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Winding Numbers on Surfaces, I. 

D. R. J. CHILLINGWORTH 

§ O. Introduction 

This paper describes a theory of winding numbers for homotopy 
classes of closed curves on surfaces, based on ideas introduced by 
Reinhart in [5]. In the sequel (to appear) we give some applications of the 
theory to the problem of determining when a given element of the 
fundamental group of a compact surface contains simple closed curves 
(see [2] for an announcement of the result), and to the study of the 
homeotopy group (the group of homeomorphisms modulo those 
isotopic to the identity) of a closed surface. 

In § 1 we define the winding number (ox(7, x) of a regular closed 
curve ? with respect to a non-vanishing continuous vector field X on a 
smooth surface M with base-point x e 7. This is a natural generalization 
of the well-known "rotation number" of a regular closed curve in the 
plane (see e.g. [10]), and is essentially the definition given in [5]. Here, 
however, we include the case when the surface is non-orientable. In § 2 
we show how to define a "winding number" for any element of ~ (M, x), 
using a preferred family of regular closed curves in each homotopy class: 
when the homotopy class contains simple closed curves this coincides 
with the definition in [5]. A theorem of Smale is used in § 3 to deduce 
a generalization to surfaces of the Whitney-Graustein Theorem I t0]  
on regular closed curves in the plane, proving for example that two 
homotopic orientation-preserving regular closed curves on M which are 
not nullhomotopic are regularly homotopic if they contain no null- 
homotopic loops. §4 relates winding numbers to cohomology and 
homology, § 5 is concerned with the removal of base-point restrictions, 
and §6 shows how the theory can be modified to cope with closed 
surfaces which may not admit continuous non-vanishing vector fields. 
in § 7 we give formulae for calculating the winding number of any given 
element of~z, (M, x) in terms of the winding numbers of a set of generators. 
Some possible directions in which the theory could be generalized are 
mentioned in § 8. 

We assume a familiarity with some elementary homotopy theory 
and algebraic and differential topology. By a sulface we mean a connected 
separable 2-manifold, with or without boundary. Any compact orientable 
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surface may  be regarded  as a (punctured)  2-sphere with handles  a t tached.  
The genus of the surface is the number  of  handles.  Any compac t  non-  
or ien tab le  surface m a y  be regarded  as a (punctured)  2-sphere with 
M6bius  s tr ips  a t tached,  and the genus in this case is the  number  of  
M6bius  strips. This  classif icat ion of  compac t  surfaces is s t andard ,  and  
can be found in many  books ,  for example  [4],  and  also in [12]. A path 
in a surface M is a con t inuous  m a p  of  a closed interval  into M ;  by abuse  
of  t e rmino logy  we shall  usual ly  th ink  of  the  pa th  as the image  of  the map.  
A pa th  is simple (often called an arc) if the  m a p  is an embedding .  A closed 
curve is (the image  of) a con t inuous  m a p  of  a circle S 1 in to  M ;  it is simple 
if the  m a p  is an embedding .  W e  th ink  of  S 1 as the  unit  circle in the 
complex  plane,  and  as being equ ipped  with a fixed or ienta t ion .  Closed 
curves in M are  thus au toma t i ca l ly  oriented.  The  b o u n d a r y  of  M is 
deno ted  by c3M. If M is a smooth  mani fo ld  then TM--*M denotes  the 
tangent  bundle,  a l though  we do  not  a lways  dis t inguish between a 
bundle  and  its total  space. A vector field is a sect ion of  the tangent  bundle :  
all vector  fields will be assumed to be cont inuous .  The symbols  IR, Z 
and Zm denote  the  real line, the addi t ive  group  of  integers,  and  the 
cyclic g roup  of o rde r  m, respectively.  

This paper and its sequel constitute part ofa Ph.D. thesis submitted to the University 
of Cambridge in 1968. 

The author wishes to express his gratitude to his supervisor Dr. W. B. R. Lickorish 
for continually dispensing optimism and encouragement at all stages of the work. He also 
wishes to thank Les Harris for first bringing to his notice the paper by B. L. Reinhart on 
winding numbers, and to thank the Science Research Council for their financial support 
for three years. Finally, he would like to thank the referee of this paper for his many 
helpful comments and advice on ways to improve the original version. 

§ 1. The Winding Number of a Regular Closed Curve 

Let M deno te  a s m o o t h  (say C ~) surface. Unti l  s ta ted otherwise M is 
assumed to be n o n - c o m p a c t  or  to  have non-empty  b o u n d a r y  and  thus  
to a d m i t  (cont inuous)  non-van i sh ing  vector-fields.  

