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Fig. 10,

0A,, ..., 0A4,, is a sequence of disjoint meridians of T whiclll is in c'yc.lic ordf:r on 07‘: .ll
follows that /_11, Ay, ..., Ay is a sequence of pairwise disjoint meridianal disks of T in
syclic order on 7. g
Ly"Ill;‘rcmuins to verify the following assertion: if A is a disk componcnt‘ ofh('l )N P, then A
is a disk component of ' P. We proceed by contradiction. Supposc A is a disk compo:;)em
of h(T)~ P but not of T P. Then 04 is a component of h(dT)N P. Since h(0T)N Cf
(0T) P, we conclude that 94 is a component of Tn P. Let F denole. the COITIpOI.lCI‘ﬂ 0
T~ P which contains d4. F must be a proper subset of A, because 4 is r}ol contal.m,d in
T'AP. Thus, F is not a disk. Also, the hypothesis of Case 2 prevents Ij from being z'm
annulus. (This is the only point at which this hypothesis is used.) chce, (aF)m(ml(A.)‘) has
at least two components. Suppose J is a component of (GF)n(mt.(A')). Then P(J) ls‘ r}ot
contained in 7: but int(D(J)) must intersect T because J, being a meridian of 7, links a 5;-)me)
of T. Hence, J is of height > 2. Thus, either D(J,) = D(J), or D(Jy)nD(J)= Q Sfflcc;
(0F)n (int(A)) has more than one component, we can assume DFJ)r\D(Jo) = @ As; 1(5)0
height > 2, then D(J) contains a component K of(()T)rjP of height exactly equal to’ i ur
choice of J insures that K # J,. (See Fig. 10.) In an earlier paragrup,h, we argued thdl).rl(, is
the only height 2 component of (0T)n P that intersects Cq. So BmCO = Q. TthrL (i;/c,
KnCy=@. Hence, K < ((dT)nP)—Cy=h(@T)nP. But Kc int(A4) < h(int(T)). ‘ (]:
have reached the desired contradiction. X
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CASSON’S INVARIANT FOR HOMOLOGY 3-SPHERES AND
CHARACTERISTIC CLASSES OF SURFACE BUNDLES I

SHIGEYUKI MORITA
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INTRODUCTION

RECENTLY Casson [6] succeeded to lift the classical Rohlin invariant, which is a Z/2-valued
invariant, to an integer valued invariant A for oriented homology 3-spheres and by making
use of it he obtained remarkable results concerning 3-manifolds and knots. Roughly
speaking it is defined to be half of the algebraic sum of the number of conjugacy classes of
irreducible representations of the fundamental group into SU(2).

Now by virtue of the classical theorem of the existence of the Heegaard splittings, the
theory of 3-manifolds is closely related with that of the mapping class group of orientable
surfaces. For example Birman-Craggs [5] and then Johnson [9] have clarified the effect of
the Rohlin invariant on the algebraic structure of the Torelli group, which is the subgroup
of the mapping class group consisting of all elements acting trivially on the homology.
Johnson went on further with his extensive study of the structure of the Torelli group and
obtained several fundamental results [11, 12, 13]. Now in this series of papers, keeping in
mind the above results, we would like to clarify the relationship between the Casson
invariant for homology 3-spheres and the structure of certain subgroups of the mapping
class group. In doing so we make a crucial use of the methods of Johnson developed in [op.
cit.]. However there is also an essentially new ingredient, namely we have found that the
Casson invariant can be interpreted as a secondary invariant associated with the character-
istic classes of surface bundles introduced in [18, 20, 27].

Now we review the results of the present paper more precisely. Let £, be a closed
oriented surface of genus g and let # , be its mapping class group, namely it is the group of
all isotopy classes of orientation preserving diffeomorphisms of X,. By technical reasons
(which will be explained in §1), we also consider the mapping class group .#, , of X, relative
to a fixed embedded disc D* < Z,. M, 1 is the group of all isotopy classes relative to D? of
diffeomorphisms of Z, which restrict to the identity on D2, Let Ay (resp. A7, ) be the
subgroup of .#, (resp. .#,, ;) generated by all the Dehn twists on bounding simple closed
curves on Z, (resp. Z,\ D?). Now fix a Heegaard embedding i: £, — S* and for each element
@€ ,, consider the manifold M,, which is obtained by first cutting S* along i (X,) and then
reglueing the resulting two pieces by the map ¢ (see [5]) and §2 for details). It is easy to see
that M, is an oriented homology 3-sphere and conversely we prove in §2 that every
homology 3-sphere can be obtained in this way. In view of this and also by a technical
reason, the group ", seems to be a better place to work in than the Torelli group. We have
a mapping A*: ") — Z defined by A*(p) = A(M,). We also use the same symbol for the
mapping A*: ¢, | — Z which is defined to be the composition of the natural surjective
homomorphism Ay 1 = A, followed by the original A*.
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306 Shigeyuki Morita

On the other hand by making use of our previous results [20, 21, 22], in §5 we define a
mapping d: ./, , = Z whose restriction to ", , should be considered as the secondary
invariant associated with the signature of oriented surface bundles over surfaces. Now our
main result (Theorem 6.1) may be stated that the two integer valued maps A* and d on A7y
are essentially equal each other. The precise statement however takes somewhat compli-
cated form because we have to correct the mapping d by adding a “normalizing term” which
depends on how we choose a Heegaard embedding i Zg—»S3. Also the actual proof of
the above main result goes in the “opposite direction” in the following sense. Namely
motivated by a formula which expresses the Casson invariant of a knot as a homogeneous
polynomial of degree two on the entries of its Seifert matrix (Proposition 3.2), in §4 we try to
express the mapping A* in terms of Johnson’s homomorphism which we study in §1. It turns
out that except for one single factor the latter contains all the informations about 2* and we
collect them to define the normalizing term. Then we prove in §5 that the restriction of the
mapping d to 4, “realizes” the missing factor which is in some sense the core of the
Casson invariant. Since there is no canonical way to choose a Heegaard embedding
i: £,— S the above complication is inevitable. But if we restrict the two maps to a yet
smaller subgroup &, , of .#, y, then the normalizing term vanishes and the result takes the
following simple form: 2* = 24 d (see Proposition 6.4 and Remark 6.6).

Although the definition of the mapping d will be given purely in the framework of
cohomology of groups, we belicve that it can be given a more geometrical meaning related
to the geometry of the Teichmiiller space. More precisely it should be explained as a
sccondary invariant associated with the fact that the pull back of a certain non-trivial
holomorphic line bundle over the moduli space of compact Ricmann surfaces to its infinite
ramified covering space corresponding to the Torelli group is trivial. We would like to
pursue this point in a near future. Also in the second paper of this series [25], we will prove
the well-definedness of the Casson invariant entirely in the framework of the mapping class
groups (see Remark 6.2). The main results of this paper have been announced in [23, 24].

1. JOHNSON'S HOMOMORPHISM

In this scction first we recall Johnson’s method of investigating the structure of the
mapping class groups (sce [10. 11] for details) and then we make a detailed study of one
particular case which extends Johnson's earlier works.

