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QUADRATIC FORMS AND THE BIRMAN-CRAGGS
HOMOMORPHISMS

BY
DENNIS JOHNSON1

Abstract. Let "DH^ be the mapping class group of a genus g orientable surface M,
and íg the subgroup of those maps acting trivially on the homology group
HX(M, Z). Birman and Craggs produced homomorphisms from 9 to Z2 via the
Rochlin invariant and raised the question of enumerating them; in this paper we
answer their question. It is shown that the homomorphisms are closely related to
the quadratic forms on H¡(M, Z-¡) which induce the intersection form; in fact, they
are in 1-1 correspondence with those quadratic forms of Arf invariant zero.
Furthermore, the methods give a description of the quotient of 9g by the intersec-
tion of the kernels of all these homomorphisms. It is a Z2-vector space isomorphic
to a certain space of cubic polynomials over HX(M, Z¿). The dimension is then
computed and found to be (2/) + (if). These results are also extended to the case
of a surface with one boundary component, and in this situation the linear relations
among the various homomorphisms are also determined.

1. Introduction. Let Mg be an orientable surface of genus g, <U\l its mapping class
group and %g the subgroup of those classes acting trivially on Hx(Mg, Z). In [BC],
Birman and Craggs produced homomorphisms from jL to Z2 derived from the
Rochlin invariant. Roughly, each / G Í is used to produce a homology 3-sphere,
and its Rochlin invariant is the value of (one of) the homomorphism(s) on /. The
method in which these homomorphisms were produced leaves it unclear when two
of them are equal, as well as how many there are. In this paper we give a canonical
form for the homomorphisms, showing that they are in 1-1 correspondence with
quadratic forms on Hx(Mg, Z2) which induce the intersection form and have zero
Arf invariant; this is the content of Theorem 2. This result allows us to show that
the number of these homomorphisms is 2g_1(28 + 1) (Theorem 3). Also raised in
[BC] is the problem of finding the intersection Q of the kernels of all the
homomorphisms, and some explicit representation of 5/6; this is answered in
Theorem 4. 5 /6 is a finite dimensional vector space over Z2 and it is thus of some
interest to know its dimension, so we give this in Theorem 5. We also give the
analogous results of these theorems for the case of a surface with one boundary
component, and in this situation determine the linear relations among the homo-
morphisms.
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236 DENNIS JOHNSON

I am particularly indebted to Joan Birman for many valuable and stimulating
discussions concerning these matters. Also my thanks to Robert McEliece for
showing me the material on Boolean algebra, without which I could not have
proved Theorem 7.

2. Notation and preliminaries. In this paper, all manifolds will be assumed
compact, orientable and oriented.

Let Mg be a closed surface of genus g > 2. We shall use the following notations
and abbreviations:

SCC means "simple closed curve".
77, means Hx(Mg, Zj); likewise 77'.

The above groups have the standard bilinear forms, which are symplectic (that is
x ■ x = 0); these forms establish self-dualities on 77, and 77'. We shall always think
of 77 ' as the dual of 77, and the pairing between x G 77, and a G 77 ' will be
denoted by either <a, x} or a(x). The symplectic automorphism group of 77, will
be denoted by Sp; it is a finite group isomorphic to Sp(g, Z2). A basis ax, . . ., a ,
bx, . . . ,bg for 77, is symplectic if a¡ ■ a} = A, • A, = 0 and a, • A, = 8tj. If g G Sp, then
g* will denote the dual automorphism of 77', with standard law (gA)* = A*g*.

'311 is the mapping class group (of orientation preserving homeomorphisms) of
Mg; we shall frequently confuse a homeomorphism of Mg with its mapping class in
91tg. The homology functor gives us a map from 91L onto the group Sp, and its
kernel we denote by 5g. It is the group of mapping classes acting trivially on
homology.

3. Quadratic forms on 77,. By an Sp-quadratic form, or simply Sp-form, on the
symplectic space 77, we shall mean a function co: 77, -» Z2 such that

u(a + b) = u(a) + w(A) + a ■ b. (1)

Thus, an Sp-form is just one whose associated bilinear form is the existing
symplectic form on 77,. Putting A = 0, we find w(0) = 0. Also, if e, is any basis for
77,, we see that an Sp-form is completely determined by its values on the basis. In
fact, iterating the formula (1) gives us

/  2g \ 2g
w   2 «,e,   = 2 a,-w(e,.) + 2 «,«,(<?, • ej). (2)

\<=i       7      <=i ¡<j
On the other hand, it is easy to see that if w(e,) are arbitrarily specified, then the
above formula defines an Sp-form on 77,. We may state this as

Lemma 1. An Sp-quadratic form is determined by its values on a basis. Conversely,
these values may be chosen arbitrarily to define an Sp-form by formula (2).

Lemma 2. Let w,, w2 be two Sp-quadratic forms on 77,; then w, — u2 is a
homomorphism 77, —* Z2. Conversely, if u is an Sp-form and 9: HX^>Z2 is a
homomorphism then the function w + 9 is also an Sp-form.
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BIRMAN-CRAGGS HOMOMORPHISMS 237

Proof.

(«, - u2)(a + b) = ux(a + A) - u2(a + b)

= ux(a) + w,(A) + a- b — co2(a) — w2(A) — a- b

= (w, - o>2)(a) + (w, - w2)(A)

showing w, - w2 to be a homomorphism. Conversely,

(w + 9)(a + b) = w(a + b) + 9(a + b)
= a(a) + u(b) + a-b + 9(a) + 9(b)
= (co + 9)(a) + (u + 9)(b) + a-b,

showing u + 9 to be Sp-quadratic.
Let L be an abelian group. By an affine space over L we mean a transitive, free

L-space, that is, a set K equipped with an "addition" + : L X K -» K satisfying:
(a) A, + (A2 + k) = (A, + A2) + k, for A, G L, k G K.
(b) Given any kx, k2 in K, there exists a unique X in L such that /c2 = A + kx.

Thus 7C is practically like L, but with the distinction that it lacks a natural base
point. (L is known as the translation group of K.)

Since the homomorphisms 77, —> Z2 are just the elements of 77 \ we see easily
using the above lemma that the set ß of all Sp-forms on 77, has the natural
structure of an affine space over 77'. If / G Sp, then/* acts on 77' in the usual
adjoint way: (f*a)(x) = a(fx). This adjoint action extends to any function on 77,,
and it is easily seen that if w is Sp-quadratic, then so is f*u. This action of Sp on ß
emphasizes the distinction between ß and its translation group 771: whereas Sp
fixes 0 in 77', it is not hard to see that (for g > 2) no w is fixed by all/ G Sp. We
define the orthogonal group O^ of w to be the subgroup of Sp which does fix w;
Oa = {/ G Sp|w(/a) = w(a) for all a G 77,}.