(1.1) Definitions. A closed curve on M given by 

f :S1--*M 

is regular if f is C 1 and the tangent  map  

T f  : TS  1 ~ T M  

is injective on each fibre. In o ther  words,  con t inuous ly -vary ing  non-ze ro  
tangents exist at all poin ts  of the curve. 
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Let  v x denote  a vector  in the tangent  p lane  T x M  to M at x G M, 
i.e. in the fibre of  T M  over x. A regular  closed curve as above  is based 
at v x if f (1)  = x and  Tf((1,  1))= Vx, where (1, 1)G T S  1 = S  1 x IR. Thus  vx 
is a t angent  to  the  (oriented) curve at  x. 

Let  X be a non-van i sh ing  vector-f ield on  M, and  let y = f ( S  t) be a 
regula r  c losed curve based  at  vx, x G M. The  winding number Cox(y, x) 
m a y  be defined intui t ively  as the to ta l  number  of  ro ta t ions  that  the tangent  
vector  to 7 makes  relat ive to the X-vec to r  as the curve 7 is t raversed  once 
in the  posi t ive sense. The  sign of  Cox(7, x) depends  on a choice of  or ienta-  
t ion  for T~M, this o r ien ta t ion  being t r anspor t ed  to T~,M for each x '  e 7 
by the a p p r o p r i a t e  pa th  x x '  in Y- 

We shall  now m a k e  this defini t ion more  precise. 
Let  M be given some R iemann ian  s tructure,  au toma t i ca l ly  inducing 

a n o r m  I1 IIx on T x M  for each x G M, and  let 

To M =  ~ {v~T~mlllvL=l}- 
x ~ M  

Any  con t inuous  m a p  f : S  1 - - .M induces  a pu l l -back  over S 1 from To M 
over M, i.e. a bundle  E:--*S ~ with fibre S 1 such that  the d i ag ram 

E f v , T o M  

S 1 : ~ M  

commutes ,  where p~ and  p/ are  bundle  p ro jec t ions  and  F is an iso- 
m o r p h i s m  on each fibre. The  to ta l  space E:  is a to rus  or  a Klein  bot t le  
accord ing  to whether  y = f ( S  ~) is an  o r ien ta t ion-prese rv ing  curve or  not. 

A non-van ish ing  vector  field X defines a sect ion X0 of  To M by 
Xo(x) = X(x)/llX(x)N~, x G M,  and  the compos i t ion  

X o f  : Sa ~ To M 

pulls back  to a unique  sect ion 

X s : S 1 ~ E :  

such that  F X  f = X o f .  If 7 is regular  the  m a p  ToY : S ~ --, To M defined by 

ToY(z ) = Tf((z ,  l))/I [ Tf((z ,  1))llf~ 
also pulls  back  to a unique  sect ion 

Z s : S 1 ~ E s 

such tha t  F z S =  ToY. Fur the rmore ,  if y is based at  X ( x ) E  T , M  then 
x s ( 1 )  = Zs(1)  = e o, say, and  so X s and  Z s represent  e lements  {xS}, {Z s} 
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of it 1 ( EI, e0). Since X :  and Z :  are sections of E: the element {Z:} {X:}  - 1 
~ (E:, eo) belongs to the kernel of the homomorphism 

p{ :Trl(E f, eo)--~ 7[1(S 1, 1) 

induced by p:. From the bundle exact sequence 

i: :,rcl(S , 1), 0 = n z ( S  l, 1)_~ l (Eo ,  eo)_~Trl(Ef,  eo ) r, 1 

where if : Eo ~ E: is the inclusion of the fibre Eo over l e S ~, it follows that 

{z:~ { x : }  -1 = i~, w: 

for some unique w: e ~l(Eo, e0). A choice of orientation of TxM induces 
an orientation of Eo = S 1, and w: may then be thought of as an integer, 
which is defined to be the windin 9 number ~Ox( 7, x) of ~ (based at x) with 
respect to X. It is easy to check that this corresponds to the intuitive 
definition above, and to the definition given by Reinhart [5]. 

Remarks. 1. The definition is clearly independent of the choice of 
Riemannian metric on M. 

2. The bundle language, used here both for precision and in order 
to indicate possible generalizations (see § 8), tends to obscure the simple 
underlying geometry. We have 7ri(E:, eo) = {a, b laba-  l b -  ~ = 1} if 7 is 
orientation-preserving (E: is a torus) or {a, b laba- ~ b = 1 } if 7 is orienta- 
tion-reversing (E: is a Klein bottle). We may choose a = {X:}  and b to 
be represented by Eo" then pI,(a) generates 7rl(S 1, 1 ) ~ Z  and y , (b )= O. 
Since : : f a p , ({Z } ) = p , ( )  it follows from the defining relations that 
{Z:} = b"a for some unique integer m; then COx(7, x) = m. 

