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Winding Numbers on Surfaces, 1.

D. R. J. CHILLINGWORTH

§ 0. Introduction

This paper describes a theory of winding numbers for homotopy
classes of closed curves on surfaces, based on ideas introduced by
Reinhart in [5]. In the sequel (to appear) we give some applications of the
theory to the problem of determining when a given element of the
fundamental group of a compact surface contains simple closed curves
(see [2] for an announcement of the result), and to the study of the
homeotopy group (the group of homeomorphisms modulo those
isotopic to the identity) of a closed surface.

In §1 we define the winding number wy(y, x) of a regular closed
curve y with respect to a non-vanishing continuous vector field X on a
smooth surface M with base-point x € y. This is a natural generalization
of the well-known “rotation number” of a regular closed curve in the
plane (see e.g. [10]), and is essentially the definition given in [5]. Here,
however, we include the case when the surface is non-orientabie. In § 2
we show how to define a “winding number” for any element of 7, (M, x),
using a preferred family of regular closed curves in each homotopy class:
when the homotopy class contains simple closed curves this coincides
with the definition in [5]. A theorem of Smale 1s used in § 3 to deduce
a generalization to surfaces of the Whitney-Graustein Theorem [10]
on regular closed curves in the plane, proving for example that two
homotopic orientation-preserving regular closed curves on M which are
not nullthomotopic are regularly homotopic if they contain no null-
homotopic loops. §4 relates winding numbers to cochomology and
homology, § 5 is concerned with the removal of base-point restrictions,
and § 6 shows how the theory can be modified to cope with closed
surfaces which may not admit continuous non-vanishing vector fields.
In § 7 we give formulae for calculating the winding number of any given
element of 7, (M, x) in terms of the winding numbers of a set of generators.
Some possible directions in which the theory could be generalized are
mentioned in § 8.

We assume a familiarity with some elementary homotopy theory
and algebraic and differential topology. By a surface we mean a connected
separable 2-manifold, with or without boundary. Any compact orientable
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surface may be regarded as a (punctured) 2-sphere with handles attached.
The genus of the surface is the number of handles. Any compact non-
orientable surface may be regarded as a (punctured) 2-sphere with
Mobius strips attached, and the genus in this case is the number of
Méobius strips. This classification of compact surfaces is standard, and
can be found in many books, for example [4], and also in [12]. A path
in a surface M is a continuous map of a closed interval into M ; by abuse
of terminology we shall usually think of the path as the image of the map.
A path is simple (often called an arc) if the map is an embedding. A closed
curve is {the image of} a continuous map of a circle §* into M ; it is simple
if the map is an embedding. We think of S' as the unit circle in the
complex plane, and as being equipped with a fixed orientation. Closed
curves in M are thus automatically oriented. The boundary of M is
denoted by 0M. If M is a smooth manifold then TM — M denotes the
tangent bundle, although we do not always distinguish between a
bundle and its total space. A vector field is a section of the tangent bundle:
all vector fields will be assumed to be continuous. The symbols R, Z
and Z,, denote the real line, the additive group of integers, and the
cyclic group of order m, respectively.

This paper and its sequel constitute part of a Ph. D. thesis submitted to the University
of Cambridge in 1968.

The author wishes to express his gratitude to his supervisor Dr. W. B. R. Lickorish
for continually dispensing optimism and encouragement at all stages of the work. He also
wishes to thank Les Harris for first bringing to his notice the paper by B. L. Reinhart on
winding numbers, and to thank the Science Research Council for their financial support
for three years. Finally, he would like to thank the referee of this paper for his many
helpful comments and advice on ways to improve the original version.

§ 1. The Winding Number of a Regular Closed Curve

Let M denote a smooth (say C') surface. Until stated otherwise M is
assumed to be non-compact or to have non-empty boundary and thus
to admit {continuous) non-vanishing vector-fields.

(1.1) Definitions. A closed curve on M given by
f:8'->M
is regular if f is C' and the tangent map
Tf:TS'->TM

is injective on each fibre. In other words, continuously-varying non-zero
tangents exist at all points of the curve.
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Let v, denote a vector in the tangent plane T,M to M at xe M,
1. in the fibre of TM over x. A regular closed curve as above is based
at v, if f(1)=x and Tf((1,1))=v,, where (1,1)e TS'=S' x R. Thus v,
is a tangent to the (oriented) curve at x.

Let X be a non-vanishing vector-field on M, and let y = f(S') be a
regular closed curve based at v,, x€ M. The winding number wy(y, x)
may be defined intuitively as the total number of rotations that the tangent
vector to y makes relative to the X-vector as the curve y is traversed once
in the positive sense. The sign of wy(y, x) depends on a choice of orienta-
tion for T, M, this orientation being transported to T,. M for each x" ey
by the appropriate path xx' in y.

We shall now make this definition more precise.

Let M be given some Riemannian structure, automatically inducing
anorm || ||, on T, M for each x € M, and let

ToM= | ) {ve TM||lv},=1}.

xeM

Any continuous map f : §'— M induces a pull-back over S! from T,M
over M, ie. a bundle E/ - S* with fibre S! such that the diagram

Ef—F M
|l
S'1 L , M

commutes, where p, and p’ are bundle projections and F is an iso-
morphism on each fibre. The total space E is a torus or a Klein bottle
according to whether y = f(S') is an orientation-preserving curve or not.

A non-vanishing vector field X defines a section X, of T,M by
Xo(x)= XX/ X(x)|l;, x€ M, and the composition

Xof:St>ToM
pulls back to a unique section
X/ :S*-E'
such that F X/ = X, f. If y is regular the map T, f : §! - Ty M defined by
Ty f(2) = Tz D/I TS (2 Dy
also pulls back to a unique section
Z':S'SE

such that FZ/ = T, f. Furthermore, if y is based at X(x)e T,M then
X/ (1)=Z7(1) = ey, say, and so X/ and Z” represent elements { X}, {Z/}
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of n,(E’, e,). Since X’ and Z7 are sections of E/ the element {Z/} {X/} !
en,(E’, ey) belongs to the kernel of the homomorphism

phimi(EY, e) > m (ST, 1)
induced by p/. From the bundle exact sequence
0=m,(S", =7, (E, e0)-+7r1(Ef eo)—”H(S 1),

where i ; E,— E7 is the inclusion of the fibre E, over 1 € §?, it follows that
(ZY (X7} =il wf

for some unique w/ € 1, (E,, €,). A choice of orientation of T, M induces
an orientation of E, 2~ §?, and w/ may then be thought of as an integer,
which is defined to be the winding number wx(y, x) of v (based at x) with
respect to X. It is easy to check that this corresponds to the intuitive
definition above, and to the definition given by Reinhart [5].

Remarks. 1. The definition is clearly independent of the choice of
Riemannian metric on M.

2. The bundle language, used here both for precision and in order
to indicate possible generalizations (see § 8), tends to obscure the simple
underlying geometry. We have n,(E/, e))={a,blaba™'b ' =1} if y is
orientation-preserving (E' is a torus) or {a, b|aba™'b=1} if y is orienta-
tion-reversing (E/ is a Klein bottle) We may choose ¢ ={X’} and b to
be represented by EO then pl(a) generates n (S, 1)=Z and pL(b)=0.
Since pL({Z’})=pl(a) it follows from the defining relations that
{Z'} = b™a for some unique integer m; then wy(y, x)=m

3. Recall that y is based at X(x) and we are assuming M is non-
compact or ¢ M + 0. We later investigate the affects of removing these
conditions.

4. The definition of winding number may easily be extended from
regular closed curves to piecewise regular closed curves: see [6]. A piece-
wise regular closed curve is a closed curve which is regular except for a
finite number of points at which the tangent may vanish or be discon-
tinuous. It is often helpful to use piecewise regular curves to calculate
winding numbers of homotopy classes ([6]). The calculations in §7
below, for example, can be carried out more easily without the necessity
of approximating piecewise regular curves by regular ones.