4. Polynomial functions on ß. Let V be a vector space over a field F and U an
affine space over V. A function /: U —» F is called linear if there is a linear
functional g: V ̂ > F, necessarily unique, such that f(v + u) = g(v) + f(u), all
u G U, v G V. This definition implies that if / is linear and c is any constant, then
/ + c is linear. Also, the linear functions clearly form a vector space L( U) over F.
Note that / is determined by choosing g G V* and the value of / at some fixed
point u0 of U, which implies that dim L(U) = dim V + 1. L(U) contains the
constant functions as a natural one-dimensional subspace. A. polynomial function on
U is the obvious: sums of products of linear ones.

Consider now the case U = £2, V = 77'. For a in 77, we get a function a: fi -» Z2
given by ä(<S) = w(a). Since for 9 G 77 ' we get a(w + 9) = «(a) + 9(a) = â(w) +
(0, a)>, ä is linear with associated linear functional < - , a} on 77'. This linear
functional will be denoted simply by a, in accordance with the canonical duality
between 77, and 77'.

Lemma 3. If e¡ is a basis for 77,, then the constant function 1 and e¡form a basis for
L(ß).
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238 DENNIS JOHNSON

Proof. Let w G ß be defined by w(e¡) = 0, that is, e¡(u>) = 0, as in Lemma 1. For
any «' G ß and / G L(ß), we have /(«') = /(w) + g(u' — u>) where g is the associ-
ated linear functional on 77'. Putting/(to) = a and

2g
g = 2 «,-<?,•>i=i

we get

(a ■ 1 + 2a,ê,)(w') = a + 2«,ê,(w') = (since «(«,-) = °)

a + S«,(w'(e,) - <o(<?,)) = a + 2a,<"' - «, *,> = /(") + gW ~ «) = /("')•

Thus every element/ of L(ß) is a linear combination of the 2g + 1 elements 1, e¡.
Since dim L(ß) = 2g + 1, these elements form a basis.

Lemma 4. 7/ a, A G 77, rAe/i (a + A) = ä + A + a • b.

Proof, (a + A)(w) = «(a + A) = w(a) + w(A) + a-A = (ä-f-A + a- A)(w).
We may iterate this relation to get

Corollary.

S <*¡ = S â, + Sa,' a,.
;' ;' i<j

These laws make precise the manner in which the function from 77, to L(ß)
given by a -> ä fails to be a homomorphism.

Our field here is Z2, so we need to say something about polynomials of degree
> 2. We are really only interested in polynomials as functions on ß-that is, we
take the standpoint that "a function is determined by its values". Since f2 and /
take exactly the same values, we permit ourselves the reduction of f2 to / in any
expression-precisely, we are dividing out a true polynomial ring by the ideal
generated by all (f2 — f). The fact that 1, ë, form a basis for linear functions allows
any polynomial to be written as a sum of monomials in the e,'s, and the reduction
enables us to restrict to square free monomials. Such polynomials are known as
Boolean polynomials; the sum of two such is another, and the product is (after
reduction) also Boolean. We shall denote by Br the space of all Boolean polynomi-
als of degree < r.

The group Sp acts on a function /: ß —* Z2 in the obvious way, namely, adjoint
to its action on ß. In other words, for A G Sp and w G ß, A(/)(w) = f(h*u).
Suppose in particular that/ = ä for some a G 77,; then we have h(ä)(u) = ä(h*u)
= (h*u)(a) = «(Aa) = (Aa)(co), that is, h(ä) = (ha). More generally, for a poly-
nomial P(e¡), we get AT^ë,) = P(he).

Now on ß we find a quadratic Boolean function of particular interest, namely
«

i=i
where a,, A, is a symplectic basis of 77,; this is the Arf invariant. Arf (see [A])
showed the following:
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(a) a is invariant under the action of Sp on 7?2.
(b) (o, «' are in the same orbit of Sp iff a(w) = a(u').
We define ^ c ß to be the set of all w having zero Arf invariant. These forms

arise naturally in connection with Heegaard splittings of Z2-homology spheres, as
we see in the next section.

5. Heegaard imbedding and induced quadratic forms. Let M be a genus g surface
and W a 3-manifold (assumed oriented!). An imbedding A: M —* W will be called a
Heegaard imbedding if M' = h(M) is a Heegaard surface in W. M' thus splits W
into two handlebodies A and B. The orientations in M and W define a positive
normal direction along A/', and we shall make convention that A is on this positive
side of M' : A is the positive handlebody.

We now restrict W to be a Z2-homology sphere. Then we recall Seifert's linking
form X on HX(M', Z2): for a, A G HX(M', Z2), X(a, A) is defined to be the mod 2
linking of a and A + , where A+ is got by pushing A off of M' in the positive normal
direction. Then A is a bilinear form, and the self-linking form u on HX(M', Z2) is
given by w(a) = A(a, a). u> is an Sp-quadratic form on HX(M', Z2) and it may be
pulled back to 77, = 77,(M, Z2) by means of the imbedding A. We denote the
resulting Sp-form by uh to indicate its dependence on the imbedding, and call it the
form induced by A.

Let HA be the kernel of the map 77, —» HX(A, Z2) induced by the "inclusion"
A/-» A/' c A, and 775 the kernel corresponding to handlebody B. The fact that W
is a Z2-homology sphere implies the following facts:

(a) 77, is the direct sum of 77.4 and 775.
(b) HA and HB are (maximal) isotropic subspaces of 77„ that is, e.g., a, • a2 = 0

for any ax, a2 G 77^4.
(c) HA and 777? are dually paired by the intersection form on 77,, and so the

latter has an Sp-basis a¡, A, with a¡ G 77/1, A, G 777?.
Furthermore, given any such basis, the a¡'s may be represented by disjoint SCC's

a, in M such that h(a¡) bound disjoint discs in A (thus, A cut along these discs
becomes a 3-ball); likewise for the A,'s and B. But this implies that uh(a¡) = wA(A,)
= 0, and hence that a(uh) = 0. Conversely, suppose W has a Heegaard surface of
genus g, and let « be any form of zero Arf invariant. Let A0: M —* W be some
Heegaard imbedding of M with induced form w0. Since w0 G ^ also, we know by
Arf's theorems that there is a v G Sp with t>*(w0) = w; further, v is actually the
induced homomorphism of some homeomorphism /: M -» M. Putting A = h0f, we
have A a Heegaard imbedding with induced form uh = f*(uh ) = t>*(w0) = to. We
have shown

Lemma 5. If W is a Z2- homology sphere of Heegaard genus < g, then the
Sp-quadratic form to on 77, is induced by some Heegaard imbedding of M into W iff
a(a) = 0, i.e., ijf/(o6*.