3. Recall that 7 is based at X(x)  and we are assuming M is non- 
compact or 8M 4= ft. We later investigate the affects of removing these 
conditions. 

4. The definition of winding number  may easily be extended from 
regular closed curves to piecewise regular closed curves: see [6]. A piece- 
wise regular closed curve is a closed curve which is regular except for a 
finite number  of points at which the tangent may vanish or be discon- 
tinuous. It is often helpful to use piecewise regular curves to calculate 
winding numbers of homotopy  classes ([6]). The calculations in § 7 
below, for example, can be carried out more easily without the necessity 
of approximating piecewise regular curves by regular ones. 

We now note two elementary properties of mx(7, x). Recall that all 
vector fields are assumed continuous. 

(1.2) Definition. Two non-vanishing vector fields X, Y on M are 
homotopic (write X -~ Y) if the maps X,  Y : M--, T M  are homotopic via 
Xt : M - ,  T M (0 < t < 1) which are non-vanishing vector fields. They are 



222 D.R.J. Chillingworth: 

homotopic relative to x or re lx  (x ~ M)  if X1(x) remains fixed throughout 
the homotopy. 

(1.3) Lemma. X ~- Y re lx~ogx(7 ,  x) = cot( 7, x) for  any regular closed 
curve 7 based at X (x )  = Y(x). 

Proof. Since COx,(7, x) is integer-valued and varies continuously with 
t it must be constant. Alternatively {Xf}=  {yZ} (where 7=f(S~))  so 
{Z z} {X z}- I  = {Z  f } { y Z } -  1. 

(1.4) Definition. Two regular closed curves ~ =.f(S1), 6 = g(S 1) on M 
are regularly homotopic (write 1' ~ c~) if f and g are homotopic via C ~ 
maps f t :S1 - -+M ( 0 < t < l )  such that Tf,:  T S I - - + T M  is injective on 
each fibre (so 7t = f,($1) is regular) and varies continuously with respect 
to t. They are regularly homotopic relative to v x or rely x (v~ E T~M, x ~ M) 
if they are based at v~ and Tf,((1, 1)) remains fixed (=  v~) throughout the 
homotopy. 

(1.5) Lemma. 7 ~ ~5 r e l v ~ c O x ( 7 ,  x) = COx(& x) for  any non-vanishin 9 
vector f ield X on M such that X (x )  = v~. 

Proof. Since COx(Vt, x) is integer-valued and varies continuously with t 
it must be constant. Alternatively one may construct a cumbersome 
algebraic argument using a bundle isomorphism E z ~ E g induced by the 
homotopy between f and g. 

§ 2. The Winding Number of an Element of nl(M, x) 

In this section we show how to pick out from each homotopy class 
of closed curves on M based at x a particular family of regular curves 
which are, roughly speaking, straightened out as much as possible. The 
main theorem then states that the winding number of such a regular 
curve (with respect to some given X) depends only on the original 
homotopy class. Using this we define winding numbers for elements 
of zc~ (M, x). 

Let 7 = f ( S  1) be any closed curve on M. A point x E ,/(where x does 
not now necessarily denote the base-point) is a self-intersection point 
of 7 if f - l ( x )  contains more than one point, or a double point if f l(x) 
contains exactly two points. A loop in 7 with vertex x is f(~) where e is an 
arc zz'  (z + z') in S 1 with f ( z ) =  f ( z ' ) =  x. The complementary loop is 
f (S  1-  ~). 

(2.1) Lemma. Let 7 be a closed curve on S ~ x IR having at most a.finite 
number o f  self-intersection points, each a double point. Suppose 7 represents 
ng where g generates n l (S l  x IR)~-Z (with additive notation) and n >0. 
Then 7 contains a loop 2 representing g. 
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Proof. Let x be the vertex of  a loop 6~ containing no other  loop:  
such fix obviously  exists. Since ~x has no self-intersection points  (except x) 
we must  have {6~}=0  or + g ,  where { } as usual denotes h o m o t o p y  
class. If  {~}  = + g  take 2 = ~  x. If {fx} 4: + g  we proceed by induct ion 
on the number  S(7) of self-intersection points  of  7. Clearly the ]emma is 
true when S(7) = 0. Assume the l emma to be true for any 7 with S(7) < k, 
and suppose  now that  7 has k + 1 self-intersection points. Let ~ be the 
complemen ta ry  loop to fx in 7. Since {~.x} = ng or (n + l)g and  S ( ~ ) <  S(7) 
the induction hypothesis  applies,  and  so there is a loop/17 with vertex y 
in ~:~ such that  {py} = g. Now we consider two cases. 