We now note two elementary properties of wy(y, x). Recall that all
vector fields are assumed continuous.

(1.2) Definition. Two non-vanishing vector fields X, Y on M are
homotopic (write X ~ Y) if the maps X, Y : M — TM are homotopic via
X,: M - TM (0 <t < 1) which are non-vanishing vector fields. They are
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homotopic relative to x or relx (x € M) if X,(x) remains fixed throughout
the homotopy.

(1.3) Lemma. X ~ Y relx=>wy(y, X) = wyl(y, X) for any regular closed
curve y based at X (x) = Y(x).

Proof. Since wy (7, x) is integer-valued and varies continuously with
t it must be constant. Alternatively {X/}={Y’} (where y= f(§")) so
(Z7 XNy ={Z7 Yy

(1.4) Definition. Two regular closed curves y = f(S!), 6 =g(S') on M
are reqularly homotopic (write y%é) if f and g are homotopic via C!
maps f,:S'—>M (0=t=1) such that Tf,: TS'—>TM is injective on
each fibre (so y, = £,(S?) is regular) and varies continuously with respect
to t. They are regularly homotopic relative to v, orrelv, (v, € T.M, xe M)
if they are based at v, and Tf,((1, 1)) remains fixed (=v,) throughout the
homotopy.

(1.5) Lemma. }'%5relvx==»cux(y, X)=wx(d, x) for any non-vanishing
vector field X on M such that X(x)=v,.

Proof. Since wy(y,, x) is integer-valued and varies continuously with ¢
it must be constant. Alternatively one may construct a cumbersome
algebraic argument using a bundle isomorphism E/ = E¢ induced by the
homotopy between f and g.

§ 2. The Winding Number of an Element of =, (M, x)

In this section we show how to pick out from each homotopy class
of closed curves on M based at x a particular family of regular curves
which are, roughly speaking, straightened out as much as possible. The
main theorem then states that the winding number of such a regular
curve (with respect to some given X) depends only on the original
homotopy class. Using this we define winding numbers for elements
of n,(M, x).

Let y = f(S') be any closed curve on M. A point x € y (where x does
not now necessarily denote the base-point) is a self-intersection point
of y if f~!(x) contains more than one point, or a double point if {~'(x)
contains exactly two points. A loop in y with vertex x is f (o) where « is an
arc zz' (z#2') in §' with f(z)= f(z')=x. The complementary loop is
f(ST—a).

(2.1) Lemma. Let y be a closed curve on §* x R having at most a finite
number of self-intersection points, each a double point. Suppose y represents
ng where g generates n,(S' x R)y=7Z (with additive notation) and n>0.
Then vy contains a loop A representing g.
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Proof. Let x be the vertex of a loop J, containing no other loop:
such 8, obviously exists. Since §, has no self-intersection points (except x)
we must have {J,} =0 or +¢g, where { } as usual denotes homotopy
class. If {8,} = +g take 1=34,. If {§,}+ +g we proceed by induction
on the number S(y) of self-intersection points of y. Clearly the lemma is
true when S(y) =0. Assume the lemma to be true for any y with S(y) £k,
and suppose now that y has k + 1 self-intersection points. Let ¢, be the
complementary loop to d, in 7. Since {&,} = ng or (n + l)g and S(e,) < S(p)
the induction hypothesis applies, and so there is a loop g, with vertex y
in g, such that {u,} = ¢g. Now we consider two cases.

Case (i). {0,}=0, {&,} =ng. If x ¢ u, then p, is a loop in y, so take
4=p,. If x € u, take A to be that loop of y with vertex y which contains x.
Then {i}={6,} +{n,} =0+g=g.

Case (ii). {8,}=—g, {e,}=+Dg. If x¢p, take A=p, W xep,
let v, be the loop of y with vertex y containing x. Then {v,} = {6,} + {u,}
=g—g=0. Let o, be the complementary loop to v, in y. Then by the
induction hypothesis (since {a,} =ng) there is a loop B, with vertex ¢
ina, such that {§,} =g. If y ¢ B, take A= B,. If y € B, take 1 to be that loop
of y with vertex ¢ that contains y (and x). Then {1} ={v,} +{B,}=0+g=¢.

(2.2) Corollary. If n=1 and vy is not simple then y contains a null-
homotopic loop.

Proof. The complementary loop to A in y is nullhomotopic since
{=g=1{

Lety= f(S!)beaclosedcurvein M with f(1)=xeM.Letp: M*>M
be a covering of M corresponding to the cyclic subgroup of 7 (M, x)
generated by the homotopy class {y}. Let y* be a closed curve covering y
so that {y*} generates n,(M*, x*) where x* =7*np~ '(x).

{2.3) Definition. An orientation-preserving closed curve y on M is
direct if the corresponding closed curve y* on M* is simple. An orienta-
tion-reversing closed curve y is direct if 27 (the curve obtained by going
twice round y) is direct.

We now give a geometric characterization of direct curves which is
more convenient than the definition for use in applications. It follows
from the characterization that the definition does not depend on the
choice of y*.

(2.4) Lemma. An orientation-preserving closed curve y with at most
a finite number of self-intersection points, each a double point, is direct
if and only if it contains no nulthomotopic loop.

Proof. 1Ty contains a nullhomotopic loop so does y* by the homotopy
lifting property.
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If v is itself nullhomotopic then the interior of M* is homeomorphic
to IR? and so if y* is not simple it contains a nullhomotobic loop. (We
need not assume ¢ lies in the interior of M.) If  is not nullhomotopic
then the interior of M* is homeomorphic to $! x R and from Corollary
{2.2) it follows that if y* is not simple it contains a nullhomotopic loop.
In both cases projection by p gives a nulthomotopic loop 1n 3.

Note. The above lemma requires that y be orientation-preserving.
One may construct on a Mobius strip a curve as shown in Fig. 1| which
generates the fundamental group and has two self-intersections yet
contains no nullhomotopic loop.

Fig. 1

(2.5) Lemma. Every homotopy class ¢ € n (M, x) contains a direct
regular curve.

Proof. The lemma clearly holds when ¢ is the identity element
len,(M, x), so assume c= 1. The interior of M* is homeomorphic to
S'x IR or a Mébius strip. In both cases a generator of m,(M*, x*) can
be represented by a regular simple closed curve (where M* is given the
smooth structure induced from that of M by p) and p(y*) represents ¢
and 1s direct.

(2.6) Lemma. Let X be any non-vanishing vector field on M, and
xeM. If v is a nullhomotopic simple closed regular curve based at X(x)
then

Cl)x(% x) == i 1 +

the sign depending on the orientation of y.

Proof. The proof is essentially that given by Reinhart in [5]. By
attaching a collar smoothly to dM and extending X over the collar we
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may assume that y lies in the interior M, of M. Let M} (=R?) be the
universal cover of M, with smooth structure induced from M, by the
projection py: My —M,. Let X' €p;*(x) and let ' be the connected
component of pg '(y) containing x'. Since y is nullhomotopic, 7' is a
(simple) closed curve. Now p, induces a non-vanishing vector field X’
on My from X on M,, and X'~ X relx' where Xj is a field of parallel
vectors, since IR? is contractible. Clearly

wx(y, X)= wx (' x')
and by Lemma (1.3)
w}(‘(yra x;) = wX(’)(A}): X’) .
The proof is now completed by using the classical result due to Whitney
[10] which states that
wX(’)(yl’ xl) = :t 1 ’
the sign depending on the orientation of y'.

We next come to the main result which is the key to the theory of
winding numbers which follows.