6. Splitting along a Heegaard surface and the Rochlin invariant. Let A: M —» S3 be
a Heegaard imbedding, and suppose we are given an element k of 5(= 5(A7)). We

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



240 DENNIS JOHNSON

form a 3-manifold M(h, k) as follows: split S3 along A(A7) into the two handlebo-
dies A and B (recall that A is the positive handlebody). They have the common
boundary h(M), and we reglue A to B along this boundary by the map k; more
precisely: x in h(M) = 97? glued to hkh~\x) in h(M) = dA. The condition A: G 5
implies that A7(A, k) is a homology 3-sphere, and so we may define its Rochlin
invariant p(A, k) G Z2. In what follows we will show how ¡i(h, k) is related to the
Birman-Craggs homomorphisms; to begin with, we recall the definitions and results
of their paper [BC].

We start with an oriented genus g handlebody Vg and an oppositely oriented
copy of it, written - V . Given any map / in the mapping class group 9H of
M = dVg, we create a 3-manifold W(f) by identifying x in M = dVg with/(x) in
M = 9( — Vg). Suppose now that A,, A2 G 91L are such that W(hxh2) is a Z2-homol-
ogy sphere; then so is W(hxkh2) for any A: G 5, and the difference of the
jit-invariants of these two manifolds (which are rational numbers mod 1) is defined

P*„*2(*) = ÁW(hxkh2)) - ,t(^(A,A2)).

It is, for each such pair A,, a homomorphic function of k G 5. These are the
Birman-Craggs homomorphisms (in [BC] the values of p lie in (0, {-} mod 1; we
shall multiply everywhere by 2 to make the values lie in {0, 1} mod 2, i.e., Z2).

In the proof of Theorem 8 of [BC] we find the following two formulas:

ftt*.(*) = P\,h2h,(h2kh2l)

and, putting A = A2A,,

Pi.a(*) = PiM,(k) = PiÂfi'^fi)'
where 5 is a single fixed map such that W(s) = S3 and the/'s are suitably chosen
maps depending on A. These two formulas show that every Birman-Craggs homo-
morphism p is of the form

p(k) = pXiS{fkf~l)    for some/ G <DH.

We note that by definition we have

P\Ak) = PW^)) - pW-O) = l¿(W(ks)),    since W(s) = S3.
Let now A0 be the imbedding M -» Vg -* W(s) = S3; A0 is a Heegaard imbedding,
and it is easy to see that the manifold M(h0, k) is just W(ks). Thus we have

P\,s(k) = r*(MV *:)) = P(fy)> *)•

Lemma 6. A/(A/, k) = M(h,fkf~l) for f G 91L, /c G 5 and h a Heegaard imbed-
ding of M into S3.

Proof. Note that this is meaningful, since A/: M —> S3 is also a Heegaard
imbedding (same image!). The equality follows from the fact that both manifolds
are defined by gluing x to hfkf~lh'l(x).

Corollary. p(A/, k) = ¡i(h,fkf~l).
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Lemma 7. Every Birman-Craggs homomorphism p is of the form p(k) = p(A, k)for
some Heegaard imbedding h: M-* S3. Conversely, for any Heegaard imbedding A,
p(A, — ): 5 —» Z2 is a Birman-Craggs homomorphism.

Proof. To prove the first statement, let p(k) be given by pXyS(fkf~l). Then we
have p(k) = n(hQ,fkf~x) = p(A0/, k) by the above corollary. This proves the
statement, since h0f is a Heegaard imbedding.

To prove the converse, we will show that p(A, k) = ¡x(h0,fkf~l) = px¡s(fkf~l) for
some/ G 911. Now there exists by Waldhausen's results (see [W]) a homeomor-
phism 77: S3 -* S3 such that Hh(M) = h0(M). Further, 77 may be chosen to be
orientation preserving onS3 and also to take the positive handlebody of h(M) to
that of A0(A/)-that is, to be orientation preserving from h(M) to h0(M). Hence
there is a map/ G "Dit such that 77A = A0/

Now clearly M(Hh, k) is homeomorphic to M(h, k), so we get ¡i(h, k) =
p(77A, k) = p(A0/, k) = Kho.fkf'1)-    Q-E.D.

This lemma tells us that the distinct Birman-Craggs homomorphisms are in 1-1
correspondence with the distinct functions of the type p(A, — ).

7. Computing p(A, k). In this section we will compute ft(A, k) for given A, k. Since
for fixed A, /¿(A, k) is homomorphic in k, it suffices to determine its value for
generators of 5. We shall thus compute p(A, k) when k is a Powell generator (see
[P]). These are of two types:

Type I. If y is a bounding simple closed curve (BSCC) in M, then T, the twist on
y, is in 5.

Type II. TyTy~\ where y,, y2 are disjoint, homologous SCCs in M, with y, no/
homologous to zero, is also in 5. Powell shows in [P] that the totality of Types I
and II maps generates 5.

To begin with, let us attack the conceptually simpler case when M is already
contained in S3 (A being thus the inclusion); we write Af(incl, k) and p.(incl, k)
simply as M(k), p(/c). If « is the mod 2 self-linking form of A7, then we have

Lemma 8a. Let y be a BSCC in M bounding the subsurface S c M, and let A¡, 7?,
(/' = 1, . . ., genus(S)) be a symplectic basis for HX(S). Then

g(S)

n(Ty) =  S "(AMBi)-
i= 1

Proof. The results of [GA, Theorem 4] (see also [G, Theorem 2]) show that
M(Ty) is got by doing surgery on the curve y C M c S3 and that p(7"y) is the Arf
invariant a(y) of y in S3. The Arf invariant of a knot is defined to be the Arf
invariant of the self-linking form of any Seifert surface spanning the knot, and this
does not depend on the choice of surface. In particular, we may choose it to be
S c A7, and then the self-linking form is just co restricted to 77,(5), whence the
lemma follows.