Case (i). {f~} = 0, {~:~} = n 9. If x 6/~. then ~y is a loop in ~, so take 
2 = #y. I f x  6 py take 2 to be that  loop of 7 with vertex y which contains x. 
Then {2} = {6~} + {py} = 0 + 9 = 9 .  

Case (ii). {fix} = - g ,  { e ~ } = ( n +  1)g. I f  x¢f~y take 2=kty. If  x e ~ r  
let v r be the loop of 7 with vertex y containing x. Then {vy} = {fix} + {Py} 
= g - g  = 0. Let e~. be the complemen ta ry  loop to v r in ,/. Then by the 
induction hypothesis  (since {ey} = ng) there is a loop [it with vertex t 
in ~y such that  {fl~} = g. I f y  ¢ fl, take 2 = fit. I f y  ~ fit take 2 to be that  loop 
of 7 with vertex t that  contains  y (and x). Then { 2} = { vr} + { fl, } = 0 + g = g. 

(2.2) Corollary. / f  n = 1 and 7 is not simple then 7 contains a null- 
homotopic loop. 

Proof. The complemen ta ry  loop to 2 in ~, is nu l lhomotopic  since 

{;~} =g={7}. 
Let 7 = f(S~) be a closed curve in M with f ( l )  = x e M. Let p : M* --* M 

be a covering of M cor responding  to the cyclic subgroup  of  z~(M, x) 
generated by the h o m o t o p y  class {7}. Let 7* be a closed curve covering ?, 
so that  {),*} generates n l ( M * , x * )  where x* = 7 * r a p  1(x). 

(2.3) Definition. An or ienta t ion-preserving closed curve ? on M is 
direct if the cor responding  closed curve 7* on M* is simple. An orienta-  
t ion-reversing closed curve 7 is direct if 2 7 (the curve obta ined by going 
twice round  7) is direct. 

We now give a geometr ic  character izat ion of direct curves which is 
more  convenient  than the definition for use in applications.  It follows 
from the character izat ion that  the definition does not  depend on the 
choice of  7*- 

(2.4) Lemma.  An orientation-preserving closed curve 7 with at most 
a finite number of se(f-intersection points, each a double point, is direct 
!f and only if  it contains no nullhomotopic loop. 

Proof. If7 contains  a nu l lhomotop ic  loop so does 7* by the h o m o t o p y  
lifting property .  
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If 7 is itself nullhomotopic then the interior of M* is homeomorphic 
to 1R 2 and so if 7* is not simple it contains a nullhomotopic loop. (We 
need not assume 7 lies in the interior of M.) If ~, is not nullhomotopic 
then the interior of M* is homeomorphic to S ~ × IR and from Corollary 
(2.2) it follows that if 7* is not simple it contains a nullhomotopie loop. 
In both cases projection by p gives a nullhomotopic loop in 7- 

Note. The above lemma requires that 7 be orientation-preserving. 
One may construct on a M6bius strip a curve as shown in Fig. 1 which 
generates the fundamental group and has two self-intersections yet 
contains no nullhomotopic loop. 

Fig, I 

(2.5) Lemma. Every homotopy class c ~ ( M ,  x) contains a direct 
regular curve. 

Proof. The lemma clearly holds when c is the identity element 
1 6 ~ ( M ,  x), so assume c 4: 1. The interior of M* is homeomorphic to 
$ I ×  1R or a M6bius strip. In both cases a generator of ~zj(M*, x*) can 
be represented by a regular simple closed curve (where M* is given the 
smooth structure induced from that of M by p) and P(7*) represents c 
and is direct. 

(2.6) Lemma. Let X be any non-vanishin 9 vector field on M, and 
x ~ M. U" 7 is a nullhomotopic simple closed regular curve based at X(x)  
then 

OJx(7, x) = + 1, 

the sign depending on the orientation of  7. 

Proof. The proof is essentially that given by Reinhart in [5]. By 
attaching a collar smoothly to (?M and extending X over the collar we 
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may assume that 7 ties in the interior M o of M. Let M; (~IR 2) be the 
universal cover of Mo with smooth structure induced from Mo by the 
projection p o : M ; ~ M o .  Let x'ep3-1(x) and let ~' be the connected 
component of po1(7) containing x'. Since ~ is nullhomotopic, "l' is a 
(simple) closed curve. Now Po induces a non-vanishing vector field X' 
on M; from X on Mo, and X '  ~_ X;  relx '  where X; is a field of parallel 
vectors, since 11t 2 is contractible. Clearly 

(Ox(7, x) = COx,(7' x') 

and by Lemma (1.3) 

COx,(~,', x') = ~Ox6(~", x'). 