{2.7) Theorem. Let X be a non-vanishing vector field on M, and let
71,72 be regular closed curves based at X(x) (x € M). Suppose {y,}={y,}
but {y,}+1en,(M, x), and suppose that y; is direct (i=1,2). Then

wx(y1, X)=wx(y;, X)
if the 7y, are orientation-preserving, or
wx(yy, X} = wx(y,, x) mod2
if the y, are orientation-reversing.

Using this theorem we are able to make the following definition:

(2.8) Definition. Let ¢+ 1en,(M, x) and let X be a non-vanishing
vector field on M. The winding number of c with respect to X, denoted
by wy{c), is defined to be

wx(y, X)
if M is orientable, or
wyly, x) reduced mod2

if M is non-orientable, where y is any direct regular curve in M based at
X(x) and representing c.

Theorem (2.7) shows that wy(c) is thus well defined (¢ +1) as an
element of Z when M is orientable or of Z, when M is non-orientable. By

16 Math. Ann 196
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convention we define
wy(l)=1eZ or Z,.

Clearly we could define wy(c)eZ whenever ¢ contains orientation-
preserving curves, but it turns out to be more convenient to reduce
everything mod?2 when M is non-orientable.

Proof of the Theorem. In view of Lemma (1.5) we may, by first altering
y, and y, by regular homotopies if necessary, assume that y, Ny, consists
of a finite number of points none of which is a self-intersection point of
V¢ OF ¥,, and that y, and y, do not cross {(although they touch) at the
base-point x. As in Lemma (2.6) we may also assume 7y, Uy, CM,.

Choose x' e pg '(x)C M; and let y, be a path in M starting at x’
obtained by lifting y;, i = 1, 2. Each y; is a simple arc since y, is direct, and
¥, and y, have the same end-point since {7,} ={y,} e n,(M, x). Let t be
the covering translation of M, corresponding to {y,}; we have " &0 for
all n = 0 since 7, (M, x) has no non-trivial elements of finite order. (When
M is compact (OM + @) this follows immediately from the fact that
n,(M, x) is a free group since M deformation retracts onto a 1-complex;
when M is non-compact note that if ny is nullhomotopic in M then it is
nullhomotopic in a compact surface M, (¢ M, + @) contained in M, and
so y is nullhomotopic in M, and hence in M.) Define

Ty)= U ") (=12, m=0,1,2,..).
n=0

Since M, is also the universal cover of the interior of M* (see before
Definition (2.3)) and y; is direct it follows that each T, (y,) is an arc.

We consider two cases separately.

Case (i} y; orientation-preserving. Let I, denote the closed curve
in M, consisting of T,,(y,) followed by T,.(7,) reversed, and let I',, be a
regular closed curve which differs from I, only inside Uu ™+ ! U where U
is a neighbourhood of x’ containing no point of

(Caly )N Lot ™" L )N T(72))

except x'. Choose I, to have no self-intersections inside Uu ™" ! U, and
to be based at X'(x"), where X’ is as before the vector field on M{ induced
from X by py. Thus I',, is to be thought of as the result of “rounding off”
the cusps of I, at x’ and ™" !(x'). By suitably choosing I', the winding
number wy(I,,, x') can be made arbitrarily close to

(m+ 1) (wx(yy, x) — 0x(y,, x) + 1

since the contribution to wy-(I},, x') from each "(y}), t"(y5) is wx(y;, Xk
— wy(y,, x) respectively, and the effect of rounding off the cusps is to
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contribute +1 depending on the side from which y, meets 7, at x. (We
are assuming that M{ is given the orientation induced by p, from the
chosen orientation of M near x.} Since wyAI,,, x}€Z we must in fact
have

Wy (L XY= (m + 1) (wx (71, X) — 0x (75, X))+ & 29

where g= + 1.
s +1 ¢ z
g -1 4 zero zero
s s

s =starting point
Fig. 2

ero zero

We now apply Whitney’s formula [107] which, after a trivial adjust-
ment to take account of points of non-transverse self-intersection, states
that the winding number with respect to a field of parallel vectors (and
hence with respect to any non-vanishing vector field) of a regular closed
curve in the plane having a finite number of self-intersections points,
each a double point, is equal to

+ 1 + (algebraic number of self-intersections})

where the sign depends on the orientation of the curve, and the self-
intersections are counted algebraically as indicated in Fig. 2 after an
appropriate choice of starting point on the curve. The starting-point
must be chosen to be an “outside” point, i.e. in the closure of the un-
bounded component of the complement of the curve®. Let y = (y; Uy})
npg '(y) where yey, U7y, and lies in the closure of a component of

tIn [10]wt-he starting point must lie on a straight line having every point of the curve
on it or on a single side of it. However, a regular homotopy of the curve introducing no

further self-intersections can be chosen to take a starting point as we have defined it to a
starting point of Whitney type, so the formula remains valid with our definition.

16*
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—(y{wy,) which has non-compact closure in M, (note that the hypo-
theses on M imply that M, is non-compact): then y’ is an outside point
of I, for all m. Assume without loss of generality that y' € y. Every self-
intersection point of I',, belongs to T,{y)nT,(y,) since each T,(y,) is
simple. Let the algebraic number of intersections of y; and "7}, be denoted
by k, {—m < n < m), the intersections being counted algebraically as in

Fig. 3.
}’{ }"ll
() i)

t“(;’,;)
+1 zero 670
—1 zero zero
Fig. 3

Since the number of points of y, Ny, is finite there exists some in-
teger m, >0 such that y) ™y, =0 if m> |my|. The algebraic number of
self-intersections of [, arising from t?(y,)nti(y,) (1Sp<m, 0Zg=<m)
is k,_, since

PHNOLGY) =" NP ()

and (P preserves orientation, but the number [, arising from y) nt4(y53)
may not be equal to k, since there may exist intersection points between
x"and y ony}. Hence foreachm=0, 1,2, ... we have from (2.9)

m m—1

(m+D{ox(r, x)—ox, ))=21+ Y L+ Y (m—n)k,
n=0 n=0

+ i(m—n+1)k_n-—g.

=1
Replacing m by m + 1 and subtracting, we obtain

m

@x(¥15X) — Ox(y2, X) = by + Z Ky,

n=—(m+1)
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the sign of + 1 being the same in both cases since y’ is an outside starting
point for both I, and I, , ;. However, if m > m, the right hand side is
zero because {,, ; =0 and

@

T)= () "0
is an embedded copy of R separating M| (since y¥ separates M*) and y|
meets T{y,} from the same side at x" and #(x’). This completes the proof
in case ().
Case (ii). y; orientation-reversing. The argument is similar to the
above, although ¢ now reverses orientation. Let m>2 be even, and let
I, I';, be constructed as before. Instead of (2.9) we have

wx (L X) = wx(y1, X) — 0x (72, X) (2.10)

since the contribution to wy.(I',, x’) from t"(y;) cancels that from "+ 1(y})
0<nsm-—2, i=1,2), and the contributions from rounding off the
cusps cancel each other out because t™* ! reverses orientation. Moreover,

oy (s s x) = £1 (2.11)

since all the t"(y}} contributions to wy(I,, ., x’) cancel out but the
contributions from the cusps do not cancel out since t™*? preserves
orientation. However, using Whitney’s formula as before to calculate
wxAl,, x"y and wy.(I,, ., X') we now obtain

x Al X) =214+ 3 L—(ky+hky+ -tk )k +kh g+ +k,)

and nzil
Oyl X) =11+ Z Li—(ko+ky+-+k)—k_ +k_s+-+k_ 1)
n=0

since ¢ is orientation-reversing. Subtracting we finally obtain

m

ox(yx)—ox(y, x)=1+ 1, + Z k, mod?2.

n=~{m+ 1)

However, if m>m, the right hand side is zero mod2 because T(y,)
separates Mg (since (2y,)* separates the double cover of M*) and 7| meets
T(y,) from opposite sides at x’ and #(x'). This completes the proof in
case (ii), and finishes the proof of Theorem (2.7).