Lemma 8b. Let f — Ty T~x be a Type II generator; then w(y,) = 1 implies that
tif) = 0.
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Proof. We consider the link L = y, u y2 in 53, and suppose that they link m
times. Since y, and y2 are disjoint, the linking number L(yx, y^ is the same as
L(y\> Y2+) where y2+ = y2 pushed normally up off A7, and this is congruent to
^(Yi> Y2) m°d 2, where A is the mod 2 linking form of M in S3. Since y, and y2 are
homologous, we have A(y,, y^) = A(y„ y,) = <o(y,) mod 2.

In our case, w(y,) = 1 mod 2, so we have m = 1 mod 2, i.e., m is odd.
It is now easily verifiable that the manifold M(f) is the same as the 3-manifold

got by doing surgery on the link L with framing m + 1 on y, and m - 1 on y2, and
that this bounds the surgery 4-manifold with quadratic form on 772 having the
matrix

m + 1    m\
m   m — If

M(f) is a homology sphere, and since m is odd, the above form is even; its
signature is zero, and so we get p(A7(/)) = 0.    Q.E.D.

This lemma is essentially due to Craggs, as proved in the original manuscript of
[BC] (deleted from the published version).

Finally we must consider generators of Type II for which <o(y,) = 0, that is,
E(yx, y2) = mis even; say = 2k. Let y,, y2 bound the surface 5 c A/; abstractly, S
looks like Figure 1.

Figure 1

We choose a y as shown in the figure (i.e., y bounds a surface S0 in S, and
y U y, U y2 bounds a piece 5, of genus zero in S). Clearly 77,(5, ZJ = 77,(5,,, Zj)
© V, where V is generated by y,. We may choose a symplectic basis for
77,(50, Z2), say A¡, B¡, and then we have a(y) = 2flsj>> a(A¡)u{B¡) by definition.

Lemma 8c. Let f = TyTy~l be a generator of Type II, with w(y,) = 0 and y, u y2
bounding S c M. Then if y, 50, A„ 73, are chosen as above, we have

g(So)

Kf) = «(7) = 2 «KM*,).
1=1

Remark. This formula shows that a(y) actually does not depend on the choice of
Y-

(
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Proof. The proof is long and will be divided into a number of sections.
(A) Let X be a closed 4-manifold and K c X a "characteristic surface" of X, i.e.,

differentiably imbedded surface (orientable) whose homology class mod 2 is dual
to the second Stiefel-Whitney class w2 of X. (This is equivalent to the algebraic
condition x • x = K ■ x mod 2 for all x G H2(X, Z2).)

If ox is the signature of the intersection form on H2(X), then we have ax — K- K
is divisible by 8, and (ax - K ■ K)/8 = a(K) mod 2 where a(K) is the "Arf
invariant" of K c X, suitably defined (see e.g., [FK]). References for these facts
may be found in [FK], or [MH, pp. 24-25].

If W is a 4-manifold with boundary 9 W = V a homology 3-sphere and char-
acteristic surface K c W, then we get (ow — K- K)/% is still integral, but the
connection with a(K) must now read

°w~aK'K +KV)=a(K)    mod 2.
8

(See for example [G, Section 4.2 and Theorem 1].)
(B) Consider now the link of two components L = y, u y2 in 53; y,, y2 link

evenly, say 2k. We do a surgery with framing 2k + 1 on y, and 2k — 1 on y2. The
surgery manifold W is got by attaching 2-handles to tubular neighborhoods of y,,
y2 in 53 = 9D4. As in the proof of Lemma 8b, we see that V = dW is the same as
A/CO, where/ = TyTy~x.

Let D, be the 2-disc core of these 2-handles, so that 97), = y,, and let C, = cone
over y, in Z>4, so that 9C, = — y,. The homology classes of £j = C, + D¡ form a
basis for H2(W); the intersection form in terms of this basis is

2/fc+l 2k\
2k 2k-\r

Its signature is zero; furthermore, E2 — Ex is a characteristic class, since from
this matrix we easily deduce that

x ■ (E2 — Ex) = x - x    mod 2    for x = Ex or 7s2.

(C) Let now y, u y2 bound 5 in M; S acquires an orientation from M, and we
orient y, so as to have 95 = y, — y2. Then

9(5 - Dx + D2) = y, - y2 - y, + y2 = 0,
so 5 — 7), + D2 is an oriented (smoothable) surface K in W. Furthermore,
9(5 + C, - C2) = 0 also, and 5 + C, - C2 is actually a cycle in D4, and so
bounds.

Hence K is homologous to 5 - 7>, + D2 - (5 + C, - C2) = - (£>, + C,) +
(7)2 + C2) = 7J2 — 7s,; i.e., 7< is a characteristic surface for W. Note that

K ■ K = (E2 - Ex) ■ (E2 - Ex) = E2- E2 - 2E2 ■ Ex + Ex- Ex
= 2/c - 1 - 4/c + 2/c + 1 = 0

and hence (o> - K ■ K)/% = 0.
We have thus

Kf) = li(V) = ct(K).

(

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



244 DENNIS JOHNSON

(D) Since K = S u discs D¡, S carries all the homology of K. Now let y be, as in
Figure 1, a SCC in 5 such that y, U y2 U y bounds a genus zero piece 5, of 5, and
y bounds (on its other side) 50 in 5. Then in K, 5, u Dx u D2 is a disc D, and so
77,(50) s 77,(70.

Thus the Arf invariant of K is just that of 50, and since 50 c 53, a(S0) is defined
in the usual way as the Arf invariant of its self-linking form, which is equal to a(y)
by definition. This shows also that the number a(50) = a(y) does not depend on
the choice of y, since a(S0) = at(K), and a(K) is independent of such choice. By
(C), we have ¡i(f) = a(y) for any choice of y. This concludes the proof.

The above three lemmas give us the value of ¡i(h, k) when A is an inclusion.
Suppose now that A is an arbitrary Heegaard imbedding; if y c M is a BSCC, then
A(y) is a BSCC in h(M) and M(h, Ty) is clearly the same as A/(incl, Th^. Further,
if y bounds 5 in M and A¡, 73, is a symplectic basis for 77,(5), then h(A¡), h(B¡) is
likewise for A(5) c h(M), and hence we get

ju(A, Ty) = M(incl, Th(y)) = 2"(/l4,>(A5,),
i

where to is the linking form on h(M). But the induced form uh on M by definition
satisfies uh(x) = u>(hx), and hence we have

i
This argument may also be applied to the results of Lemmas 8b-c to give, finally

Theorem 1. Let A: M —» 53 be a Heegaard imbedding with induced form uh on M.
Then for Powell generators Ty and Ty T~ ' we have :

(a) n(h, Ty) = Sfi5/ ioh(A¡)uh(B¡), where A¡, B¡ is a symplectic basis of the homol-
ogy of a surface 5 c M which y bounds.