The proof is now completed by using the classical result due to Whitney 
[10] which states that 

COx,,(7', x') = +__ 1 , 

the sign depending on the orientation of 7'. 
We next come to the main result which is the key to the theory of 

winding numbers which follows. 

(2.7) Theorem. Let  X be a non-vanishing vector f ield on M,  and let 
71, 7z be regular closed curves based at X (x )  (x ~ M). Suppose {71} = {72} 
but {~1} 4= 1 ~ rt~(M, x), and suppose that 7i is direct (i = 1, 2). Then 

(Ox(~ ~ , x) = (Ox(7 2, x) 

if the 7~ are orientation-preserving, or 

¢Ox(71, x) = eOx(T 2, x) rood2 

i f  the 7~ are orientation-reversin 9. 

Using this theorem we are able to make the following definition: 

[2.8) Definition. Let c 4:1 e z00(M, x) and let X be a non-vanishing 
vector field on M. The winding number of  c with respect to X, denoted 
by ~Ox(C), is defined to be 

if M is orientable, or 

tOx(~, x) 

O)x(~, x) 

reduced rood2 

if M is non-orientable, where 7 is any direct regular curve in M based at 
X(x) and representing c. 

Theorem (2.7) shows that a)x(C) is thus well defined (c 4= 1) as an 
element of~g when M is orientable or o fZ  2 when M is non-orientable. By 

16 Math. Ann 196 
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convention we define 

cJ~x(1)=l~Z or Zz.  

Clearly we could define cox(c)~Z whenever c contains orientation- 
preserving curves, but it turns out to be more convenient to reduce 
everything mod2 when M is non-orientable. 

Proof of the Theorem. In view of Lemma (i.5) we may, by first altering 
71 and 72 by regular homotopies if necessary, assume that 71 ~7z consists 
of a finite number of points none of which is a self-intersection point of 
71 or ?~2, and that 71 and ;~2 do not cross (although they touch) at the 
base-point x. As in Lemma (2.6) we may also assume 71 w~'2 C Mo. 

Choose x ' s p o  l(x)C M; and let 71 be a path in M 6 starting at x' 
obtained by lifting ?i, i = 1, 2. Each ~ is a simple arc since Vl is direct, and 
:~i and 7~ have the same end-point since {71} = {72} e rcl(M, x). Let t be 
the covering translation of M; corresponding to {71 }; we have t" 4:0 for 
all n 4:0 since rc~(M, x) has no non-trivial elements of finite order. (When 
M is compact (c~M 40)  this follows immediately from the fact that 
rcl(M, x) is a free group since M deformation retracts onto a l-complex; 
when M is non-compact note that if n), is nullhomotopic in M then it is 
nuilhomotopic in a compact surface M l (?M 1 4= 0) contained in M, and 
so 7 is nullhomotopic in Ma and hence in M.) Define 

Tm(Yi) = ~ t"(~'i) ( i= 1, 2; m = 0 ,  1, 2 . . . .  ). 
n = 0  

Since M~ is also the universal cover of the interior of M* (see before 
Definition (2.3)) and Yi is direct it follows that each Tm(y~) is an arc. 

We consider two cases separately. 
Case (i): 7~ orientation-preserving. Let F~ denote the closed curve 

in N/; consisting of T,~,(71) followed by T~,0'2) reversed, and let F" be a 
regular closed curve which differs from I'm only inside Uwt  "+ ~ U where U 
is a neighbourhood o fx '  containing no point of 

(r.,(°e 1 ) ~ r . . (>,~) )w t -~"  + "~rm(~ ' l )  n r.,(~,~)) 

except x'. Choose F~, to have no self-intersections inside U u t "+ ~ U, and 
to be based at X'(x'), where X' is as before the vector field on M; induced 
from X by Po. Thus I'~ is to be thought of as the result of"rounding off' 
the cusps of F~ at x' and t m+ t(x'). By suitably choosing F;, the winding 
number O)x,(F~ ,, x') can be made arbitrarily close to 

(m + 1) (~ox(~'l, x) - ~ox(72, x)) + 1 

since the contribution to COx.(F ~, x') from each t"(7'1), t"(7~) is cox(71, x), 
-o)x(Tz, x) respectively, and the effect of rounding off the cusps is to 
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con t r ibu te  + 1 depend ing  on  the side from which ~'2 meets  71 at  x. (We 
are  assuming  that  M o is given the o r i en ta t ion  induced  by  P0 from the 
chosen o r i en ta t ion  of  M near  x.) Since o)x,(F~,, x') e Z we mus t  in fact 
have 

COx,(F',x')=(m + l)(cOx(71,x)-cOx(Tz, X))+ ~ (2.9) 

where e = + 1. 