Note. A proof of this result when M is orientable and the y; simple
can be found in [5], although more details in fact seem to be necessary
than were given there.
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We shall later make much use of the fact that the function
wy: (M, x)-»Z or Z,

is not a homomorphism. We already have w(1) =1 (instead of 0). Note
also the following fact:

(2.12) Propoesition. wy(c)= —wy(c™ ") if and only if ¢ contains
orientation-preserving curves.

Proof. 1f vy is a direct regular closed curve based at X(x) with {y} =c¢
then {—y} =c~ ! {where —7 means y with reversed orientation} but —y
is based at —X(x). We may alter —y by a regular homotopy {not
rel — X(x}) which turns the tangent at x back to X{(x): let the resulting
curve, which may be taken to be direct, be called y". If y is orientation-
preserving then clearly wy(y, x)= —wx(y, x) and so wx{c)=wx(c™"):
see also the discussion of winding numbers in a base-point free context
in § 5 below. If y is orientation-reversing then the homotopy turns the
tangent to —y through an angle of + = at the beginning of —y and the
same angle again at the end. Hence wy(c™!)= wx(y, x) mod?2
= —wy(y, x) + 1 mod2, so is not equal to —wy(c).

Consider also the following more instructive example. Let M be a
punctured torus and let X be a standard “parallel” field on M. Choose
xe M and generators a={a}, b={f} of n,(M, x) so that « is an orbit
curve of X and g is perpendicular to all the orbits: thus wy(a) = wy(b)=0.
However, aba™'b™"' is represented by curves freely homotopic to 6M,
and it is easy to check that wy(aba™'b~')= +1 (see also Corollary (5.8)
below).

The way in which wy differs from a homomorphism will be used in
the sequel to treat the problem of finding which elements of n,(M, x)
contain simple closed curves.

It would be useful to have a clear picture of the algebraic structure
of wy.

§ 3. Whitney’s Theorems Generalized to 2-Manifolds

Combining results of the previous section with a theorem of Smale
on regular homotopy [8] we can prove a generalization of the Whitney-
Graustein Theorem [10] on regular closed curves in the plane. Recall
that M is non-compact or with non-empty boundary, and is smooth.

(3.1) Theorem. If y, and y, are orientation-preserving regular closed
curves on M based at X(x), where X is a non-vanishing vector field on M
and xe M, and if {y}={y,} e n,(M, x), then

V1 V2 rel X ()= wx(y, X) =gy, X) .
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Proof. The implication one way is just that of Lemma (1.5). Note
that if the y; are nullhomotopic then by lifting to the universal covering
space of M we can apply the Whitney-Graustein Theorem, which is just
Theorem (3.1) with M = IR?, and obtain the result immediately. Compare
the proof of Lemma (2.6). Therefore we now assume {y;}+1 (i=1,2).

We first state as a lemma a special case of Smale’s general theorem
in [8]. Let y;, = f.(S"), and recall the definition of T, f from § 1.

(3.2) Lemma. The maps T,f,, Tof,:S'—ToM are homotopic
relative to the base-point y=X(x)/|X(x)|, € ToM, if and only if
1Z V2 rel X (x).

Thus it suffices for us to prove

wx(y1, X)=wx(y,, X)=To f1= T frrely.

The group n,(Ty M, y) is the free product of z,{M, x} and an infinite
cyclic group corresponding to the fundamental group of the fibre S,
say, over x of the $'-bundle T, M, with amalgamation given by identifying
the generator k of n,(S,) with

g L peta) g
for every g e m,(M, x), where &(g) = + 1 according to whether g contains
orientation-preserving or -reversing curves. This corresponds to the
fact that each closed curve based at x € M gives rise to an automorphism
of 7,(S,) which depends only on the homotopy class of the curve and is
the identity if and only if the curve is orientation-preserving. (For an
early study of =, (T, M, y) see [7].) Now recall from Remark 2 in § 1 that
{Z'+} = b™ awhere m; = wy(y;, x)and Z/ satisfies F,Z/ i = T, f,;: §' > Ty M
where F;: E/*— T, M is the natural bundle map covering f;:S'—M,

i=1,2. Thus
{To fi} =Fu(b™a)

where F..: n,(E, eq)—n,(Ty M, y) is the homomorphism induced by F;.
Clearly

Ful@={p}=c

Fu(b)y=h
fori=1,2 and so {T, f;} = h™c. Hence

my=my={T, {1} ={To f2},

which completes the proof of Theorem (3.1).
In view of Theorem (2.7) we have the following

(3.3) Theorem. If y,,y, are direct orientation-preserving regular
closed curves on M based at v,e T M, xeM,and {y,} ={y,} ¥ len,(M,Xx),
then y, vy relv,.
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From the methods of [10] and using Theorem (3.1) it is straight-
forward to derive the following formula for the winding number of a
homotopically non-trivial regular closed curve y with a finite number
of self-intersection points, each a double point, on an orientable surface.
The formula generalizes Whitney's formula [10] for the planar case,
which was used to prove Theorem (2.7).

(3.4) Formula. If M is orientable and X is a non-vanishing vector field
on M such that y is based at X (x) then

@y, X} = wy{c)+ N

where c={y}exn,(M,x) and N is the algebraic number of self-inter-
sections counting only those which are vertices of nullhomotopic loops,
and each self-intersection is counted algebraically as indicated in Fig. 2
after a choice of starting point lying on no nullhomotopic loop.

§ 4. Winding Numbers, Cohomology and Homology

In this section we assume that M is compact and has non-empty
boundary.

Let X, X, be two non-vanishing vector fields on M, and suppose that
y= f(S!) is any (not necessarily regular) oriented closed curve based at
x € M. Suppose also X,(x)= X,(x). As in § 1 we may construct sections

X/ S'sE, =12,
and since p,{X{} = p.{X{} we obtain
XXy =i

for some u' e m,(Ey, €5) = Z. One can think of «/ as the total number
of times that the X -vector rotates relative to the X,-vector as yis traversed
once, the orientation of T, M being transported around y.

If v is a regular closed curve based at X,{x}= X,(x) then from the
definition of winding number we immediately have

(4.1) Lemma. u/ = wy,(7, X) — wy, (7, x).

Let vi,vy, ..., vy,4,- (M orientable of genus g with r boundary
components) or vy, v,, ..., V,,,_; (M non-orientable of genus n with r
boundary components) be a system of direct regular closed curves on M,
all based at v, € T, M, whose homotopy classes generate 7,(M, x). Such
a system is called a regular generating system {(compare [5]). Since the
homology classes of the v; regarded as singular 1-cycles form a basis
for H,(M;Z), any function which assigns an integer n; to each v, defines
a homomorphism H,(M;Z)—Z which can be identified with an element
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of H'(M;Z) since H,(M ;%) is free abelian (M has the homotopy type
of a 1-complex). Let the element of H!(M;Z) defined by the function
which assigns u/* to v; (where v; = f;(S")) for each i be represented by a
singular cocycle which we denote by d{X,, X,}: any two such representa-
tive cocycles differ by a coboundary and so take the same values on any
given l-cycle. (This construction is closely related to the standard
obstruction theory for sections of bundles: see [9] for example) If
y= f(8') is any closed curve based at x then since y is homotopic (and
hence also homologous) to a sequence of the v; and their inverses it is
easy to check that in the case when M is orientable we have

w ={d(X,, X,), 1)

where y is regarded as a I-cycle and {s,0) denotes the value of the
cochain s on the chain 6. When M is non-orientable the fact that if
fi;: 8' =M represents the composition v, > v; then w/ may not equal
w'*+u’ (it will do so if v; is orientation-preserving) means that we at
best have

uw =X, X,),y mod?2 .