As in the introduction, let .#, be the mapping class group of £, and let .4y, be the
mapping class group of Z, relative to a fixed embedded disc D* = Z,. We have a short exact
sequence

| oty (TyZ,) = My = My ]

where T, Z, is the unit tangent bundle of £, and the mapping .#, , = .#, is the natural
forgetful homomorphism (see [20] §3). We will be mainly concerned with (subgroups of)
.1, rather than . #, because of the following technical reasons. One is that, since .#, , can
be considered as a certain subgroup of the automorphism group of a fiee group m, (Za‘-\bz)
by a classical result of Nielsen, we can apply various techniques of combinatorial group
theory directly, while . 7, is only isomorphic to the proper outer automorphism group of
m,(Z,). Another reason is that since there is a canonical homomorphism .#, , — N/ RD
we can consider various direct systems consisting of subgroups of .#, , naturally (see §2).

Now we write ) for £, Int D2 and put T', = m,(ZJ), which is a free group of rank 2g.
For later use choose a system of free generators %, ... %, Brsewoy By of Ty as is

S
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illustrated in Fig. 1a. We successively define Iy, , = [[,.I,] (k= 1,2 ) and set N
\;rilt"c, /l;;orw,i rr:xi;cz(l)l:l' the gro(;lp N.‘ the k-th nilpotent quotient of I',. For simplicity w:;
vt ’ ,Z \ m ) and let x; lrcq} ‘\',)‘hc the homology class of o; (resp. f3;) so that
((;‘:cr.z.),(.)s,'){,';l;d I.c,[ ";)lhhdesl};‘r:l:l?,:c li)u]sm (r)f it. Now let ¢’ be the free graded Lie algebra
' let 2 odule of #” consisting of all homogeneous elements of
sefrie_f\ SO Thdl II‘I particular we have y", =H. “, is casy to sce that the correspondence
[u,v] (u,ve I-.l.) defines a natural isomorphism A*H =~ ¢, and also the correspon-
(}L:ncc (uAv)®w— [[u,v],w] defines a short exact sequence 0= AYH - A2H ® ?I
T/J —0so thz:l we have a natural isomorphism ¢’y ~ A>H ® H/AYH, where an clcmc:l
;;/\yf /;).W,E/.\ H goes }0 ("4,/\‘ -v) ®'w +(0 A u)@ u+(wAu)®reA’H ® H and vanishes
i 3 LC"IUSC of the Jacobi’s identity. Now it is a classical result that there exists a natural
xilomorphlsm I/ l",‘., | = Py (see [19]) and we have a central extension 0 — Q‘k a I\«"| Ur:
Cokn:;s:: Thcf mlappmg class group A, acts on Ny and let . /7 (k) be the subgmur';‘c:f it
sisting of all the clements which act on Ny trivially. Now Johnson's homomorphism

T (k) P, @ H

is defined as follows (sce [11]). Let ¢ be an clement of . 7 (k). For each clement ve T, . th
cl.cmcnl @(y)y~ " is contained in I', because of the assumption that ¢ acts or; th II\ lc
n]:l'polcnl q,uoticnl N, trivially. Let ,(y) be the image of that clement in %, . .lo‘lmson ;:rov-;(;
;q::ctrz(t’;,'[])[:,:ml:g+:“(l) 'and cs)r?sidcrcd T, as an element of Hom(H, 7)) = ,®H.
e recall ):; (Hén vcrsc;uon’ pairing i H defines a selfdual structure on it. Explicitly we
Tk({p)zwt ﬂn,:,j., m\;\c,d— l1:’,”(),.') ®.x,‘ Finally Johnson defined t,:.7(k)—» 2, ® H by
e ,,; . ®ls ; ]:.ml it is ucluully a homomorphism. The homomorphism
§l=m ],,,1' ' is 510! ing but the clus:ﬂlcul representation of ./#, , as the group of
;3“[(;: ccflc/;lulomorphlsms of H. Namely with respect to our symplectic basis of I we can
groupr',;’/,(z_,;,;g—»niﬁ(]?:; Zb), (wll:crcTSp(Zx{: Z) is the Siegel modular group of degree g. The
homomorphig;n o yg :AJ;; . orcll'l group 4,1 and Johnson [10] proved that the
el equ;” mzk.cg.rlj A gljbsgurl(':t‘lcuvc;. }/jc has also proved that the group .#(3)
PIRE S of . Yo e N o > &) 1
bm.mding simple closed curves on XY lscg)[lﬂ). 1;[1[’;-:‘[;';1‘;]°tihhir:lll l:L I)th I‘&"\ims o
which will play a central role in this paper. e S B

L \B

BN
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Now we describe the homomorphism t,:.#, | —+ A?H ® H/A*H. Consider the basis
AN <), yiny, <)), xpny, of A*H and write t; (i=1,...,(¥)) for these
clements in any order. Let 7' be the submodule of A2H ® A?H generated by the elements
L@ tand (@ 1+, @1, (i # ). For simplicity herealter we write 122 (resp. t, >t ;) for the
element ;@ 1, (resp. (@1, +1,®1,). Also let T be the image of T in Z3;®H =
A’H® H*/A*H®H under the projection A’H®A*Hc A’H® H* > AH ®
H?/A*H ® H. Now let p be a bounding simple closed curve on Int £ and let e ", | be
the right handed Dehn twist on p. Let F be the subsurface of Z9 which p bounds and choose
a symplectic basis uy, ..., u,, vy, ..., v, 0f H(F;Z) (his the genus of F). Then we have

Prorosition 1L () is equal to the image of the element —(uy A vy + -+ + uy A v,)®2
in T under the projection T'— T. In particular Imty is contained in T.

Proof. First we recall an important property of Johnson’s homomorphism, namely for
any clement pe.#,, we have 1 (e ') = ¢, (t.(¥)) where ¢, is the natural auto-
morphism of ¢, ® H induced from the symplectic automorphism ¢,: H — H. Hence to
prove our Proposition it is enough to prove the assertion for a particular bounding simple
closed curve p illustrated in Fig. 1b. It is casy to see that the action of the corresponding
Dchn twist s on I'y is given by ¥(7) = [f, a1 [Bys oy Jy[os B1] - - - [ Bi] for
P=0p, ..., 0, B, B, and it acts on the clements gy, ..., % Burry o0 By
trivially. Hence we have

h

t(x)= Y [[y,x1.x1e2; (i=1,...,h)
i=h
h

)= Y [y, 5101, (=00 h)
=1

T, (x)=1,(31) =0 (=41, %)

Therefore

h h

=Y Zl ViAX®X A,

=0
=—(x AN+ ..o+ x, A%
as required.

According to [8], the group %, , is generated by Dehn twists on bounding simple
closed curves of genus one and two. Hence Im t5 is equal to the submodule of T generated
by the Sp(2¢;Z)-orbits of the following two clements: (x; A y,)®? and (x; A y,
+ X5 A y,)®2 Using this fact we can determine Im 7, explicitly. However to avoid
unnecessary complicated expressions, here we only prove the following.

ProrosiTion 1.2. The image of the homomorphism t5: Ay

index a power of two.

