy —1..eX
S 1 n-1 n-1 1 EAO.

Now again use Eq. (2.2) to pull x, ', ..., x;{" one at a time through w to
cancel the x,, ..., x,_, on the left in the exponent. This introduces extra factors
which are again in A4,, so s*¥eA,. As explained earlier, further applications
of Eq. (2.2) then imply the desired result that s*¥*e 4,,.

It thus only remains to prove Lemma 6.2. Let y=(4r?—a?)'? y+a¢ and
let B(jy) be the ball of radius r and center —(y,/2, ..., ¥,—1/2, /2). Then B(})
is tangent at 0eR" to the plane Ker (yy) and is contained in the half space
(R"),. The center of the ball (m,, ..., m,_;, 0)+B(}) is at (my—y,/2, ..., m,_,
—Vu-1/2, /2). Since |m;—y;/2|<y;/2 for each i, this point is within distance
r of the origin, so the ball is in B as required.

7. Miscellaneous examples

Groups with many automorphisms. If G is a finitely generated group then Aut (G)
acts on S(G), taking 2°=S8(G)— 2. to itself. Hence 2° is the closure of a union
of orbits of the action of Aut(G) on S(G), a fact which can considerably restrict
the possibilities for 2. In particular, if the orbits of Aut(G) on S(G) are dense
— for example if G is relatively free (i.e. of the form F/R with R a fully invariant
subgroup of a free group F) — then X° must be either empty or all of S(G),
so we have the following dichotomy:

Theorem 7.1. In the above situation either:

(i) G'is finitely generated, or

(ii) no normal subgroup of G with infinite cyclic quotient is finitely generated
and G either contains non-abelian free subgroups or G is not finitely presented.

In particular, this Theorem implies the non finite presentability of many
relatively free groups, see also [S, p. 269, Theorem 8].

Groups of defect at least 2. Recall that a finitely presented group has defect
=2 if it has a presentation with at least two more generators than relations.

Theorem 7.2. If G has defect at least 2 then X =0.
Corollary 7.3. G contains non-abelian free subgroups.

Proofs. The Corollary is immediate by Theorem C. For the Theorem, if
X: G—>Z <R is a rank one homomorphism with kernel N and if te G has y(t)=1
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then, as in the proof of the proposition in [B-S 4], 4=N/N'NP" is the quotient
of a free Z,{t)-module of rank m—1 (m=number of generators of G) by a
submodule generated by at most m—2 elements. Since Z,<t) is a PID this
implies that 4 contains Z,{t) as a submodule. Using that A4 is noetherian
it follows that neither [y] nor —[x] is in X ,. But by Propositions 3.3 and
34(), X5 =2,. Thus X, contains no rational points, so, since it is open, it
is empty.

Cartesian products. If A, and A, are finitely generated G,- and G,-operator
groups respectively then 4, x A, is a finitely generated G; x G,-group. The pro-
jections 7;: G, x G, — G; induce disjoint embeddings

¥ S(G) - S(G, X Gy).
Theorem 7.4. 2 . 4,(G, x G,)=n% 25 (G,)un3 X%, (G,).
Proof. It is immediate from the definition of ¥, that
24 x4y (G1 X G)=Z4.(G1 X G)NZ 4, (G, X Gy).

On the other hand, 2% (G, x G,)==n} 2%,(G,) for i=1, 2 by functoriality (Theo-
rem H; here we only need its easy special case, Proposition 3.3).

Corollary 7.5. If G, and G, are finitely generated and G| x G, <H=ZG,xG,
and ¥ H=G; for i=1, 2, then H is finitely generated. If, moreover, A; is a finitely
generated G;-group for i=1,2, then A, x A, is finitely generated over H, and

%, x 4,(H) is the union of p¥ 2% (G,) and p% 2%,(G,), where p;=m;|H fori=1, 2.

Proof. The conditions imply that S(G, x G,, H) is disjoint from each n}¥S(G)),
so S(GyxG,, H =24 «4,(G; xG,) by the above Theorem. Hence A; x 4, is
finitely generated over a finitely generated subgroup of H by Theorem B. The
fact that H itself is finitely generated is a special case of this: take A4;=G; for
i=1, 2. Finally, the computation of X<  4,(H) is by Theorem 7.4 and functoria-
lity (Theorem H).