If X, is a given non-vanishing vector field and d is any singular
1-cocycle then when M is orientable we can construct a non-vanishing
vector field X, on M such that (d(X,, X,), vp>={d, v,) for | £i<2yg
+r— 1. This may be done by deformation retracting M onto a wedge W
of circles in M, constructing X, ou W C M such that 4% = {(d, ;> for each
W =g,(S") belonging to W, and extending X, to the whole of M. It then
follows that d(X|, X,) has the required property since {d(X, X>), ;>
= <d, y;» for each y, and the homology classes of the y; generate H, (M ; Z).
When M is non-orientable the same will be true if we take coefficients
all the time in Z,. Using Lemma (4.1) we thus easily obtain

(4.2) Theorem. Let ¢y,Cy,....C 4.,y (M orientable) or ¢y,¢;,....C,p
{ M non-orientable) generate nt, (M, x). A non-vanishing vector field X may
be chosen to assign any given values (in & or L, respectively) to the
wx(c) 1 2ig2g+r—1 or n+r—1) and then for all other c e n,(M, x)
the value of wy(c) is independent of the choice of X.

The following result relates winding numbers and homology.

(4.3) Lemma. If y,y' are regular closed curves based at v,.e T.M,
xe M, and y is homologous to v with coefficients in 2L (M orientable) or
Z, (M non-orientable) then

o Wx, (7> X) = wx, (7, x) = 0y, (7', X) = 0x, (7, %)

Wy, (7, X) = wy, (7, X) mod2<>wyx (7, X) = wy, (', x) mod 2
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respectively, where X, and X, are any non-vanishing vector fields with
X (x)=X,(x)=1,.

Proof. By symmetry it is enough to prove the implications in one
direction. By Lemma (4.1) the left hand sides imply

<d(X1 ’ Xz)s Y> =0
taking coefficients in Z or Z, as appropriate, and so

d(Xy, Xo), v = d(X,, X3), v~ >
= <d(XI’ Xz)v aﬁ>

for some 2-chain §, and

(X, X,), 6> = (0d(Xy, Xa), B
=0

since d(X,, X,) is a cocycle. The right hand sides then follow, again
using Lemma (4.1).

(4.4) Corollary. If v is homologous to zero with coefficients in 4
(M orientable) or &, (M non-orientable) then wx(y, X) is independent, or
independent mod 2, vespectively, of the vector field X.

Proof. Take 7" to be a nullhomotopic simple closed curve. By Lemma
(2.6) the winding number wy{y’, x) is +1, the sign depending on the
orientation of y and not on X. Hence wy(y, x) is independent (or in-
dependent mod2) of X by Lemma (4.3).

§ 5. Removal of Base-Point Restrictions

So far we have considered only regular curves with a given base-point
and base-vector. In this section we see how the definition of winding
number can be extended to situations in which this restriction is removed.

We continue to assume that M is smooth and admits non-vanishing
vector fields, although we do not assume as in § 4 that M is compact.

Let y= f(S') be a regular closed curve on M, and let X be a non-
vanishing vector field on M. Two sections X7/, Zf of E/ can be defined
just as in § 1, giving closed curves in E/ based at e, = X/(1), e, = Z/(1)
respectively. The homotopy class of Z/ determines a conjugacy class of
elements in 7, (E’, e,).

If y is orientation-preserving then n,(E/, e,) is abelian so we think of
{Z'} as an element of n,(E’, e,) and then {Z/} {X’} ™! defines a unique
element w/ € m,(E,, e,) =Z as before. If M is orientable we call this the
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winding number of y with respect to X, denoted by wy(y). If M is non-
orientable we reduce w/ mod2 before calling it the winding number
my(y): this turns out to be convenient for simplifying the statements of
some results below. It is easy to check that wy(y) does not depend on
the choice of base-point 1& ', provided the orientation of the fibre
of E/ over the base-point is chosen appropriately. Intuitively, wy(y) is as
before the total number of times the tangent vector rotates relative to the
X-vector on going once around 7 in the positive sense, taken mod2 if M
is non-orientable.

If y is orientation-reversing then E/ is a Klein bottle and
up,u,em,(E/,e,) are conjugate if and only if u, =h?"u, for some
reZ (see Remark 2 in § 1). Hence w/ e n,(E,, e,) is defined only up to
multiplication by an even power of the generator, so we can only define
wy(y) in this case as an element of Z,. Again, any choice of base-point z
in §' gives the same result as z= 1.

In both cases wy(y) can be described as follows. Choose xey and
deform y by a regular homotopy to a curve 7" based at X(x). Then

wxly) = wyx(y, x)
if M is orientable, or
wy () =wx(y, x) reduced mod?2

if M is non-orientable.
Lemmas (1.3) and (1.5) generalize immediately to the base-point
free case:

(5.1) Lemma. X ~ Y =>wy(y)= wy(y) for all y.
(5.2) Lemma, y = & = wy(y) = my(8) for all X.
In the new context Theorem {2.7) becomes

(5.3) Theorem. Let X be a non-vanishing vector field on M, and let
Y1, 72 be direct regular closed curves which are ( freely) homotopic but
not nullhomotopic. Then wy(y,) = wx(y,).

Note. The original definition of direct (2.3) involved a base-point,
but is clearly independent of the choice of base-point.

Proof of Theorem. Free homotopy classes correspond to conjugacy
classes in the fundamental group. Deform y, to a curve 7, by a regular
homotopy such that y, and y, have the same base-vector v, e T, M,
x € M:then {y,} =e{y,} e ! for some e € n,(M, x). Deform y’, by a further
regular homotopy which takes x around a path corresponding to e to
obtain y, with {13} = {7} € m,(M, x). We suppose that y} is still direct
{since the regular homotopies may be performed using smooth isotopies
of the whole of M) and based at v,. Then if X is a non-vanishing vector
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field with X(x) = v, we have
Wy (72) = wx(y;
by Lemma (5.2), and
wx (71, X)=wx(73, X)

(taken mod?2 if y, is orientation reversing) by Theorem (2.7). Hence
wx(y 1) = wx(y2)-

(5.4) Corollary. If ¢, and ¢, are conjugate elements of n{M, X} then
wx(c) = wx(c,).

We can therefore define a winding number wy(C) for every conjugacy
class C of elements of the fundamental group of M. Namely, if 1 ¢ C let

w{Cy=wy(c), ceC
= wy(y)

where y is a direct regular curve representing C. Thus wx(CyeZ or Z,
according to whether M is orientable or non-orientable. If 1 € C define
wx(C)=1.

Applying Theorem (3.3) to y, and 7 in the proof of Theorem (5.3)
we immediately deduce the base-point free version of Theorem (3.3).

(5.5) Theorem. If y,, y, are direct, orientation-preserving regular
closed curves on M, and neither curve is nullhomotopic, then

HENIE S TP

An unbased regular generating system for M is a collection of direct

regular closed curves vi(i=1,...,2g+r—1 or n+r~1) on M such that

there is a (based) regular generating system consisting of curves v; with

v; freely homotopic to v; for each i. Using Theorem (5.3) and an unbased
regular generating system it is easy to show

(5.6) Theorem. Let C,,C,,...,Copy,y (M orientable) or
Cy,Cy, ..., Cpiroy (M non-orientable) be conjugacy classes of generators
of the fundamental group of M. A non-vanishing vector field X may be
chosen to assign any given values (e Z or L, as appropriate) to the wy(C;)
(1£i£2g+r—1Yorn+r—1) and then for all other conjugacy classes C
the value of wx(C) is independent of the choice of X.

It is obvious that, after suitable rewording, Lemma (4.3) and Corol-
lary (4.4) continue to hold in the base-point free case. (The re-wording
must take account of the fact that wy(y) e Z, for all y on a non-orientable
surface.)