Proof. Recall that T is the free abelian group generated by the elements 122 and t; < (;
(i # j). Itis easy to sec that any such element is Sp(2g; Z)-equivalent to one and only one of
the following ten elements (or negatives of them).
(1) (BN O (I1) (5 A %) 22 (I x;, Ay, X, A Y,

(IV) x;Aapy,ex,Ax, (V) XyAaX;enax; (V) xpAx,ep Ay

\ = T is a submodule of T of
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(VI xy Appesx; Axy (VIID x, A XaeoX; AXy (IX) xpAx,eop A X

(X)  xpAx; x5 X,

Since Im 73 is an Sp(2g; Z)-invariant submodule of T, to prove the required assertion it is
enough to show that twice of any of the above elements is contained in Im 5. First of all
type () is clearly contained in Im t,. Next since (x, A y, + X3 A Y:)® =)+ (x5 A y,)®2
+ (II1) and the second element in this expression is equivalent to (I), we have (I1I)e Im t;.
Now suppose that two elements u, ve H satisfy the condition u-v = 1, then it is well known
that there exists a symplectic automorphism A of H such that A(x;)=wuand A(y,)=v.
Therefore (u A v)®2 is contained in Im 75 (here we have used the classical result that the
representation t,: .#, , — Sp(2g; Z) is surjective). Now we have

{xi A +x2)}®2 = (D) + (I1) + (1V)
(A 0= x2)}®2= () + (1) — (1V).
Therefore both of (IT) + (IV) and (IT) — (IV) are contained in Im T3 and hence 2 x (II),
2 x (IV)elIm t5. Next we have
{1 +x2) A (1 +x3)}®2 = {(x, +x;3) Ay, 182 = (1I) + (IV) — (V).
Hence (V)eImt,. Similarly we compute
{21 +p2) A (x + 3+ x,)} 02— i+ x2) A 32} 02 = {(x2 + 1) A 1y} ®2
=4x([M)+4x (D)= (x; A 3,)®2 =2 x (I) + 2 x (IV)* + (V)* — 2 x (VI),
where (IV)* (resp. (V)*) stands for a linear combination of elements which are Sp(2g; Z)-
equivalent to (IV) (resp. (V)). It follows that 2 x (VI)eIm 5. If we apply the symplectic

automorphism y, — y, + x, + x3, y3 = y3 + X, + X3 (other basis elements are fixed) to
(ITI), we obtain

(HD*: Xy Ay X3 A (y2 + x5 + x3) = (1) + (VII).
Hence (VII)e Im ;. Similarly we have

V)*: xp Axaeo(+ X +x3) Ax,= (V) +2 x (IT) — (VIII)
(VD*: xi A xa o0 A (1 + X3+ x3)= (V) + (V) + (IX)

(VID*: Xy A (3 + X, + X4) > x5 A x3=(VII) + X A X X, A X5,

From these equations we can conclude that the elements (VII), 2 x (IX) and (X) are all
contained in Im 5. This completes the proof.

2. HOMOLOGY 3-SPHERES AND THE TORELLI GROUP

Let #°(3) be the set of all orientation preserving diffeomorphism classes of oriented
homology 3-spheres. Then by virtue of the classical theorem of the existence and stable
uniqueness of the Heegaard splittings of 3-manifolds (see [3] for example), we can identify
#(3) as the limit of a certain direct system, which is constructed by using subgroups of the
mapping class groups .#, ,, as follows.

First of all we fix a handlebody which Z, bounds as follows. Let ¥ =S! x D? be a
framed solid torus and choose two disjoint embedded discs D_ and D, in dV. Also choose
a meridian (resp. longitude) curve m (resp. I) on @V which is disjoint from the two discs D, .
Now define an oriented 3-dimensional handlebody H, of genus g by Hy=V,h.. 4V,
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Fig. 2.

(boundary connected sum of g-copies of V), where D, of V; is attached to V_ of V.,
(i=1,...,g9—1). We identify £, with dH, which has an embedded disc D =D, of V, so
that the homology class x; (resp. y;) is represented by the meridian curve m; (resp. longitude
curve ;) of V; and the element f; of I'y (=, (£3)) is null homotopic in H, for all i (see Fig. 2).
The compact surface £) = Z,\ D is contained in Z9. and hence we have a homomorphism
My — Myyy,y which is actually an injection because, as was already mentioned in §1,
M, , can be considered as a certain subgroup of the automorphism group of the free group
n,(Z9) by the classical theorem of Nielsen. MNow let 1, be an element of .#, , defined as
1, =T1¢_, p;, where p; = 4 4; (4, and g being respectively the Dehn twist on the longitude
and meridian curves on @) is the “rotation” of the i-th handle of £, by 90°. It is easy to see
that the manifold H, U, (— H,), which is obtained from the disjoint union of H, and — H,
by identifying the boundarics by the map 1, is the 3-sphere §*. Henceforth we identify them.
In another word, we consider I, as a fixed Heegaard surface of §3. Now for each element ¢
of the Torelli group .7, , we denote M,, for Hyu, ,(— H,), here we understand ¢ as (the
isotopy class of) a diffeomorphism of £, which is the identity on the embedded disc D = Z,.
Namely M, is the 3-manifold obtained by cutting S3 along the Heegaard surface Z, and
then reglueing the resulting two pieces by the map ¢. Since ¢ acts or the homology H of Z,
trivially M,, is an oriented homology 3-sphere. Now let .47, , be the subgroup of ./, ,
consisting of all elements which can be extended to a diffeomorphism of H, which is the
identity on D.

DerINITION 2.1, Two elements ¢, €., are said to be equivalent, denoted by ¢ ~ U, if
there are elements &, E,€ A7, | such that

=15 1,p0&;.

It is easy to see that the above relation is in fact an equivalence relation and also if
¢ ~ ¥, then M, is orientation preserving diffeomorphic to M. Moreover if two elements of
4,., are equivalent, then they remain to be so even if we consider them as elements of
4 441.1- Hence if we denote .4, /~ for the quotient sct with respect to the above
equivalence relation, then we have a direct system {4,/ ~ }, and we obtain a natural map

lim 4, ,/~ — 4 (3) defined by the correspondence .#, 3¢ — M e H#(3).

g~

Tueores 2.2. The correspondence lim 9,/ ~ — #'(3) is a bijection.

g =

ftl

Fre | just the classical theorem on the exisience and stable unijueness ©
Heegaard splittings of 3-manifolds adapted to the subclass of oriented homology 3-spheres.

.
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.}?RO.P()SITION 2.3. Any element p € .7, , is equivalent to an element y € 4", , so that we have
a bijection

lim A"/~ = #(3).
9=
Remark 2.4. 1f we define an equivalence relation ~ on the Torelli group 7, similarly as
above, then it can be shown that the natural forgetful mappings Ig/~—9,/~ and
Hg1/~ = A,/ ~ are both bijective. However since there is no cnnonibc.al map I 5 ey
j;lnd also since Johnson’s homomorphisms are defined (at least primarily) on Iar ugnd .)f? -
it seems to be better to use the groups .#, , and 4", ; to consider the direct s.yslcms v:i.th
respect to g.
To prove Proposition 2.3, we consider Johnson’s homomorphism t,: I, = A H (see
[10] and §1). Let W, be the subrodule of A®H generated by the elcmcﬁl's Xi AXjA Y
X; Ay~ v and y; A y; Ay Then we have A

LEMMA 2.5. 1,(F, 0 A7 )= W,.