) 2 2  
S 

S S 

s =start,r ig point 

Fig. 2 

We now app ly  Whi tney ' s  fo rmula  [10] which, after a t r ivial  adjust-  
ment  to  t ake  account  of  po in t s  of non- t ransverse  self-intersection, states 
that  the winding  n u m b e r  with respect  to a field of  para l le l  vectors  (and 
hence with respect  to any non-van ish ing  vector  field) of a regular  c losed 
curve in the p lane  having a finite n u m b e r  of self- intersections points ,  
each a doub le  point ,  is equal  to 

+ 1 + (algebraic  n u m b e r  of self-intersections) 

where the sign depends  on the o r i en ta t ion  of  the curve, and  the self- 
intersect ions are  coun ted  a lgebra ica l ly  as ind ica ted  in Fig. 2 after an 
app rop r i a t e  choice of s tar t ing po in t  on the curve. The  s ta r t ing-poin t  
must be chosen to  be an  "ou ts ide"  point ,  i.e. in the c losure  of the un- 
bounded  c o m p o n e n t  of  the complemen t  of  the curve 1. Let  y' = (Y'I w 7~) 
c~pol(y ) where y E v l k ) ) '  2 and  lies in the closure of a c o m p o n e n t  of  

1 In [10] the starting point must lie on a straight line having every point of the curve 
on it or on a single side of it. However, a regular homotopy of the curve introducing no 
further self-intersections can be chosen to take a starting point as we have defined it to a 
starting point of Whitney type, so the formula remains valid with our definition. 

16' 
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m o -(~ '1w72) which has non-compact closure in M o (note that the hypo- 
theses on M imply that Mo is non-compact): then y' is an outside point 
of F~ for all m. Assume without loss of generality that y' e ?,'~. Every self- 
intersection point of F,~ belongs to T,,(71)c~T,.(yz) since each T,,(y~) is 
simple. Let the algebraic number of intersections of T'~ and t" y~ be denoted 
by k, ( - m  < n-< m), the intersections being counted algebraically as in 
Fig. 3. 

. }  z e r o  z e r o  

- ]  z e r o  z e r o  

Fig. 3 

Since the number of points of 7l c~72 is finite there exists some in- 
teger m o > 0 such that 7'1 c~ tm7~ = O if m > [mol. The algebraic number of 
self-intersections of [ "  arising from tP(7'l)cstq(y~) (1 =~=<-<m, O<q<m) 
is k~_p since 

t~(~'~)c~ t~ (~ )  = tPb,'~ ~ t~-  p(-~)) 
and t p preserves orientation, but the number tq arising from ),'~ c~tq(y~) 
may not be equal to kq since there may exist intersection points between 
x' and y' on 7'i- Hence for each m = O, 1,2 . . . .  we have from (2.9) 

m - - 1  

( , , , +  i)(o~x(~,,x)-,~x~,~))= _+1 + Z t.+ y ~,~-~)k. 
n = O  n = O  

+ ~ (m-n+l)k . - e .  
n = l  

Replacing m by m + 1 and subtracting, we obtain 

Ox(Y~,x)-ox(y2,x)=l.,+l + ~ k~, 
n =  - ( m +  1) 
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the sign of + 1 being the same in both cases since y' is an outside starting 
point for both f,~ and F '+  5. However, if rn > m o the right hand side is 
zero because l,,+ 1 = 0  and 

T(Tz) = ~) t"(7~) 
tl= -oo 

is an embedded copy of IR separating M~ (since 73 separates M*) and 7'1 
meets T(Tz) from the same side at x'  and t(x'). This completes the proof  
in case (i). 