We end this section with an elementary but useful geometric result.
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(5.7) Lemma. Let y,,...,7, be disjoint regular simple closed curves
on M which form the boundary components of a compact surface NCM,
where N has genus denoted by g’ or v according to whether N is orientable
or not. If N is orientable suppose that all the y; have orientations consistent
with the orientation of éN induced by a chosen orientation of N. Then

1

wx(y)=t(r+2¢'=2)
=1
when N is orientable, the sign depending on the orientation of N, or
Y wxly)=r+n" reduced mod2
i=1

when N is non-orientable, for any non-vanishing vector field X on M.

Proof. Span the y; by discs D, to obtain a smooth closed surface N’
from N. Let u; belong to the interior of D;, and extend X|N to a non-

vanishing vector fieldon N'—{ ] v,. Let X, be a field of “parallel” vectors
i=1

in D;, defined using some specific diffeomorphism between D; and the

unit disc in R Now

wx,(y)=*+1 (mod2 if N is non-orientable)

by Lemma (2.6), and wy () — wx(y;) = t¢; (reduced mod2 if N non-
orientable) where g, is the index of X at v;, that is the number of rotations
the X-vector makes relative to the X-vector, with respect to a chosen
orientation of a neighbourhood of ¢, on a (small) suitably oriented closed
curve around v; (see Lemma {4.1)). When N is orientable the signs are
both + or — together, and depend only on the orientation of y;; since
the y, are oriented consistently the signs are the same for all i. The sum
of the g; is well known to be equal to the Euler characteristic y5- of N,
and yy.=2—2g’ or 2~ n'". This gives the result.
Taking r=1 we have

(5.8) Corollary. If y is a regular simple closed curve homologous to
zero, bounding a surface N of genus g’ (n') on M, then when N is orientable

wx v =129 -1
or when N is non-orientable
wyv(y) =1 —1 reduced mod2.

Note. In fact it is easy to show that in the latter case wy(y, x)
= +(n’ — 1), where x is any base-point on y, and the sign depends on a
choice of orientation of a neighbourhood of y in M.
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Taking r =2 gives

(5.9) Corollary. If y,, y, are disjoint regular simple closed curves
which are the boundary components of an orientable surface N CM then

wx n7) = wxw(‘/z) mod?2

for every non-vanishing vector field X on M.

Note. Knoppers has shown that if y,, y, are homologous regular
simple closed curves (not necessarily disjoint) on an orientable surface
then wy(y,) = wy{y,) mod2. If “simple” is replaced by “direct”, however,
there exist easy examples (which may be constructed using the formulae
in § 7, for example) which show that the result then fails.

§ 6. Winding Numbers on a Closed Surface

If M is a closed surface (i.e. compact and with empty boundary) then
M admits continuous non-vanishing vector fields if and only if y,, is
zero, but if ve M then M — v always admits such ficlds. We now show
how this allows us to define a notion of winding number for curves or
homotopy classes of curves on a closed surface, although no longer
necessarily as an element of Z or Z,.

Let M for the remainder of this section denote a closed surface, with
x,veM and x=+v. Let X be a (continuous) non-vanishing vector field
on M —v, and let 7 C M — v be a regular closed curve based at X(x). The
index of X at v depends only on M and not on X: it is the Euler charac-
teristic of M, which is 2 — 2¢g (M orientable of genus g) or 2 —n (M non-
orientable of genus n). Let N denote the complement in M of the interior
D, of a closed disc D in M —x such that ve D,. The restricted bundle
T,M|D—D is trivial, having total space D x S' with infinite cyclic
fundamental group generated by H, say. Using van Kampen’s Theorem
it is easy to see that #{Ty M, y) (where y= X(x)/| X (x}|,) is obtained
from 7{Ty N, y) by adjoining the generator H and the relation

H* %d=1

or
H 2d=1
where d is an element of n,{Ty N, y) corresponding to a closed curve
in Ty N covering some simple closed curve in N based at x and freely
homotopic to N =dD. It follows from Smale’s theorem (Lemma (3.2))
that two regular curves on N which are based at X(x) and which are
regularly homotopic rel X(x) on M have winding numbers which may
differ by a multiple of 2g — 2 (or n—2) (see [5]). Intuitively one may
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imagine the winding number changing by 2g— 2 (n—2) as the curve
passes through v during the homotopy.

Clearly, then, we cannot hope for Theorem (2.7) to hold for closed
surfaces. Instead, we have the following.

(6.1} Theorem. Let y,, v, be direct regular curves based at X(x) on M,
where M is a closed surface and X is a vector field vanishing only at
vy, Uy, Suppose {y;}=1{y,} but {y,} +1len (M, x). Then

wx(y1, x) = wx(y,,x) mod2g -2
if M is orientable, and if M is non-orientable then
wx(y, X) = wx(y,,x) modn—2
if the y; are orientation-preserving, or
Wy(yy, X) = wyly,, x) mod(2,n—2)

if the y are orientation-reversing, where g or n is the genus of M and
(2, n— 2) denotes the highest common factor of 2 and n— 2.

Proof. If M is the projective plane then n=1 and the result holds
trivially. Hence assume M is not the projective plane.

The technique of proof is to construct direct regular curves y; (i=1,2)
on N based at X (x) such that y| and 7}, are homotopic to each other on
N and such that

Vi virel X(x)

on M. The result then follows by applying Theorem (2.7) to ', v5 on N,
since we have already shown above that

ox(y,. xX)=0x(y,x) mod2g—2 or n—2.

We construct y; (i=1,2) as follows. First assume that y,,y, are
orientation-preserving. Let p: M*—> M be the covering defined in §2,
corresponding to the cyclic subgroup of n,(M, x} generated by {y,}
={y,}, with differential structure on M* induced from M by p. There
exists a point x* e p™!(x) with two regular closed curves y%, y% based at
X*(x*), where X* 1s the vector field on M* induced from X on M, such
that p(y#)=y; (i=1,2) and y%, y¥ both represent the same element of
n, (M*, x*). Note that y¥, y¥ are simple since p,,v, are direct. Let
D* = p~ (D), which consists of the disjoint union of a countable number
of discs in M*. Let U be a deformation retract of M*, under a deformation
retraction which keeps x* fixed, such that UnD*=§: it is easy to
construct U since M* is an open cylinder. Take a smooth ambient isotopy
H(0 <t < 1) of M* such that H, is the identity and H,(yfuy3)C U, and
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such that H, is the identity sufficiently close to x*. This is easy to do since
y¥uy¥ is compact. Define y,=pH,(y¥) for i=1,2. Each y; is regular
and direct (since H, (y}) is simple), and

H,(y}) = Ho(y}) = »!

so H,(y¥) is homotopic to H,(y%) (relative to x*} on M*. Therefore
H (y¥)~ H{(y%) (relx*) in U since U is a deformation retract of M*.
However, p(U)C N and so | =9} reix in N as required.

When 7,,7, are orientation-reversing the argument is similar,
although we lift to the double cover M** of M* and use isotopies which
commute with the covering translation of M**. Here M** is an open
cylinder since M is not a projective plane.

Applying Theorem (3.3) to ¥, and 9, on N also gives:

{6.2) Theorem. Theorem (3.3) hoids also when M is a closed surface.

In view of Theorem (6.1} it is now clear that if M is a closed orientable
surface of genus g we can define winding numbers for elements of r, (M, x)
as integers mod2g — 2. We merely let

wyx(€) = Wy x(y, X) mod2g—2

for each vector field on M with one singularity v, where N is the com-
plement of the interior of a closed disc in M containing v and y is a direct
regular closed curve on N based at X(x) with {y}=c=+1len, (M, x).
We also let wy(l)=1 mod2g -~ 2. Similarly, if M is non-orientable of
even genus we can define such winding numbers as integers mod?2.
If M is non-orientable of odd genus n then winding numbers cannot be
defined meaningfully as above since (2,n—2)=1. However the more
interesting applications of winding numbers are to orientable surfaces,
and in any case it is often quite convenient to use winding numbers of
curves restricted to compact surfaces with non-empty boundary.