This Corollary allows one to construct complicated subsets X of S~ ! which
are realizable as a 29 (G). For example, if two such subsets X{ and X% have
been realized, then their union can be realized (embedded in a possibly higher
dimensional sphere: if a;: G; — Z" are the mod torsion abelianization then take
H in the Corollary to be Ker (a; —a,: G, x G, —» Z")); also if 2 has been realized
in S"~! then the same X° can be realized in a higher sphere $"**~1 (replace
G by G x Z¥). In particular, one can apply this to show:

Corollary 7.6. Any closed rational polyhedron in S"' is realizable as
“(G)=S(G, A) for some G and G S ALG.

Proof sketch. Since a polyhedron can be built up out of simplices, it suffices
to realize any (k—1)-simplex in $*~1 for each k. This can be done as X (G)
for the following group G (we omit the proof): Let R be the normal subgroup
of Z¥x(x) generated by the k elements x~'[x", x*"], i=1, ..., k, where
vy, ..., v, are linearly independent elements of Z*, and put G =(Z* * {x))/R.
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The invariant X';. All the results of this section hold also for the invariant
2', introduced at the end of Sect. 2. In particular, one can easily give examples
where ¥ and 2’ fall on opposite sides of the dichotomy described in the first
paragraph. For example, let H be the group of permutations of Z" with finite
support (i.e. fixing all but finitely many points of Z"); then Z" acts in an obvious
way on H and we let G be the corresponding split extension. G can also be
described as the group of permutations of Z" which are translations off a finite
set. H is finitely generated over Z", so G is finitely generated. On the other
hand, G'=H is not finitely generated, although it is finitely generated as a
G’-group (since it has a subgroup of index 2 which is simple). Since GL(n, Z)
acts on G and has dense orbits on S(G)=S""!, we see that =0 but 2’ =S(G).

8. Groups of PL homeomorphisms of the interval

Let $ denote the group of all orientation preserving PL. homeomorphisms of
the unit interval [0, 1]. We shall investigate X (G) for finitely generated subgroups
G of 9. We shall assume that G is irreducible, that is, G has no fixed points
on the open interval (0, 1). This is no real loss of generality, since a reducible
G is a subdirect product of irreducible groups of PL homeomorphisms of sub-
intervals of [0, 1] and can be analyzed in terms of these “irreducible compo-
nents”.

For any subgroup G of § there are two homomorphisms A and p to the
multiplicative group R™* of positive reals given by derivatives at the left and
right end-points of [0, 1]:

df

1 GoRY,  A(f)=2(0);
d
p:GoRY, p(N)= ().

We shall say that A and p are independent if A(G)= A(Ker p) and p(G)=p(Ker 4).

Theorem 8.1. If G is finitely generated and irreducible and A and p are independent
then 2°(G)={[log 4], [log p1}.

We shall need the following

Lemma 8.2. If G is irreducible then for any 0<a<b<1 there exists feG with
bf<a.

Proof. If no such f existed then inf{bf|feG} would be a fixed point of G
in the open interval (0, 1), contradicting irreducibility.

Proof of Theorem. Suppose [x]€S(G)— {[log 1], [log p]}. The independence of
4 and p implies that y cannot vanish on both Ker A and Ker p. We assume
x(Ker p)+0, the proof for the other case is similar. Then we can find heKer p
with y(h)>0. We denote by Supp (h) the support of h, that is, the closure of
[0, 1]—Fix (h), where Fix (h) is the set of fixed points. Since p(h)=0, there is
some b < 1 with supp (h) = [0, b]. Now since [x]+[log ], there exists ge G with
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A(g)<1 and x(g)>0. Then g(x)<x for all x in some interval [0, a]. We may
assume b <a by conjugating h by the element given by Lemma 8.2 if necessary.