Proof. Let T'f be the normal subgroup of [, =n,(X]) generated by the elements
By, ..., Byand let ¢ be any element of .4, ;. Then it is casy to see that the automorphism
Px of I'y induced by ¢ preserves the subgroup I'. Hence if ¢ € g0y theng (B B!
is a product of elements of the form [y,, y, B "3 1, 72€T,). Hence }11 the lcrminololgy
of §1 we have 7,,(y;) = £ + [7,1® ;. It is easy to deduce from this fact that T,(p)e W, Next
observe that the .symplcctic automorphism x; <> x;, y, > y; (i # j, other basis clements are
fixed) can be realized by an element of .1", . For examplc the interchanging of the i-th and
the j-th handles (cf. [28]). Since the equality t, (oW ') = P4 T2(Y) holds for any pe.#, ,,

€7, 1, to prove the claim we have only to show that the following five elements belong to
L (F N A)

() xpAayiAaxy (i) xp Ay Ay, (i) x; Ax, A ¥

(iv) Xy Ay2Ay; (V) y AV Ay
The ﬁr.sl two elements can be realized by the homeomorphisms indicated in Figs 3a, 3b
respectively, here the + (or —) sign in the figures means that we take the right (or left)

handed Dehn twist on the corresponding simple closed curve. It is casy to sce that these two
elements belong to .# ~ .4”. Hence (i), (i) e 73(# n.47). Next consider the homeomorphism

(d)

Fig. 3




12 Shigeyuki Morita

o mdicated in Fig 3¢, This is one of the homeomorphisms which are called spins or slidings

i [428 [ and itis casy to see that o, belongs to 1, . The effect of @, on the homology H is

given by y; oy + yy g = xy - x L Now if we apply this automorphism to the elements (i),

(i, we can conclude that (i) and (iv) are in 1,(4 A1), Finally let o,e.1 41 be the

homeomorphism indicated  in - Fig.  3d. Then  o,(x, Ay, A ) =X, A A Y,
vy A vs A vy Henee (viet, (4 not ). This completes the proof.

Proof of Proposition 2.3, According to Johnson [10, 13], we have an exact sequence

LA, —F,  — AP H — 0,

Now for cach clement p € 4, |, write 7,(¢) = w, + w,, where w, is a linear combination of
YA XA xs and wee W Observe here that the effect of the homeomorphism 1, on the
homology is given by x; - —y,, y; = x;. Hence in view of Lemma 2.4, we can conclude that
there are clements &, &€, n .4, | such that 7,0, '&,1,) = —w, and 1,(&,) = — w,. It
follows that ,(1, ' &, 1,¢&,) = 0. Hence the element 1, & 1,0&,, which is equivalent to the
given onc ¢, belongs to #, . This completes the proof.

3. CASSON INVARIANT FOR HOMOLOGY 3-SPHERES AND KNOTS

In this scction we briefly recall Casson’s result [6] on his invariants and prove a few
properties of them. In particular we prove a formula which expresses Casson invariant of a
knot as a homogencous polynomial of degree two on the entries of its Seifert matrix (see
Proposition 3.2).

Recall first that Casson defined an invariant 2’ of knots in homology 3-spheres as
follows. Let K be a knot in an oriented homology 3-sphere and let Ag(t) =
ag+a(t+t" ") +a(t* +t72)+ ... be its normalized Alexander polynomial with

Ag(l)= 1. Then A'(K)=3A"(1)=Y n%a,. Now Casson’s theorem may be stated as

follows.

Turorem 3.1 (Casson). There is an integer valued invariant A for oriented homology 3-
spheres such that

(i) 4 mod 2 is equal to the Rohlin invariant.

(i) If my (M) =1, then A(M) = 0.

(iii) A(—M) = —A(M) and A(M, # M,) = A(M,) + A(M,).

(iv) Let K be a knot in an oriented homology 3-sphere M and let M, (K) be the homology 3-
sphere  obtained  from M by performing the 1/n surgery on K. Then
AM(K)) = AM)+nA(K).

Here observe that property (iv) with n = + 1 in the above theorem together with the fact
A(8?)=0 characterizes 4 uniquely because any homology 3-sphere can be obtained from S?
by successively applying + 1 surgeries on knots. Now we show that the Casson invariant of
a knot K can be expressed as a polynomial of degree two on the entries of any Seifert matrix
of K. For that let F be an oriented Seifert surface of K and choose a symplectic basis
Uy, ... Uy (h=genus of F) of H(F;Z) so that u;-u; = d;,,; (i <j). Suppose that the
homology class u; is represented by an oriented simple closed curve v; on F and let v;* be the
simple closed curve in the ambient homology 3-sphere which is obtained by pushing v; to
the positive direction with respect to the orientations of F and the ambient manifold. Let [;;
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be the linking number of v, and v/ so that L = (i) is the Seifert matrix of the knot K. With
these notations we have

PROPOSITION 3.2. Let K be a knot in an
L = (l;;) be the Seifert matrix of K with resp
Seifert surface of genus h. Then we have

oriented homology 3-sphere and let
ect to a symplectic basis of the homology of a

h
2(K)= _:Z] Uiilinivn— Loivnlivn)+2 Z (51,

wnjrn—li ianl; 3
e ithjtn — li jnljivn)

Remark 3.3. Since [; = lij+u;- uj, the number Liivnlisn; is always an even integer.
Hence /'(K) = Z Lili 44,0+ (mod 2) which is consistent with the fact that 2'(K) mod 2 is
equal to the Arf invariant of K.

Proof of Proposition 3.2. Let us write a;;, bjj and c¢; for ljs b jenand I, jen (j < h)

respectively and define square matrices 4, B and C of de
2 grcelsz:a,~,B=b,—-'d
C= (¢ij). Then we have . o AL
i ( A el
'‘B+E C
Hence the normalized Alexander polynomial Ak (r) is given by
1
Ag(t) = det (7'L—\ﬂL>
t
1
= det (j P— ﬁQ), where

A B+E A B
P 3 PR ST Y 0-E
('B c ), (0] <‘B+E C) andso P Q_-J_<»E 0).

Let us write R for the matrix (l/\ﬂ)P — \/;Q. Also let p; (resp. g;) be the i-th column vector

of the matrix P (resp. Q). For a 2h-dimensional column vector v, we denote R;(v) (resp. J;(v))

er ‘lhc matrix obtained from R (resp. J) by replacing its i-th column by the vcclo‘r v.

Similarly for two vectors v,, v,, let Rij(vy, v;) (resp. J;;(v,, v,)) be the matrix by replacing

;‘hc i-th and the j-th columns of R (resp. J) by the vectors v, and v,. With these notations we
ave

2h
Ak(t) = j; det RJ(*%'—J'VZP,'_il_mq])

and hence

2h
i) {d“ RGP, + 132 )

+i; detR;;(—4t732p, —4¢=1124, —5r‘3"2pj—§r"/ij)}.