Note that Theorem {4.2) continues to hold when Z is replaced by
Z,,-,, and vector fields are defined on M minus one point.

The removal of base-point restrictions makes little further difference
in the case of a closed surface. We can define wy(C)eZ,,_, or Z, for a
conjugacy class C of elements of the fundamental group of M, except in
the case when M is non-orientable and of odd genus. Theorem (5.5)
continues to hold {combine Theorem (6.2) and the proof of Theorem (5.3)),
as does Theorem (5.6) with Z,, _, in place of Z, and vector fields defined
on M minus one point.

Since we shall not in fact need to use winding numbers on closed
surfaces in the applications which follow, we leave to the reader the
straightforward task of supplying proofs of the above statements and
constructing any other analogues of results in § 5 that may be of interest.
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§ 7. The Calculation of w,(c)

In this section we suppose that M is compact.

Let x be a point in the interior of M. If wy(c;) is known for each
element c; of a set of generators of n,(M, x) then wy(c) is determined for
all other cen,{M, x) (Theorem (4.2) and § 6), although we recall that
wy 1s not 2 homomorphism. Since ¢ is expressible in terms of the ¢; it is
useful to have an explicit formula for calculating wy(c) in terms of the
wy{c;). In this section we derive such a formula in the case when the ¢,
are suitable “standard” generators for n,(M, x). The method generalizes
that of [5, 6] where a formula was given for the case when M is orientable
and ¢ contains simple curves.

Suppose first that M is orientable of genus g with r (r = 1) boundary
components ¢4, ..., 0,. We can choose in the interior of M a system X of
oriented simple closed curves o, (1 £i=g), f;(1 £jZg)and g, (1 £k <7)
with the folowing properties:

(1) the curves all meet at x, and are otherwise disjoint

(i) o, together with g, bounds an annulus R, whose interior is
disjoint from all the other curves of X

(iit) cutting along the curves of X dissects M into the disjoint union
of the R, together with a disc whose boundary runs

alﬂla;lﬁfja?,[}Zv"'Magﬁgaglﬁ;IJIGZ s Oy

=19

where “a;”'” means “a; backwards” etc.
We call 2 a canonical curve-system for M, as in [11], or [12, p. 114].
It is easily verified that around x the curves of X read as follows:

oy leaving
f, arriving
oy arriving
B, leaving

o, leaving

B, leaving
o, leaving
o, arriving
G, arriving

17 Math Ann 196
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with respect to some particular direction of rotation about x. We now
assume the orientation of M to be chosen such that this direction is
regarded as a negative rotation in a neighbourhood of x.

If a;, b;, 5, denote the homotopy classes of a;, f§;, g, respectively, then
7(M, x) is generated by these with the one defining relation d = | where
d denotes the element

ajbyai'bylab, — - —a; b sy s,

If M is closed and orientable the situation is the same, except that we
dispense with the g, 6,, R, and s,.

In the case when M is non-orientable of genus n, the system X consists
of oriented simple closed curves #; (1 £i<n) and ¢, (1 <k <r) satisfying
(1), (ii) above together with

(i1 cutting along the curves of X dissects M into the disjoint union
of the R, together with a disc whose boundary runs

M M2Mz o g Mp Oy - Gy .

We can choose an orientation of a neighbourhood of x (and thus an
orientation of the fibre of T, M over x) such that the curves read

n, leaving
n, arriving
n, leaving

1, arriving

N, arriving
g, leaving

gy arriving

o, arriving

with respect to a negative rotation about x. If u;, s, denote the homotopy
classes of n;, g, respectively, then z,(M, x) is generated by these with the
one defining relation d' = | where d’ denotes the element

ujud .. uls, ...s,.
As before, if M is closed there are no g, g,, R, or ;.

(1) Calculation when M is orientable.

Let X be a given non-vanishing vector field on M, or on
M—v(v+xeM)if OM =, and let ¢ be an element of n,(M, x). Let 2
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be a canonical curve-system for M chosen to have the following additional
properties:

{iv) each curve of Z is regular except at x, and if M =@ then no
curve passes through v

(v) if each curve is parametrized by t(0=t<1) such that «,(0)
= f;(0)= ,(0) = x = a;(1) = B;(1) = g (1) then the tangent to each curve
approaches X(x) as t -0 from above, and approaches — X(x) as t—>1
from below. See Fig. 4.

T e . s e 2

Fig. 4

Thus all the curves are bunched together to form a cusp at x, although
they are still disjoint except at x.

Now any word in the “letters” af ', bj"', sf ' (154, j<g; 1 Sk=rif
r = 1) represents an element of z,(M, x), and any element may be repre-
sented (not uniquely) by such a word. (The element len,(M,x) is
represented by the “empty” word.) Write ¢ =[w] if the element ¢ is
represented by the word w.

If ¢ =1 then wy(c)=1 by definition, so there is nothing to calculate.
For the rest of this section we assume ¢ = 1.

Given c e n,{M, x} choose w such that ¢ =[w] and w is reduced {i.e.
no two adjacent letters in w are mutual inverses) and contains no subword
which is more than half of a cyclic permutation of d*!. It follows from
[3]if r =0 or from [12, p. 83] in general? that w then contains no null

2 1t must here be assumed that there are at least 3 generators and that d (or ' in the

non-orientable case) contains at least 5 letters. However, in the few exceptional cases it is
easy to check by other direct means whether or not w contains any null subword.

17*
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subword, 1.e. subword representing 1 € n,(M, x). Suppose w = zvy, where
z,v and y are subwords such that [yz] = 1. Then [w] is conjugate to [v],
and so by Corollary (5.4) we have wy([w])=wx([v]). Therefore it
suffices to be able to calculate wy(c) for elements ¢ = [w] such that no
cyclic permutation of w contains a null subword.

Let y with {y} =c be the closed curve which is the composition of
curves in 2 and their inverses in the order in which their homotopy
classes appear in w. By (iv) above, 7y is regular except for the cusps at x.
To calculate wy(c) it is necessary to find a direct regular curve y" with
{y"} =c. This is now easily done as follows.

Let y* be a closed curve on M* covering y as in the paragraph
preceding Definition (2.3). Since w contains (cyclically) no null subword
it is impossible for y to contain a nullhomotopic loop. Therefore as in
Lemma (2.4) the curve y* is simple. Each of the cusps of y* may be
“rounded off” (keeping all points of p™*(x) fixed) to give a regular simple
curve y** on M* such that y" = py** is a regular curve on M whose
tangents at x (which may be a self-intersection point) are all in the same
direction as X(x), and such that {y'} =c. If 0M =@ we may take y’ to lie
in a neighbourhood of X not containing v. The curve y’ is direct since y**
is simple.