Case (ii): 7~" orientation-reversino. The argument is similar to the 
above, although t now reverses orientation. Let m > 2 be even, and let 
F,,, F~ be constructed as before. Instead of (2.9) we have 

(Ox,(f~. .  x ' )  = Cox(]" l , x )  - -  COX(72, X) (2.10) 

since the contribution to COx,(l ~, x') from t"(7~) cancels that from t "+ 1(7'i) 
(0 < n_< m - 2 ,  i =  1, 2), and the contributions from rounding off the 
cusps cancel each other out because t m+ 1 reverses orientation. Moreover, 

C°x'(F[,+ 4, x') = 4- t (2.11) 

since all the t"(71) contributions to cox,(Fg+1,x') cancel out but the 
contributions from the cusps do not cancel out since t "+2 preserves 
orientation. However, using Whitney's formula as before to calculate 
cox,(F~,, x') and cox,(F~,+ 1, x') we now obtain 

cox,(l-/n,x')= _+1+ ~.~ l , - ( k  1 +k3 + . . . + k , , _ l ) + ( k _  2 +k_~ +. . .+k_m)  
n=O 

and 
m + l  

COx,(F~,+I,x')= +_1 + ~" I , - ( k o + k 2 + . . . + k m ) - ( k _ l  +k_3+.. .+k_(m+l)) 
n = 0  

since t is orientation-reversing. Subtracting we finally obtain 

cox(71, x) - 6Ox(';2, x) =- 1 + l,,,+ 1 + f k, rood2. 
n= - ( m +  1) 

However, if m>mo the right hand side is zero rood2 because T()'z) 
separates M~ (since (2y2)* separates the double cover of M*) and ~'1 meets 
T(72) from opposite sides at x' and t(x'). This completes the proof  in 
case (ii), and finishes the proof  of Theorem (2.7). 

Note. A proof of this result when M is orientable and the 7i simple 
can be found in [5], although more details in fact seem to be necessary 
than were given there. 
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We shall later make much use of the fact that the function 

COx:rq(M,x) - ,Z  or •2 

is not a homomorphism.  We already have ox( l  ) = 1 (instead of 0). Note 
also the following fact: 

(2.12) Proposition. cox(c)=-O3x(C -1) if  and only i f  c contains 
orientation-preserving curves. 

Proof. If 7 is a direct regular closed curve based at X(x)  with {7} = c 
then { - 7 }  = c - i  (where - 7  means ?, with reversed orientation) but - ) ,  
is based at - X ( x ) .  We may alter - 7  by a regular homolopy  (not 
r e l - X ( x ) )  which turns the tangent at x back to X(x): let the resulting 
curve, which may be taken to be direct, be called 7'. If  ?' is orientation- 
preserving then clearly cox(7 ' ,x )=-cox(%x)  and so O3x(C)=rnx(C-t): 
see also the discussion of winding numbers in a base-point free context 
in § 5 below. If 7 is orientation-reversing then the homotopy  turns the 
tangent to - 7  through an angle of + ~ at the beginning of - ) ,  and the 
same angle again at the end. Hence COx(C-1)=cox(7',x)mod2 
= -COx(?,, x) + l rood2, so is not equal to -cox(C). 

Consider also the following more instructive example. Let M be a 
punctured torus and let X be a standard "parallel" field on M. Choose 
x s M  and generators a =  {c~}, b =  {fl} of rq (M,x )  so that c~ is an orbit 
curve of X and fl is perpendicular to all the orbits: thus Cox(a ) = Cox(b) = O. 
However, a b a - i  b-1 is represented by curves freely homotopic to ~M, 
and it is easy to check that Cox(aba- ~ b-  1) = + 1 (see also Corollary (5.8} 
below). 

The way in which Cox differs from a homomorphism will be used in 
the sequel to treat the problem of finding which elements of gl(M, x) 
contain simple closed curves. 

It would be useful to have a clear picture of the algebraic structure 
of 69 x. 

§ 3. Whitney's Theorems Generalized to 2-Manifolds 

Combining results of the previous section with a theorem of Smale 
on regular homotopy [8] we can prove a generalization of the Whitney- 
Graustein Theorem [10] on regular closed curves in the plane. Recall 
that M is non-compact  or with non-empty boundary, and is smooth. 

(3.1) Theorem. I f  71 and 72 are orientation-preservin9 regular closed 
curves on M based at X(x),  where X is a non-vanishing vector field on M 
and x ~ M,  and if {~l} = {y2} e ~ l (M,x) ,  then 

71 ~ ~ 2 rel X (x) ~ e~x(T z , x ) =  cox(Tz, x). 



Winding Numbers on Surfaces, I 231 

Proof. The implicat ion one way is just that  of  L e m m a  (1.5). Note  
that  if the 7i are nu l lhomotop ic  then by lifting to the universal  covering 
space of  M we can apply  the Whi tney-Graus te in  Theorem,  which is just 
Theorem (3.1) with M = IR 2, and obtain  the result immediately.  C o m p a r e  
the p roof  of L e m m a  (2.6). Therefore  we now assume {71} # 1 (i = 1, 2). 

We first state as a l emma  a special case of  Smale's  general theorem 
in [8]. Let ?i = fi(S~), and recall the definition of T o f  f rom § 1. 