If we put t = 1, then the matrix R becomes J so that we have

2h

Ay =Y {dj+ 3 d,-j}, where
=1 i
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dj=del.lj(%p,»+%qj) and
dyy = detJ(—$pi— a0 —3p;—34))}-
Now direct computation shows that
dj= —(bj+%) (j<h
dj=bj;+3 (j>h
and hence we have Ed; = h. Similarly we have
Ay = diapyon = b+ 3 by +3) —byby (i <j<h)
di,jon = ajicy = (b + 1) (b +1) (i,j < hi#))
diivn =0y i — (b +3) (b + 1) (1<i<h).

Hence we obtain
h
A =4 Ydi+ Y di= _Zl {agci—bulbi+ D} + 2i<JZ<h("-‘jC-‘j— bijbj).
<] 1= <

Here we have used the fact that the matrix A is symmetric. This cor'npletfts the pro.of.

Now let /:.# (3) > Z be the mapping defined by the Casson invariant. Ir} view of
Proposition 2.3, it defines a mapping A*: %, —Z defined by A*(@)=A(M,)eZ
(pe A", ) (see §2).

L 0

Lemma 3.4, Let pe A,y be the Dehn twist on a bounding simple closed curve K on Zg,

which is considered to be a fixed Heegaard surface of §3 so that K is a knot in S°. Then the
; ined from S3 by i —

oriented homology 3-sphere M, is equal to the one obtained from S* by applying — 1 Dehn

surgery on K.

Proof. Let N bea tubular neighborhood of K and let m (resp. I)be an orienl.ed meridian
(resp. longitude) curve on ¢N with [m]-[1] = 1. Then to prove the Lemma it suffices to
show that a simple closed curve on N which represent the homology class [m] —-[1
bounds a disc in M. But this can be checked easily.

PrOPOSITION 3.5. The mapping 2*: Ay, > Z is a homomorphism.

Proof. Since ), , is the subgroup of ./, , generated by all the Dehn t‘wisl.s on bourllding
simple closed curves on 9. it is enough to prove the fol]owing Namely if ¢ is an arbltral;y
map in .4, and if e A,y isa single twist on a bounding su.nplc closed curve Ii on.):q,
then the cquality A*(pi) = 2*(@) + 2*(¥) holds. By the dcfinition of the map A%, this is
cquivalent to A(M,,) = AM,)+ A(M,). Now write S = H, UH_ for the l"l)cegaard
splitting we have fixed. The knot K is a bounding simple closed curve on ~Zq = 6.H+
(= @H_) and let F be the compact surface in S which K bounds on Z‘g’ - It is d S.elf.erl
surface for the knot K in S3. However observe that both of K and F remain to sit lnSldf
M,=H.U,H (0H,is attached to 0H _ by the map ). We write K* and F* for lherTL K
isa knotin M, and F* is a Seifert surface for it. Then a slightly mod}ﬁed argument as in lh.e
proof of Lemma 3.4 implies that the homology 3-sphere M, is nothing but the one which is
obtained from M, by performing the —1 Dehn surgery on K*. By Theorem 3.1 and
Lemma 3.4, we have A((M,,) = A(M,) — A'(K*)and also (M) = — A'(K). Hence we 1.1?Ve
only to prove 2'(K*) = #'(K). Now since the element ¢ can be expressed as a com;.)osm'ot}:
of Dehn twists on bounding simple closed curves, say p;, on %9, the argument of Lickoris

S G
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in [14] implies that M, is obtained from §3 by performing Dehn surgeries on a link L with
+ 1 framings, where L is defined as follows. Choose mutually disjoint compact embedded
surfaces Tf in H_ = §3 such that each X} is parallel to £J = dH _ and the “ordering” of
=is, is determined by that of the Dehn twists on p;’s in the expression of the clement ¢. Let
p; be the bounding simple closed curve on Zi corresponding to p; on Z and we put L

= (J pi. Then the linking number of any component of L with any homology class of the
i

surface F is clearly zero. It is easy to deduce from this fact that the Seifert matrices of the two
knots K and K* with respect to the Seifert surfaces F and F* coincide each other. Hence we
have 1'(K) = A'(K*), completing the proof.

Remark 3.6. (i) The definition of the mapping A* makes sense also on the Torelli group so
that we have indeed a mapping A*:.7, | — Z defined by A*(p)=AM,) (pe .7, ). Forg >3
this mapping is no longer a homomorphism. However we can completely describe its
deviation from the additivity (see [26]).

(ii) In the above definition of the mapping i* we have fixed a Heegaard splitting of the
3-sphere: S3=H”u,' (—H,). If we change the pasting map 1,, then the resulting map 2*
may also change. However we can describe the variation completely (see Remark 6.3).

4. THE NORMALIZING TERM

In this section we investigate how Johnson’s homomorphism t,: ., | — T, which we
studied in §1, is related to the Casson invariant or to the associated homomorphism 2*:
H 4.1 = Z defined in the previous section. It will turn out that although the homomorphism
75 contains a good deal of informations about the homomorphism A* (see Remark 6.3), it is
impossible to recover A* from 75 because the latter misses the most important factor (the
constant term of the algebra .« defined below) which is in some sense the essence of the
Casson invariant (cf. the last sentence of [11], where Johnson alrcady observed the
corresponding fact for the Rohlin invariant). Now the aim of this section is to construct a
homomorphism ¢q:.#", | = @ out of 5 in such a way that the difference 2* — ¢ should be as
simple as possible. In view of Remark 6.3 stated in the last section, we may call the
homomorphism g the normalizing term of the homormorphism A* with respect to the fixed
Heegaard embedding Z, = 53,

Now let y € %, | be a Dehn twist on a bounding simple closed curve p on ZJ and let M,
be the corresponding homology 3-sphere. Also let F be the compact surface which p bounds
on Z_,‘,’. Then in view of Theorem 3.1, (iv), Proposition 3.2 and Lemma 3.4, the Casson
invariant A(M,) = 2*(}) can be rcad off from the linking pairing on the homology of F.
Keeping in mind this fact we define a commutative algebra .7 over 7 with unit 1 as follows.
«/ has a generator [(u, v) for any two clements u, v € H and we require the following relations
to hold in ./

(i) lv,u)=lu,0)+u-v
(i) Hnyuy +nyuy,0) = myl(ug, v)+nglluy, o), nye 7).

=/ is the universal model for the linking pairing on H and is the lift of Johnson's 7/2 algebra
4 in [9]. Moreover it is easy to scc that ./ is nothing but the polynomial algebra over 7
generated by the elements [(x;, x;). [(y;, yi) Hx;.x;) (6< ), 10y, v,) (i < j) and 1(x;, ;). The
group Sp(2¢; Z) acts naturally on .</. Motivated by the formula in Proposition 3.2, we define
a homomorphism 0: T'— </ as follows, where recall that 7'is the submodule of A2 ® A?1T
generated by 1?2 and ;<> ¢; (see §1).
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Prorvosinion 4.1 The following two types of correspondences

) (wre) s sl e, ey N, ole, w)
M) anbevend - la,c)lth,dy+ e, a)ltd, by~ la, d)l(b, ¢)— I(d, a)l(c, b)

define a well defined Sp(2yg: Z)-cquicariant homomorphism 0: T — </ .