(b)ß(h,TyTy;i) = Oifcoh(yx)=\.
(c) /¿(A, TyT~l) = 2fLs,o) coA(/l,)coA(5,)/or A¡, 73,- a symplectic basis of the homology

of a surface S0 chosen as in Lemma 8c.

Corollary 1. n(h, k) depends only on u>h and k.

This corollary enables us to write simply ¡u.(w, k) for the Rochlin invariant of any
M(h, k) for which uh = co. Lemma 5 tells us then that ¡x(u, k) is defined for any
w£* and k G 5. We also have the following:

Corollary 2. n(w,fkf~^) = /x(/*(w), k)for <o G *,/ G 9H, k G 5.

Proof. Let A : A/ -» 53 induce w, so that A/ induces /*(<o). Then by the corollary
to Lemma 6,

,x(<o,#/"') = P(A, JfcT') = i<V, k) - p(/*(co), /c).    Q.E.D.

8. Enumerating the Birman-Craggs homomorphisms. We introduce now the nota-
tion pu(k) = n(u, k) for uGf, paralleling the notation of [BC]. As we saw in
Lemma 7, these functions pw: 5 —> Z2 comprise the totality of Birman-Craggs
homomorphisms. Our next goal is to show that these homomorphisms are actually
distinct.
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Lemma 9. Let to be an Sp-quadratic form on 77,. Then given any nonzero a G 77,,
there is an element A G 77, such that a ■ b = 1 and «(A) = 1.

Proof. Choose A0 so that a-b0 = 1. If <o(A0) = 1 we are done; otherwise,
proceed as follows. Using our continued assumption that the genus is > 2, we can
extend the partial symplectic basis a, b0 to a larger one a, b0; c, d, where (a or
A0) • (c or d) = 0 and c ■ d = 1. Now there is a linear combination of c, d for which
« = 1; for if «(c) = w(d) = 0, then «(c + d) = 0 + 0 + c-d= 1. Let e be such a
linear combination and put b — A0 + e. We have then a-b = a-b0+a-e= 1 +
0=1, and «(A) = <o(A0) + «(e) + A0-6 = 0+1+0=1.    Q.E.D.

Lemma 10. 7/ co, to' G ^ are distinct, then pu =£ p'u.

Proof. Since « =^= «', there is an a G 77, such that «(a) =£ w'(a); let us assume
for example that œ(a) = 1 and u'(a) = 0. By the previous lemma we choose A such
that a ■ b = 1, «(A) = 1. The mod 2 homology classes a, A may be represented by
SCC's a, ß of M which intersect geometrically once (transversely). Let 5 be a
regular neighborhood of a (J ß and put y = 95; then y is a BSCC in M, bounding
5, and 77,(5) has symplectic basis a, b. Applying Theorem 1 we get

pu(7;) = «(a)«(A) = l-l = 1,    but

PAT,) = <»\a)u'(b) = 0 • «'(A) = 0.    Q.E.D.
Combining now Lemmas 7 and 10 we get

Theorem 2. The set of homomorphisms pu (« G ^) is the set of distinct Birman-
Craggs homomorphisms. The Birman-Craggs homomorphisms are thus in natural 1-1
correspondence with the quadratic forms on 77, which induce the intersection form
there and have Arf invariant zero.

Corollary. Each pa is surjective. If f G 91L is in the orthogonal group of «, i.e.,
/*(«) = «, thenp„(fkf-l) = pa(k).

Proof. The first statement was proved in [BC, Theorem 8]; the second follows
immediately from Corollary 2 of Theorem 1.

Using Theorem 2, we may now enumerate the homomorphisms; we need simply
count the elements of ¥. Although this is a well-known result, we reproduct the
argument here. (We wish to thank the referee for considerably simplifying our
original argument.)

By Lemma 1, |ßg| (the number of elements in ßg) is 22g. Starting with a
symplectic basis a¡, b¡ (i = 1, . . . , g), we have « G ^ if f

2 <o(a>(A,.) = 0=2 w(a,)«(A,) + «(a>(Ag).
i=i i=i

The RHS is zero iff:
(a) the sum is zero and «(ag)«(Ag) = 0; or
(b) the sum is one and «(ag)«(Ag) = 1.

Now (a) is equivalent to «|(subspace a¡, b¡, i < g) is in ^g_, and «(ag)«(Ag) = 0.
There are three choices of u(ag), «(Ag) satisfying the latter condition, and |^g_,|
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satisfying the former. Thus (a) occurs 3|^g_,| times. Likewise (b) occurs |ßg_,| —
|^g_,| times, since there is only one solution to «(ag)«(Ag) = 1, and

g-i
2 «(a,)«(A,) = 1    iff «|(subspace) is in ßg_, — tyg-X.
i=i

Hence we get

l^l=K-.| + 2|V.| = 2|V.I+22g"2-
Now ^0=1, and so we see that |^g| = 22g_1 + 2g~x satisfies the recursion and

initial conditions and so must be the correct value. We have then

Theorem 3. The number of distinct Birman-Craggs homomorphisms in genus g is
2g-'(2« + 1).

9. The space of Birman-Craggs homomorphisms. In [BC, Section 4] we find
defined (using our present notation) the following subgroup of 5 :

6 =   H   Ker p„.

The problem of finding Q more explicitly, and computing its index in 5 (which is
finite) is also mentioned in [BC]. We note that 5 /C is a finite group in which every
element has order 2, since pu(k2) = 2pu(k) = 0 for all «, k, i.e., k2 G Q. Thus 5 /Q.
is a Z2-vector space U of finite dimension, and the homomorphisms pu all factor
through U and in fact span its dual space U*. We thus call U* the space of
Birman-Craggs homomorphisms. The dimension of U* is possibly less than the
number of the homomorphisms pu, so we are led to ask:

(a) What is the dimension of U* (i.e., £/)?
(b) Can we find all linear relations among the generators pu of t/*?
In order to attack these problems, we introduce the following. For k G 5, let

ok: ty -► Z2 be defined by ak(u) = p(«, k); o is thus a sort of dual version of p:
pa(k) = p(«, A:) = ok(u). Now by definition of ß = D ue* Ker pu = {k G
5 \ak(u) = 0, all « G ty], we have ak = 0 iff k G Q. Furthermore,

°*,*2(w) = PÁk\ki) = PÂk\) + PÁki) = %(w) + %(")>
and thus

Lemma 11. o ù a homomorphism from 5 /o /Ae vector space of functions ty —» Z2,
with kernel Q; a can thus be thought of as a 1-1 homomorphism of U into this function
space.