Let X be a finite generating set of G which includes g and h and let R
=[X*! X*!]. There exists an £>0 such that Supp (r)<[e, 1—¢] for all re®R.
Choose k sufficiently large that bg*<e. Then w=g *hg* is an X-word with
positive y-track and, moreover, Supp (w)< [0, €], so

r=r" for reR.

By Proposition 2.3, the existence of this set of equations shows that [y]eZ2.

Conversely, suppose [x]=[log A] say. The assumptions on G imply G is
non-trivial. Suppose G’ were generated over the finite subset X< G, by the
finite set R = G'. Choose a>0 such that Supp (r)<[a, 1] for all reR and xg=x
for all geX and x€[0, a]. Then Supp (r*)c[a, 1] for any X-word w and any
reR, so, since these elements r* generate G', we have Supp (h)<[a, 1] for any
heG'. But if we choose any heG’ and be[0, 1] with bh+b and then choose
f by Lemma 8.2, then bfeSupp (f ~'hf) and bf¢[a, 1], which is the desired
contradiction.

Proposition 8.3. Under the conditions of Theorem 8.1, the set X' described at
the end of Sect. 2 satisfies 2’ = S(G).

Proof. We must show [log A] and [log p] are in X’. Let R be a finite G-generating
set of G'. If [x]=[log 4] then we can find ge G with x(g)>0 and p(g)=0. By
conjugating g by an element given by Lemma 8.2 we can make its support
disjoint from the supports of all reR. Then r=r® for all re®R, so by (2.11)
we have [y]e2’. The argument for [x]=[log p] is analogous.

Discussion

In general [log 1] and [log p] will be irrational points of S(G), so 2(G) is not
rationally defined. For an explicit finitely presented example one can take the
group G({2, 3}) of homeomorphisms h with slopes in {2/ 3*|j, keZ} and disconti-
nuities of ' in Z[1/6]. Finite presentation has been shown by Ken Brown.
More generally, he has shown that the analogously defined group G({n,, ..., n,})
is finitely presented for any integers n,, ..., n; (private communication).

By [B-Sq], $ contains no non-abelian free subgroups (one can restrict to
irreducible subgroups, and, as we have seen, they have many commuting ele-
ments and therefore cannot be free), so Theorem C can be applied to subgroups
of $. For example, let G be as in Theorem 8.1 and suppose G’ < H with H/G'~Z.
Then by Theorem B, H is finitely generated if and only if S(G, H) misses [log 4]
and [log p], i.e. A and p are non-trivial on H. Moreover, S(G, H) is a codimension
one sphere which cuts S(G) into two hemispheres. If [log 4] and [log p] are
in opposite hemispheres, then X; (H)=0 by functoriality (Theorem H), so
S(H, G')= X% . (H) (Proposition 3.4(i)), so Theorem C implies that H is not finitely
presented. In some cases one can show that if [logA] and [logp] are both
in the same hemisphere then H is finitely presented. This is true for example
for the group G({2}) of homeomorphisms h with slopes in {2*| keZ} and discon-
tinuities of ' in Z[1/2]; this came out of a discussion with Ross Geoghegan.
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9. Another characterization of X,

After this paper was completed, the work of Ken Brown [B] suggested to us
another characterization of the complementary set 24 (G)=S(G)— 2 ,.

Proposition 9.1. [x]€ X, if and only if there exists an increasing chain A, A, < ...
of proper subgroups of A with A=) A; and such that for each geG, there
jzo

exists j(g)eIN with A8 < A; for j=j(g).

Proof. If such a chain {4;} exists then any subgroup of A which is finitely
generated over a finite subset of G, will be in A; for sufficiently large j, so

[x]¢2 4. Conversely, suppose no such chain exists. Choose finite X and R as
in Proposition 2.1 and for j =0 define

Aj={{a*|aeR and w is an X*'-word with g-track = —j}>.

Clearly {4} is an increasing sequence of subgroups with union 4. Moreover,
if geG, is represented by an X*'-word with y-track = —j, then A5<A4; for
jZjo. Hence, by assumption, A,= A for some k. Choose an X*!-word u with
positive y-track and with y(u)>k. The equation A= A together with the defini-
tion of A, implies condition (ii) of Proposition 2.1, so [y]eZ,.
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