Proof. The well-delinedness follows from the next two facts. One is that the above
correspondences are lincar with respect to any variables u, v, a, b, ¢, d and the other is the
fact that type (1) correspondence is symmetric with respect to u, v, while type (i) one is skew
symmetric with respect to a, b and ¢, d respectively. That the resulting homomorphism 0 is
Sp(2y: Z)-cquivariant follows dircctly from the definition.

Provosimon 4.2. Let p be a bounding simple closed curve of genus h on Y and let
Wyy ooy Wy, Uy ooty be a symplectic basis of the homology of the compact surface which p

bounds. Then
h

Oy Avy+ oo an)9?) =Y Hg,u) (g, 0) — g, 0) (0, 1,)}
=]
+2 {1y, 1) (g, 05) = g, v) 1w, v;)}
i<j<h
Remark 4.3 In view of Proposition 1.2, we can conclude that the homomorphism

0: T — .o/ is characterized by the above property.

Proof of Proposition 4.2. We use the induction on h. If h = 1, then the assertion is clear.
Next we assume that the assertion holds for hand prove it for h+ 1. For simplicity we write
L(h) for the right hand side of the equality in our Proposition. Then we have

/ht+ 1 @2 h ®2 h
U(( Y u,/\n,) >: {)<<Z 11,/\1‘,) Y U At AU (4 /\1?,,”)@2)
i=1 i=1 i=1

h
= L(h)+ Z g, g )3, vy )+ Lty 5 w1041, )
i=1

= Mgy vy g g ) = 04 g5 u) 14y, 07))
A 1y st )y g O ) = g g O )O3y Uy y)
= L(h+1).
This completes the proof.
Next let &y:.«/ — Z be the ring homomorphism defined by &,(I(u, v)) = lk(u, v*). Here we

consider T, = dH, as a Heegaard surface in S* = H, U,,(— H,) (see §2). Let 0y: T — Z be the
homomorphism defined as 0, = ¢,0.

LEmMA 4.4. The value of the homomorphism 04 on each element in the basis of T is given by
Oo(x; A Xj>y; A y;) =1 and 0, (other element) = 0.

Proof. The linking numbers are given by Ik(x;, y")= —1, lk(x;, x;") = Ik(y;, ;) =0
and lk(x;, y;)=0 (i #j). Then the result follows from a direct computation using the
definition of the homomorphism 0 together with the above facts.

Now we summarize the above results as
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St : 7 B pm s
IIR()I OSITION 4.5. Let € A", | be a Dehn twist on a bounding simple closed curve p on 30
and letuy, .. uy, vy, . vy, be a symplectic basis of the homology of the compact surface

which p bounds. Define 1 = (g A+ oo+, A 0,)®2e T Then we have X)) = —0,0).
Proof. By Theorem 3.1, (iv) and Lemma 3.4, we have

h
A = — Y kg, 0 )k (e,, 0 ) — Ik(u, 0 ) k(e;, 0, )
i=1 1

=2, Y ’ Uk (g, uf )k (v, v ) —Ik(u,, l'j*)ll\lz‘,,ul")}.
i<j<h

Thcn Proposition 4.2 and the definition of the homomorphism 0,: 7—7 imply
#*(h) = —0,(t). This completes the proof.

1 Now 1rccull that T is the image of T in ¥,®H under the projection
A'[l‘® /\-“H — 273 ® H and we have Johnson’s homomorphism t,: Ay — T(see §1). In
the situation of Proposition 4.5, let fe T be the image of the element 1. Then Proposition 1.1

implics that 75(1) = — €. Hence we are naturally led to consider the value of the homomor-
phism 0 on Ker (T - T). First we prepare

‘ ProPOSITION 4.6. Ker (A2ZH ® A2H — <3 ® H)is generated by the Sp(2g; Z)-orbits of the
Jollowing three elements. ;
NEXAYI XA Y =X AX O P Ay X A Y, e LRARS
2EX AN OXNAX =X AX O P AX H X AN e P A %3
ST X AXOXZAX =X AX3 X AX, + X, A X, o X, A X5
Proof. An easy argument in lincar algebra shows that Ker (AM’H®A*H - £, ® H)
LA 2 ;
=A"H®A*HNA’H ® H is generated by the elements of the following form
anbeocad—anceobadvandobac (a,b,c,de H).

The required assertion follows from this.

LEMMA 4.7. The values 0(s;)e s (i=1,2 3) are given by

)<y

0(s,)= —1, 0(s;) = 0(s5) = 0.

Proof. Direct computation.

Now observe that the homomorphism 0,: T — 7 is not Sp(2¢; Z)-equivariant. We seek
for an Sp(2g; Z)-equivariant homomorphism T — Z such that its values on the elements s,
are proportional to those of ,. We find

ProrosiTion 4.8. The following two types of correspondences
(i) dl(w A0)®?) =0
(i) dl@anbescad) = (a~b)(c~d)—(a~c)(b-d)+(u-d)(b-c)
define a well defined Sp(2g; Z) — equivariant homomorphism d: T — 7 such that d_(sl )=3and

d(s;) = d(s3) = 0. Moreover we have d((uy Avy+- -+ Uy A v)®?) =Sh(h—1) for any
symplectic subbasis u,, . . ., u,, U 55+ eniias Uy OfH.,
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Proof. The well-definedness of the homomorphism d follows from a similar argument as
in the proof of Proposition 4.1. The values of d on s; are obtained by a direct computation.
The last assertion follows from an easy induction argument.

Remark 4.9. Tt can be shown that the above homomorphism d: T — Z can be character-
ized by the following two conditions: one is that it is Sp(2g; Z)-equivariant and the other is
their values on the elements s;. -

Next let us define a homomorphism qo: T — @ by setting qo = 0, + id.

ProposiTION 4.10. The homomorphism qq is trivial on Ker(T — T) so that it defines a
homomorphism qo: T — Q.

Proof. In view of the values of the homomorphisms 0: T — .o/ and d: T— Z on the
clements s,. s, and s, given in Lemma 4.7 and Proposition 4.8, the result follows from the
fact that the homomorphisms ( and d are both Sp(2g; Z)-equivariant (see Propositions 4.1
and 4.8). Here the point is that the values 0(s;) are constants as elements of the polynomial
algebra /. (As was alrcady mentioned before, the homomorphism 0y: T—Z is not
Sp(2g; Z)-equivariant.) This completes the proof.

Now we define a homomorphism ¢q:.#, , > Q to be the composition §oT;:
H > T-Q.