To determine the image of U in this function space it suffices to look at the
generators of 5. To this end, we apply Lemmas 8a-c.

Case 1. Let k = Ty, y a BSCC bounding S <z M with symplectic basis A¡, 73,..
The formula pu(k) = "S,fJx «(^4,)«(5,) of Lemma 8a may be rewritten in the
notation of §4 as

*(S) _
a,(«) =   2 A,(<*)B,W)\

/-i
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in other words, we have

Lemma 12a. If k = Ty with y a bounding SCC, bounding S c M, and 77,(5)
having symplectic basis A¡, 73, (/ = 1.genus(S)) then the function ak on ty is the
restriction to it of the Boolean quadratic

g(S) _ _

2 AtB,/=i
We define 9" to be the subgroup 5 generated by all such Ty; ?T is normal in 91L.

The above lemma shows that a maps 9" into the vector space of Boolean quadratic
functions on ty. (For g = 2, 5 = 3", see [P].)

Case 2. Let k = Ty T~l, and let 50, chosen as in Lemma 8c, have symplectic
basis A¡, 73,, let also C be the homology class of the y,'s. The results of Lemmas
8b-c were

(a) If «(C) = l,thenPu(A:) = 0.
(b) If «(C) = 0, then pjk) = Sffi*** «(^,)«(5,).

We may write these two results together in the form

PU(A:)=(S«(A)«(5,))(<0(C)+1)

or as in the following:

Lemma 12b. If k = TyTy~l then ak on ty is the restriction to it of the Boolean cubic

g(s0) _    \
2 A5,j(C + l).

In Lemma 12a, we chose 5 to be one of the two pieces which y bounds in M.
This choice should not influence the function ak, which depends on y alone. To see
this, let 5' be the other piece, with Sp-basis A'j, B'j. Then A¡, Ay, 73,, 73,' form a
complete Sp-basis for all of 77,; hence 2, ^4,73, + 27 ^'73- = a = 0 on ty. In other
words, 2,vl,73, = 2//l/'7?,' on ty, as desired. In the situation of Lemma 12b, a
complete basis is formed by A¡, Aj, C; 73„ 73,', D for some appropriate class D, and
now we get 2, Äßi + 2y Ä-B- + CD = 0 on ty. Multiplying by C + 1 and noting
that CD(C + 1) = 0, we get the equality of the two functions (2, /^73~)(C + 1) and
(ZjÄjBj)(C+ I) on ty.

Since 5 is generated by the maps of Lemmas 12a and 12b we see that o maps U
into the vector space of Boolean cubic functions on ty. We shall next find the
images <j(9") and a(5) = o(U) in this space.

Lemma 13. Iff G 911, k G 5, then the cubic <W-' ** equal tof(ak), where facts on
cubic polynomials in the usual way (i.e., adjoint to its action on ß).

Proof, o^-ii«) = n(u,fkf~l) = (by Corollary 2 to Theorem 1) p(/*(«), A:) =

This lemma tells us that a: t/-» cubic functions on ty is not only a homomor-
phism, but actually an Sp-module map: for U has a natural Sp-module structure
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defined by conjugation of 91t on 5. Thus Im o will be an Sp-submodule of the
cubic function space, and this fact will enable us to show easily that o is surjective.
The same applies to a(?T)-that is, the image T of 5" in U = 5 /Q is an Sp-submod-
ule of U by virtue of the normality of 9" in 9Tt, and o(T) is a submodule of the
quadratic functions on ty. Again we will find a to be surjective.

To begin with then, we choose an Sp-basis a¡, A, for 77,. If y is the boundary of a
regular neighborhood of a, u ßx, a, and ß, being SCC's intersecting once (trans-
versely) and representing the classes ax, A,, then Ty is in ?F and by Lemma 12a we
have oT = ö,A, is in a(^). Consider then the symplectic map ax —» ax + A, — A2,
a2 -> a2 - A, + A2 (basis elements not mentioned are assumed fixed; note also the
assumption g > 2). Applying this to äxbx, we get

( a, + A, - A2 )A, = (ä, + A, + A2 + l)A, = a,A, + A,A2 G a(?í)

and hence A,A2 G a(9") also. By applying to these two quadratics the Sp maps of
the types

(a) a, -» A,, A, -h> - ax,
(b) ax<r+a¡, A, <-> A„

we see easily that all quadratic monomials in the basis elements a„ A, also lie in
<KS"). __

Next, apply A, —> ax + A, to A,A2 and get (a, + A,)A2 = (a, + A, + 1)A2 = a,A2
+ A,A2 + A2 G a(9"). The first two terms are in o(^S), so A2 G aCö) also. Using (a)
and (b) again puts all linear monomials in a(^J). Finally we apply A, —> a, + A, to
A, to get a, + A, + 1, and find that the constant function 1 G aCö) too. We have
now shown that o(^J) is the space of all Boolean quadratics on ty.

To get the cubics, we begin with ä,A,(A2 + 1) = ä,A,A2 + äxbx. This is in
a(5)-by Lemma 12b, it is just the image of Tb Tb7l with A2, A2 as in Figure 2.

Figure 2

Since we already have all quadratics, âxbxb2 G o($). Now we apply to it the map
a, -► a, + A, - A3, a3 —> a3 — A, + A3 (note the assumption here that g > 3) and
we get â,A,A2 + A,A2A3, showing A,A2A3 G a(5). The application of transformations
(a), (b) to these two cubics gives us all cubic monomials. This finishes the proof of

Theorem 4. For g > 3, the map a is an isomorphism from U = 5 /ß to the space
of Boolean cubic functions on ty. For g > 2, the image T of ^ in U is isomorphic via
a to the space of Boolean quadratics on ty.
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It remains for us to compute the dimensions of T, U over Z2. The dimension of
all Boolean cubics on the affine space ß is, since dim ß = 2g, just

,=oV i I

there are (2/) cubic monomials, (2f) quadratics, etc. dim U is less than this,
however, by virtue of the fact that the restriction map: functions on ß —> functions
on ty, has non trivial kernel; for example, the Arf invariant a is a quadratic function
on ß which is zero on ty. We need the dimension of this kernel, the dimension of
all cubics which are zero on ty.