Now by definition wy(c)=wy(y, x) (mod2g—2 if IM=40). We
interpret wy(y', x) as the total increase in the angle @ that the tangent
vector to v makes with the X-vector on traversing y once in the positive
sense, and we consider the two contributions (1) from the “branches”
of y corresponding to oF ! etc., (2) from the rounding off from one branch
to another near the cusp at x to obtain y’. If we denote the contributions
(1) by Ox(ai?) etc., then it is not difficult to verify that when M + 0

@X(aiil): +2nwyla)tn (12ig9
Ox(B7 )= £2rwxb)Fn (15j<g)

and
Ox(08 ) = +2nox(s) +n  (15k<n),

with similar expressions, taking account of the fact that wy(a,)eZ,,. ,
etc., when dM = For (2), we let # denote the following ordering of
the letters a ! etc.:

~1 -1 -1 -1 -1 . 1
ap,bi,arbay byt a by sy sy sy, st

This describes the way the curves of X arrive at and leave x, rotating
round x in the negative sense. If dM =@ then # contains no s, terms.
Let x,, and x,,, ; be two consecutive letters in the word w taken cyclically,
and let y,., %.+ 1 be the curves of X (or their inverses) whose homotopy
classes are x,,, X, respectively. If x.! appears before x,,, in the
ordering # then to round off the cusp between the end of y,, and the
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beginning of y,,, ; we have to turn the tangent through an angle of = + 1,,,,
where 5, may be made arbitrarily small. On the other hand, if x,,*
appears dfter x,, . in # the tangent turns through an angle of —n + 7,
Notice that x,, ' and x,,, ; cannot be identical, since w contains no null
subword. Let w=x; ... x, with p = 1. If p= 1 there is nothing to compute,
since we are assuming the winding numbers of the generators of 7, (M, x)
to be known. Therefore suppose p > 1. The winding number of " is the
sum of all the increases in @ on going round the y,, (1 <m < p) outside
a small neighbourhood of x, together with the sum of the changes in
going from y,, to 3, (1 Sm < p, where y,, , means ;). From the above
this total is

: (17 o P—N y
30 L Oatm+P=Mms T )

where each #,, may be made arbitrarily small, and

P = number of values of m for which x ! appears
before x,,, , in the ordering # ,

N = number of values of m for which x,, ' appears
after x,, ., in the ordering % .

p
Since @y(y,,) is an integral multiple of = for cach m, the term ) #,
m=1

must in fact be zero.
For each i (1 =i = g) let A; denote the number of letters x,, in w such
that x,, = a;, and let A, be the total number for which x,, =a; . Similarly

define B;, B;, S, Syand let A= ) 4;, A=)

i=1 i=1

Then when 0 M =+ @ we have

Rroy(a) + 1) (A; — 4)

M&

zan('y/7 X) =

i

1

Ai Rrwy(b;) —n) (B, — B)
t

(Rrwy(s) +7) (S, — 5

+(P—N)r.

If M =@ there are as usual no s, terms, and integers are reduced
mod2g — 2.

Let F be the free group generated by a; (1 Si<g), b; (1<j<g) and
(if OM#0) s,(1<k<r), and let (pX:F—>Z (or Z,, ) be the homo-
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morphism defined by ¢y(a)=wyl(a), etc. Then regarding w as an
element of F, and using the fact that
A-~A-B+B+S-S+P-N=24+B+S—-N)

(since A+ A+B+B+S+8=p=P+N), we obtain

Formula 1.
wy(c) ~ px(W)=(A+B+8)—N (6M + 0)
o wx(Q)— ox(W)=(A+B)— N  mod2g—2 (M =0).
Since P 4+ N = p etc., we may also write the above as
Formula 1'.
o wy(c)~ @x(w)=P —(A+B+3) (OM + )

wx(c)—@yW)=P —(A+B) mod2g—2 (OM=0).

(it} Calculation when M is non-orientable.

Assume that M has even genus in order that wy({c} be defined.

Let ¢ be a non-trivial element of z,(M, x) represented by a word w
in the letters u %, s (1<i<n, 1 £k<rif r=1). As in (i) we consider
only those elements ¢ = [w] for which every cyclic permutation of w is
reduced and contains no subword which is more than half a cyclic
permutation of d'*'; then no cyclic permutation of w contains a null
subword [12] 2. It is easy to check that except in the case r=0, n=1
(M = projective plane) this condition implies that no cyclic permutation
of ww contains a null subword. The projective plane case can, however,
be dismissed since 7, (M, x) =Z, and so the only non-trivial element is a
generator.

Write w= X, ... x, and suppose as in (i) that p> 1. Let y be a closed
curve with {y} = ¢ constructed from curves of Z as in (i}; let 6 =27, and
let & be a direct regular curve approximating to é also as in (i). Clearly
& can be chosen such that §' = 2y for some orientation-reversing regular
curve y which is thus by definition direct, and {y'} = ¢. We now proceed
as in the orientable case, but must beware of the following differences:

(a) the sign of the change in @ in rounding off the cusp when going
from y,, to x,+; depends on whether the number of x; with j<m such
that y; = some ;" ' is odd or even; this is because each 1 is orientation-
reversing.

(b) wx(u” Y =wyelu)+1 for all i (1<i<n) but wy(sy ')=awy(s)
(1 £k <) (see (2.12)).

Remember that all winding numbers of homotopy classes are
elements of Z,.
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Corresponding to equations in (i) we have the following:

1
Wx(iiiﬂ’&l):‘i;(ex(???l)iﬂ) mod2 (1=i=n)

and if OM £ 8
1
oxlsi )= o (Ox(oE ) F ) mod2  (1<k=n)

where for example wy(n,) is defined using the orientations at points
x' €1, induced from the orientation at x by the path xx" of ;. Let #'
denote the following ordering of the letters ui ! etc.:

-1 -1 -1 -1 -1
Upa Uy S Ugslis ey U Uy 584587 582, 0 Sy s

If 6M = @ then &2’ contains no s, terms. Let F' be the free group generated
by the u; (1 £i<n)and (if 0M #0) the 5, (1 £k <), and let ¢y F' -7,
be the homomorphism defined by ¢'(u;) = wy(y;), etc. A tedious but
elementary computation gives

Formula 2.
wx(c)— oxW)=P' —S mod2 (@M +0)

wx{c) — @x(w) =P mod2 (0M =)

or

where P’ is defined from #' in the same way that P was defined from Z.

Full details of all the above calculations can be found in [I,
pp. 104—115].

Remark. We observe from the above formulae that the expression
wy([w]) — @x(w) (or wx([w]) — @x(w)) is independent of X. It must thus
have some algebraic significance in the structure of n,(M, xJ, which it
would be necessary to elucidate in order to understand wy.

§ 8. Generalizations

Winding numbers can be directly generalized in at least two different
directions. The most natural is to consider an immersion

f:M')mO“’Q’ do

of an m-manifold M in a g-manifold Q, where M is orientable and Q is
equipped with a distribution ¢ of oriented tangent m-planes —i.e. a section
of the Grassmanian bundle, denoted by G, ,(Q). The pull-back /*G,, ,(Q)
is a bundle over M with fibre G, , (the space of oriented m-planes in
g-space), and it has two sections induced (i) from the section ¢ and (ii)

from the tangent map Tf:TM—TQ which are analogous to the
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sections X/, Z/ in § 1. If the set of homotopy classes [M, G, ] hasa group
structure (e.g. if M is an associative H'-space with inverse) then there
is an exact homotopy sequence

[SM, M]~[M, G, - [M, [*G, (Q]->[M,M]
(where SM is the suspension of M) of the fibration
Gy 1 * G gl@)> M

and as in §1 the two sections of f* G, (Q) define an element of
[M, G, 1/im([SM, M]). This may be thought of as a generalized
winding number.

(In§twehadm=1,9g=2, M=5"and G,, ,=S"; [SM, M]=m,(S")
which is trivial.)

Alternatively, we can take M to be the m-sphere ™ {m > 1), and assume
that M and Q both admit continuous non-vanishing vector-fields (thus
m is necessarily odd). Defining E/ as in § 1 we obtain as before an exact
sequence

nm+ 1 (Sm) - nm(Sq B 1) ’“"nm(Ef) - nm(Sm)
which yields a “winding number” as an element of z,,(S*™)/im (7, ;. ((S™),
or of
7,.(S7" 1)/(elements of order 2)
when m > 2 since =n,,, (S =Z,.

It would be interesting to know whether any of the results in §§2-6
can be generalized meaningfully in either of the above two contexts.
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