5. AMAPPING d: .#, , — Z.

In the previous section we have modified the homomorphism y: T — Z, which is closely
related to the homomorphism 2*: 4, | = Z, so as to obtain a uniquely defined homo-
morphism d: T — Z which is Sp(2g: Z)-cquivariant and wh 1lues on s; are proportional
to those of ), (see Proposition 4.8 and Remark 4.9). In this scction we prove the existence of
a homomorphism d: .4, | = Z which “realizes” the above homomorphism d geometrically.
In fact we define a mapping d:.#, , » Z whose domain is the whole mapping class group
and not just its subgroup 4", ;. It should be considered as a secondary invariant associated
with the first characteristic class of surface bundles e, e H? (.#, ; Z) introduced in [20].
Here recall that for each oriented X -bundle n: E —» X it is defined as e,(n) = n*(ez)e
H?(X;Z), where ee H*(E; Z) is the Euler class of the tangent bundle along the fibres of ©
and m,: H*(E;Z)— H*(X; Z) is the Gysin homomorphism. Now we recall several results
from our previous papers [21, 22]. First of all we have proved that H'(.#, ,; H) = Z. Let us
fix a crossed homomorphism k:.#, ;, = H which represents a generator of the above
cohomology group as follows (see [21] for details). Recall that we have fixed a system of free
generators oy, ..., %. fy,...,f, of I = m,(X7) (see Fig. 1a). Define a mapping
eT,»Z by e(y) =220 [31] [ier - 7], Where y =7y, -+ -y, is the expression of
element ye T, in terms of the generators o;*' and B;*'. For each element pe.#, ,, the
correspondence ', 33 — &(¢(3)) — &(y) € Z defines a homomorphism &(¢p): H — Z. Then we
define k(p)e H by the equation &(¢p)(u) = k(p)-u for all ue H. It can be shown that the
cquality k(py) =y, '(k(p))+ k() holds for any ¢, Ye.#,, so that the mapping
k:.#, , — H is a crossed homomorphism. '

Alternatively we can use the crossed homomorphism k':.#, | — H defined as follows
(this crossed homomorphism is more suitable for computations by means of computers
than the fcrmer one). We write 3, (i = 1. . . ., 2g) for the free generators of I'; we have fixed.
For each map ¢ €.#, , consider the element ¢;; = 8/07,(¢,(7;))€ Z[T', ], where 0/dy; is the
Fox free differential with respect to the element y; and Z[T", ] is the group ring of T',. Let
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¢i;€Z[H] be the projection of ¢;; under the abelianization ', — H. Then we define a
matrix ||¢| e GL(2g; Z[H]) to be the one whose (i, j}-component is ¢;;. It can be shown
that [loy || = [l@[|?l¥|l, where ?|ly|| is the matrix obtained from || by applying the
automorphism ¢,: Z[H] — Z[H] on each component of ||/ ||. (See Birman's book [2] for
more detailed discussion of these constructions.) Now we define the crossed homomor-
phism k':.#, , — H by k'(¢) =det| ¢ '| e H.

The crossed homomorphism k (or k') vanishes on Ker(.#, , —.#, ), where ./, , =
no(Diff, (£, #)) is the mapping class group of £, with respect to the base point e D. Hence
it induces a crossed homomorphism k:.#, , — H. If we restrict k to the Torelli group
Jy.4 € M, then we obtain a homomorphism k:.#, , — H (which is independent of the
choice of k) and in [21, 22] we proved that the equality k(y) = (2 — 2g) [] holds for all
vem(E,) = S, . Also it was proved in [22] that the homomorphism k:.7, , - H
coincides with Johnson’s homomorphism :., | — H given in [10]. §5 up to signs. It
follows that the crossed homomorphism k is trivial on the subgroup .#, . Alternatively this
fact can be duduced directly from the definition of k along the lines of the proofl of
Proposition 1.1. Also it is easy to see that k is “stable with respect to ¢” in the sense that the
following diagram is commutative:

k
My, — H(E.:7)
! !
Mgy > H(Z,,; 2).

k

Next in [22] we proved that the cohomology class ¢, € H>(. #, . Z)is represented by
the 2-cocycle ¢ of .#, | given by '

c(@ ) =k(p) k(™" (p.he.i, )

Finally viveshown thati*(e,) = Oin H(.4, \: 7) wherei: 7, | — A, is the inclusion.
Therefore there exists a mapping d:.7, | — 7 such that dd = i*(c). At this stage it is well
defined only up to elements of H'(.#, | ; Z), however there exists a canonical choice for it as
will be seen below. Let n: E — X be an oriented Z,-bundle over a closed oriented surface X
so that E is an oriented closed 4-manifold. Then it is casy to deduce from the definition of ¢,
that

{[X],e,)=3signE.

Namely the cohomology class e, e H*(.#, ,; 7) “represents™ thrice of the signature of
oriented surface bundles over surfaces. On the other hand sign E depends only on the action
of m;(X) on the homology of the fibre. In fact Meyer [16] defined a 2-cocyle © of the
symplectic group Sp(2g; Z) which represents —sign £ as follows. For cach clement o,
Y €Sp(2g; Z) define

Vow =lu,0)eH® H; (0 "~ Nu+0p 1)y =0"

)
Then the puifing Vi X Vooy = Z defined by ((uy,r). (uyory)) sl Ve (1 e,
(ug v)e V, 4, i = 1,2) turns out to be symmetric and bilincar and he defines t(g. ) to be ity
signature. The cocycle 7 is stable with respect to ¢ inan obvious sense. 11 we consider « as a
2-cocyclf: of .#, , via the representation Tyl = Sp2yg: 7)), then we can conclude that
there exists a mapping

d:l,, 7

such that 6d = ¢ + 3t. Moreover since the group -/, is perfect for ¢ - 3 (wee [ 7). such a
mapping is unique. Also d is stable with respect to g, namely the following diagram is

I
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commutative:
d
My ——— 17
Vet
R o
My

Il we represent any clement p €. #, | as a product of commutators, then we can evaluate the
number d(¢p) explicitly. For example we have shown that for any of the Lickorish generators
of .4, | (sce [13]), the value of d is equal to 3 (see [25]).

Prorosimon 5.1, For two elements @, e 4, |, we have

(i) dloy) =d(@)+dW)+ k(o) k() —3t(p, )
(i) dlp ')y= —d(p)

(iii) dippp ') = dOh) + k(@) (W k() + k(i)
(iv) If o, pe s, then d([p, 1) = 2k(p)- k().

Proof. Since d(p, ) = () — (@) + (), we have d(pi) = d(p) +d(y) — (¢ + 31').((/), V).
(i) follows from this. (ii) is an casy consequence of (i) together with the facts that d(id) = 0
and (g, ¢ ') = 0 for any pe.#, . To prove (iii), using (i) and (ii) we compute

dlpyo ') =d(ep)+do ")+ k(op) ¢, ' ki) =3t(py, 9~ ")
=d() + k() P k() = 3t(p, ) + k(o) oy ' k(™ ") = 3t(py, 0 )
=dW) + k(@) (p k(W) + k(o).

Here we have used the fact that (¢, )+ t(p, @ ') =0 (see [16], p. 245). Finally we
prove (iv). If ¢,ye.g, ,, then (iii) implies d(pyo ') =d)+ 21\‘((/))'1(“//). Hence
d(Lo, ) =d(@yo™ ") +dp ")+ k(oo ') k(p ') = 2k(p)- k(). This completes the
proof.