Lemma 14. Iff is quadratic on ß and zero on ty, thenf = Xafor some constant X; if
f is cubic and the genus is > 3 then / = Aa for some linear function X (using Boolean
multiplication).

Proof. Choose an Sp-basis a¡, A, and express/ in terms of the basis a~¡, A,; it may
then be separated into a sum/ =K+Q+L+C, where K is the pure cubic part,
Q the pure quadratic, L the linear and C the constant. The proof proceeds by
examining the value of/ on certain specific forms « G ty. By Lemma 1, these «'s
may be specified by giving their values on the basis; we shall do this by giving just
those basis elements for which « = 1.

To begin with, we let « = 0 on all basis elements; since all nonconstant
monomials evaluate to zero on this «, we have /(«) = C. Hence, C = 0. Next, let
« = 1 on a¡ alone; « G ty and/(«) is clearly just the coefficient of a¡ in/, which
must then be 0. This is true for all a,, and likewise all A,, and thus we get L = 0.

Turning to the quadratic monomials ëxë2, first look at those for which ex ■ e2 = 0,
e.g., ex = a,, e2 = A, (/' =£j). We will show its coefficient is zero. (The proof for
other monomials with e, • e2 = 0, namely a¡aj or A, A,, is parallel.) But let « = 1 on a¡
and by, again we get « G ty and/(«) is just the coefficient of atb¡. We have now
shown that Q must be of the form 2, \a,Aj for some constants A,. If/is quadratic
(i.e., K = 0) then using the form « G ty which is 1 on a,, A„ ap bj (i ¥=j) we find
easily that /(«) = A, + A,, and conclude that A, = A, for all /', j. In other words,
/ = Q = A2, a, A, = Aa for some constant A. This proves the first statement.

Suppose finally that / = K + Q, K ^ 0. We know that Q = 2, \5,Â; but the
quadratic part of (2, \5¡)a is precisely the same. Hence / — (2, A,ä,)a is a pure
cubic, still zero on ty, and is clearly of the form Aa for A linear iff / is; we may thus
assume / to be a pure cubic. If we examine the monomials êxë2ë3 for which
e¡ • e, = 0, /', / = 1, 2 or 3, we find as in the quadratic case that they must have zero
coefficient: simply apply/to the « G ty which is 1 one,, e2, e3. Thus the only terms
possible in/ are those of the form a¡b¡ak and 5ibibk (i =£ k); let their coefficients be
aik and ßik respectively. Let again « G ty be 1 on a„ A„ a-, A-, and «' G ty be 1 on bk
in addition (i,j, k distinct; note that we are using the hypothesis that g > 3 here).
Then we get

0 = /(tó') = «.. + ßjJ + ßik + «.. + ßß + ßjk
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and

0 = /(<o) = «.. + ß..+ «,.. + ß...

Subtracting, we get ßik + ßjk = 0, thus ßik = ßjk is independent of /,/, and we may
simply write it as ßk; likewise define <xk. Then the equation for /(«) = 0 may be
rewritten a, + ß, = a- + yß, for all i,j. Call this value r; we put

g
E =  2 (o*fl* + AA)

*-i
and get

¿« = 2 («**<*/«* + &«ÂÂ) + S («ft + &)âÂ = / + ra-
k¥-i k

Hence/= (L - r)a.    Q.E.D.

Lemma 15. 7/A ¿s A'/iear a/i¿7 Aa = 0 (Boolean multiplication) then A = 0.

Proof. Let A = 2,(a,a, + ß,A~) + y. The coefficient of äxbxäj (j > 1) in Aa is a-,
so a- = 0. Likewise ßy = 0 ( / > 1), and looking at ä2b2äx and a2b2bx shows us that
a, = ß, = 0 also. Hence A = y is constant, and so clearly is zero.

Recalling that Br is the space of Boolean polynomials of degree < r on ß, the
two previous lemmas give us the following two exact sequences:

mult by a
0-> 73,     —>     733 —> cubic functions on ty -» 0,

mult by a
0 -» 730( = constants)     —»     732 -^ quadratic functions on ty —» 0.

By virtue of the isomorphisms of U and T respectively with the right ends of
these sequences, we get

Theorem 5. For g > 3, dim U = (2/) + (22g) = |g(4g2 - 1); for g > 2, dim T =
(¥) + (T*) = ¿K2g + 1).

Proof. The dimension of Br is

¿(H   Q.E.D.
Note that (as previously remarked) 5 = 9" when g = 2 and hence U = T. The

above formulas for dim Í/ and dim T agree when g = 2, so the first formula is
actually valid for all g > 2.

It is not known if 5 is finitely generated. We have, however, the following

Corollary. 5 is generated by not less than g(4g2 — l)/3 of its elements.

Proof. Follows from the same statement for its quotient U.

10. The case of an open surface. We investigate now how the previous material
can be extended to the case of a surface with one boundary component, loosely
referred to hereafter as "an open surface". Let M = Mg, be such a surface of
genus g, and 5g, its mapping class group of homeomorphisms acting trivially on
77,(M, Z). Let 9A7 = B(c^ 5l), and choose an imbedding v of M into a closed
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surface M' of genus g' > g. Then v(B) separates A/' into two pieces v(M) and A/".
The homeomorphisms of M in 5 are by definition restricted to be the identity on
B, so we may "extend" any such homeomorphism / to a homeomorphism / on A/'
by putting/ = vfv~x for points of v(M) and/ = 1 for points of A/". In this way we
get a homomorphism t>*: 5g, —* 5^..

The imbedding v also induces a natural splitting of HX(M') into 77,(A7) ©
77,(Af") (we have identified Af with v(M) here; also, Z2 coefficients are assumed).
This splitting is symplectic, that is, it splits the intersection form also: x ■ x" = 0,
x G 77,(A/), x" G HX(M"). We may thus choose a symplectic basis a¡, aj'; A„ b'J
with a,, A, G HX(M), etc. If now «' is any Sp-form on HX(M') then its restrictions
to 77,(A7), HX(M") are Sp-forms «, «" respectively, and these give a direct sum
decomposition «' = « © «". This is true since «'(jc + x") = w'(jc) + «"(*") + x •
x" = «(x) + «"(*"). Conversely, any two Sp-forms, «, «" on HX(M), HX(M")
define an Sp-form «' on 77,(Af') by means of this equation.