Remark 5.2. By virtue of the above Proposition, if we represent any element g e.#,, , in
terms of the Lickorish generators, then we can compute d(¢p) explicitly.

Tueorem 5.3. Let A, | be the subgroup of the mapping class group ./, | geucrawz{ by all
the Dehn twists on bounding simple closed curves. Then the mapping d: Xy, =2 is a
homomorphism. Moreover if e A, | is a Dehn twist on a bounding simple closed curve of
genus h, then

d(p) = 4h(h—1).

Proof. The mappingd: 4", , — Z is a homomorphism because the 2-cocycles ¢ and t are
zero on A", ;. Next according to Proposition 5.1, (iii), we have d(py¢p ') = d() for any
yex, and pe.#, . Also the mapping d is stable with respect to g. Hence to prove the
rcquiréd assertion it is enough to prove the following. Namely if ¢ is the Dehn twist on a
simple closed curve on £ which is parallel to the boundary, then d(y) = 4g(g — 1). Now we
assume first that g > 2 and let a;, f§; be the elements of 7,(Z,) which are the images of a;, f3;
under the projection 7, (X)) — m,(Z,). We can consider a;, f; as clcmcnts of 4, , because
n,(Z,) is naturally a subgroup of ., . Now choose elements &;, f§; of .#, | Asuch that they
projécl to &, f; under the projection S 41— F,4 4 Then a direct computation shows that

(&, B1 - [8, B,]=y>?

(Up to signs this also follows from [17].) If we apply Proposition 5.1 to the above equation,

e
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we find

(20— 2)dW) = ¥ 2k() k(F)
i1

e

22 -2g9)%x; y;

i=1

2g9(2 —2g)%.

Hence d() = 49(g — 1) as required. Next ifg =1 then y can be expressed as (A py4,)* where
asin§2 4, (resp. u, ) is the right handed Dehn twist on the longitude curve I, (resp. meridian
curve m;) on I (see Fig. 2). Then a direct computation using Proposition 5.1 together with
the fact that d(4,)=d(u,) =3 (see [25]) implies d() = 0. Alternatively this fact can be
proved by applying our mapping d on a certain relation in A'3,1, proved by Johnson ([8],
$§1V, V), between Dehn twists on bounding simple closed curves of genus 1, 2 and 3 which is
derived from the well known relation, due originally to Dehn, of the mapping class group of
the 2-sphere with four open discs removed. This completes the proof.

In view of Proposition 1.1, Proposition 4.8 and the above theorem, we can say that the
homomorphism d: ", | — Z is the geometric realization of the homomorphism d: T'— 7
defined in §4 (up to a non zero scalar).

6. MAIN THEOREM

Using the two homomorphisms d: H'y.1 = Z defined in §5 and g¢: A, 1 = Q defined in
§4, let us define a homomorphism 6: A 4.1 —Q by setting § =55d + ¢. The following is our
main theorem.

THEOREM 6.1. (i) Im & is contained in Z so that we have a homomorphism §: A2

(1)) If two elements ¢, e, | are equivalent each other in the sense of Definition 2.1,
then we have () = d(f) so that we have a mapping 8: #'(3) — Z. Namely & gives rise
to an integer valued invariant for oriented homolog y 3-spheres.

(iii) The mapping &: #'(3) - Z coincides with the Casson invariant A.

Remark 6.2. Once we assume the existence of the Casson invariant 4, then the statement
(ii) in the above theorem is an immediate consequence of (iii). The meaning of the above
theorem is that we can prove the well-definedness of the invariant & for oriented homology
3-spheres without assuming the existence of 1.

Proof of Proposition 6.1. Here we only prove (i) and (iii). The proof of (ii) will be given in
the second paper of this series [25] mainly because of its length. Since both of the mappings
¢ and A* are homomorphisms from the group A, to Z (or @) (see Proposition 3.5), to
prove (i) and (iii), we have only to prove the following. Namely for each Dehn twist vex,
on a bounding simple closed curve p on Z,, we have 5(y) = A*(if). Now choose a symplectic
basis u,, . . -» vy of the homology of the compact surface which p bounds. Let
t=(@y Avi+ ... 4u, Av,)®2eT and let feT be its image. Then we have t,())= —7
by Proposition 1.1 and A*() = — 0,(¢) by Proposition 4.5. On the other hand according to
Proposition 4.10 we have

A R P

00(t) = (0o + 3d)(r) — 4d(1)
= Go(D)—4d(1).

TOP 28-3-D




322 Shigeyuki Morita

But Proposition 4.8 and Theorem 5.3 imply d(t) =Lh(h— 1) = §d(y). Hence we have
0,(1) = —q(})—2zd ().

Therefore A* = J4d + g = & as required. This completes the proof.

Remark 6.3. For each element gpe.#, , let A%: X, —>Z be the homomorphism
defined by 2*()) = A*(¢~ "Y@)(y € A, ). Then by Theorem 6.1 together with the results of
§§4, 5, we can write

/‘$ = ’21111 +4,
where q,: A, , - Q is the homomorphism defined similarly as the homomorphism g:
A", = Q. More precisely in the definition of g we just replace the ring homomorphism &,:
« -7 by another one ¢, .« —Z which is defined by &,(I(u, v)) = lk(p,(u), ¢, 0)")
(u,ve H). The homomorphxsm q,, should be considered as the normalizing term, in our

: 3
expression of the Casson invariant, with respect to the Heegaard embedding Z, 5 z,c S

From the above formula we can conclude that the homomorphism 75: H gy — T contains
all the informations about the difference A* — 4% for all pe. 4, ;.
Let us write ¢, , for the subgroup .#(4) = Kert, of X, , (see §1). Then we have

PROPOSITION 6.4. 7% = d on ¥, | and it is a nontrivial (in fact surjective) homomorphism
L L.
q.1

Proof. We have only to prove the nontriviality. For that we consider the element s, € T
which goes to zero in T (scc Proposition 4.6). A similar argument as in the proof of
Proposition 1.2, we can show that there are clements w;, v; with u;-v;=1(=1, , r for
some r) such that

Yok A )3 AN AT =
1

Hence there exists an clement i € ¢, , such that d(y) = 24.i.c. 2*(y) = 1. This completes the

proof.

Remark 6.5. The above element i €., | has the following interesting property. Namely
for any embedding it £, — §* the homology 3-sphere obtained by cutting S* along i(X,) and
reglueing the resulting two pieces by the map W has Casson invariant | independent of the

embedding i.

Remark 6.6. According to the computations the author has made so far, it seems to be

very likely that #'(3) = lim &, ,/~. If this were true, in view of the above Proposition we
P
can say that s5d is exactly equal to the Casson invariant.
As another application of the main theorem, we can answer a question of Johnson (g,

p. 172, Problem B) negatively.

COROLLARY 6.7. The three-fold commutator subgroup [[ 7, 1% 11, Fg.1 1 of the Torelli
group. which is a normal subgroup of &, . has an infinite index in ./’q.,

Proof. We have shown that the homomorphism d: ¢, , — Z is non-trivial. But it is easy
to deduce from Proposition 5.1 that d is trivial on the three-fold commutator subgroup of
the Torelli group. The result follows.
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