Figure 3

A Heegaard imbedding of M into If is an imbedding A: A/ —» W such that A(A/)
is contained in some Heegaard surface M' of W. Suppose now A is a Heegaard
imbedding of M into 53 with A(A7) contained in AT. Given A: G 5g,(Af) we split
53 along A(A7) as in Figure 3 and reglue by the map k, to be precise, x in the
"lower" face glued to hkh~\x) in the "upper" face. A homology sphere M(h, k)
results, and again we define p.(A, k) to be its Rochlin invariant. Note that Af(A, k) is
the same as M(h, k) where A is the imbedding of M' into S3 (i.e., the inclusion
map) and k is the extension of k to Af as previously defined. Thus p(A, k) =
fi(h, k). The latter depends only on «A- by Theorem 1, and «A splits into «Ä on M
and «" on Af". Here «A is, as for a closed surface, just the self-linking form induced
on M by the imbedding A.

Let us look at ak; since k is the extension of k on M, it can be expressed as a
product of basic generators in M, and as such it will be a polynomial involving
only the basis elements S¡, A,; the aj', bf will not appear. (Again we are identifying
M with v(M).) Applying this ok to «¿- then, we see that its value p(A, k) depends
only on a¡(<¿k) = «¿(a,) = «A(a,) and, likewise, «A(A,). In other words, we have
proved the analogue of Corollary 1 of Theorem 1 for open surfaces.
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Corollary 1'. For open surfaces p(A, k) depends only on «A and k.

We introduce the notation p(«, k) for open surfaces as well.
It should be noted that, unlike the case for a closed surface, the induced

quadratic form u>h may not have Arf invariant zero, and p(«, k) will be defined for
any « which is induced by some Heegaard imbedding of M. To see that every
« G QM is so induced it suffices to show that for some M ' r> M, M' closed, «
extends to a form «' on M' which is in tyM,: for then «' will be induced by some
Heegaard imbedding of M', which restricted to M induces «.

Lemma 16. If M c M', M' closed and of genus g' > g, then any Sp-form « G QM
extends to an Sp-form «' G tyM..

Proof. Let a,, af; A„ bf (i = I, . . ., g; j = g + I, . . . , g') be a split basis for
77,(A7'). Define «' = « on a,, A„ «'(ag+1) = u'(bg+x) = a(«), and «' = 0 on the
remaining basis elements. Then «' extends « and a(«') = 0 by construction.
Q.E.D.

We have now shown that p(«, k) is defined for all « G QM and k G 5M, and
hence we may define ok : ßM -h> Z2 by ak(cn) = p(«, k). This function is a poly-
nomial function with the same expression (e.g., AB(C + 1)) on the generators, but
there is a difference: the only Boolean polynomial which is zero on all of ßw is the
zero polynomial. The arguments leading to Theorem 4 apply then directly to prove
the following

Theorem 6. If M is a surface with one boundary component we have an isomor-
phism o: U = 5 /Q —> 733, the space of Boolean cubics on ß;

dimí/=¿(2*Y
,=oV i I

The image of ?F is B2, of dimension

,=oV i I

Both these results now hold whenever g > 2.

When g = 1, 5 is infinite cyclic and generated by a twist on the boundary curve;
it is easy to see that U = T — Z2 in this case.

11. Linear relations among the p's. For an open surface, pa(k) = p(«, k) is
defined for all « G ß and is a homomorphism of 5 to Z2. These extra homomor-
phisms2 give us a simpler and more symmetric description of the vector space U*.
Just as pointed out in §9, the pu (« G ß) generate U*, and we can ask then for the
linear relations connecting them. Any such linear relation can be written
2M(ES2 otupu = 0 (au G Z2). Or, if 5 c ß is the subset of ß for which the coefficients

2It should be noted that the new homomorphisms (with a(u) = 1) are also surjective. This follows
from the fact that for k = the twist on the boundary, ou(k) = a(u).
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as are 1, we may write this relation as 2„e5 pw = 0. Our problem is then to find
such subsets 5.

Theorem 6 tells us that we may think of U as the space of Boolean cubic
polynomials on ß. Thus a relation 5 is a subset of ß such that 2we5 Pu(k) ~
2ueE5 ok(u) — 0 for all k, that is, 2weS/(«) = 0 for all Boolean cubics/. Now this
is a situation well treated by classical results in Boolean algebra. We give a brief
description of the results we need here (see [MS] for an explication in the language
of coding theory).

(1) Let W be an affine space over Z2 and P( W) its space of subsets, that is, 7^ W)
is the set of subsets of W, with addition of sets defined by addition of their
characteristic functions. (The characteristic function of a subset 5 c W is the
function 7^: W-» Z2 given by Fs(w) = 1 iff w G 5. This addition of subsets may
also be described as the "exclusive or" operation: for 5, T c W, S + T = (5 U
T) - (5 n 7»

(2) Since W is an affine space, we may talk about its «-dimensional affine
subspaces. These subspaces, considered as elements of P(W), generate a subspace
of P(W) called the n-plane subsets of W, which we denote by Qn.

(3) Let, as before, 73„ be the space of Boolean polynomials of degree < n on W;
if d = dim W, then B = Bd is the space of all Boolean polynomials on W. We have
then a natural pairing P(W) ® B -> Z2 given by <5,/> = 2M,es/(w>).

(4) The classical results tell us the following: the above pairing is a dual pairing,
and furthermore Q„ + x = B^, that is, 2H,es/(vf) = 0 for all / of degree < n
precisely when 5 is an (n + l)-plane set.

We may now apply these results to our special case. Since our relations are those
5 which satisfy 2M,eS/(w) = 0 for all/ G 733, i.e., 5 G B3X, we obtain

Theorem 7. For a surface with one boundary component, the relations among the
totality of p's are given by the 4-plane subsets of ß. In particular, a generating set of
relations is given by those of the form 2w6S pa = 0, where 5 C ß is a ^-dimensional
affine subspace of ß.

We can see how this theorem works by a simple example. For g = 2, ß is
4-dimensional and so there is only one relation among the pjs, namely 2uen pu =
0. Since |ß| = 16, we have sixteen pw's and one relation, giving dim U* = 15. This
is consistent with dim 733 = 23=0 (?) = 15.
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