(3.2) Lemma.  The maps To f l ,  T o f z : S l - ~ T o  M are homotopic 
relative to the base-point y = X ( x ) / l l X ( x ) ] l ~ e  To M,  if  and only if  
71 ~ ~)2 rel X (x). 

Thus  it suffices for us to prove  

COx(71, x ) =  COx(72, x ) ~  To f l ~- To f2 re ly .  

The group  h i ( T o M ,  y) is the free produc t  of  n l (M,  x) and  an infinite 
cyclic g roup  corresponding to the fundamenta l  g roup  of the fibre So, 
say, over  x of the S l -bundle  To M, with ama lgamat ion  given by identifying 
the genera tor  h of  hi(So) with 

g-  I h~COl g 

for every g 6 ~I(M, x), where e(g) = __+ 1 according to whether  g contains 
or ienta t ion-preserving or -reversing curves. This  corresponds  to the 
fact that  each closed curve based at x 6 M gives rise to an a u t o m o r p h i s m  
of n 1 (So) which depends only on the h o m o t o p y  class of  the curve and is 
the identity if and only if the curve is or ientat ion-preserving.  (For  an 
early s tudy ofn~(To M,  y) see [7].) N o w  recall f rom R e m a r k  2 in § l that  
{ Z f ' } = bm' a where m i = co X (7i, x) and Z J' satisfies F i Z f ' = To f i : S1 --* To M 
where F ~ : E I ' ~  T o M  is the na tura l  bundle m a p  covering f ~ : S ~ M ,  
i = 1, 2. Thus  

{ To f i} = Fi,(b re'a) 

where Fi, : n l (E •', eo)--*n~( ToM,  y) is the h o m o m o r p h i s m  induced by F i. 
Clearly 

Fi,(a) = {?i} = c 

F, , (b )  = h 

f o r / =  1,2 and so {Tof i}  =hm'c. Hence  

m, = m z =  { T o f l } =  { To f z }  , 

which completes  the p roof  of Theo rem (3.1). 
In view of Theo rem (2.7) we have the following 

(3.3) Theorem. I f  71,71 are direct orientation-preserving regular 
closed curves on M based at v~ ~ Tx M ,  x ~ M,  and {Tt} = {72 } # 1 ~ nl  (M, x), 
then 71 ~ 72 relv~. 
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From the methods of [10] and using Theorem (3.1) it is straight- 
forward to derive the following formula for the winding number of a 
homotopically non-trivial regular closed curve 7 with a finite number 
of self-intersection points, each a double point, on an orientable surface. 
The formula generalizes Whitney's formula [10] for the planar case, 
which was used to prove Theorem (2.7). 

(3.4) Formula. I f  M is orientabIe and X is a non-vanishing vector field 
on M such that ?' is based at X(x )  then 

Ox(y, x) = COx(C ) + N 

where c =  {y} s zq (M,x )  aml N is the algebraic number of  self-inter- 
sections counting only those which are vertices of  nullhomotopic loops, 
and each self-intersection is counted algebraically as indicated in Fio. 2 
after a choice of  starting point lying on no nullhomotopic loop. 

§ 4. Winding Numbers, Cohomoiogy and Homology 

In this section we assume that M is compact and has non-empty 
boundary. 

Let X 1, X2 be two non-vanishing vector fields on M, and suppose that 
y = f ( S  ~) is any (not necessarily regular) oriented closed curve based at 
x e M. Suppose also X l ( x ) =  X2(x). As in § 1 we may construct sections 

X i f  : S I  -+ E f , i = 1 , 2 ,  

and since n f  .f X f l. - -  n f  5 x f  ~ w e  obtain F , t .  l J - - F * (  2 /  

{x(}  { x f } - '  = i ,u s 

for some uZ~rq(Eo,eo)-~g.  One can think of u z as the total number 
of times that the X~-vector rotates relative to the Xz-vector as }, is traversed 
once, the orientation of Tx M being transported around ~,. 

If  7' is a regular closed curve based at X~(x)=Xg(x)  then from the 
definition of winding number  we immediately have 

(4.1) Lemma. w r = COx,(7, x) - COx,( 7, x). 

Let v 1, v 2 . . . . .  v2g+,_~ (M orientable of genus g with r boundary 
components) or v~, v 2 . . . . .  v,+,_ ~ (M non-orientable of genus n with r 
boundary components) be a system of direct regular closed curves on M, 
all based at v x ~ Tx M, whose homotopy  classes generate ~h(M, x). Such 
a system is called a regular generating system (compare [5]). Since the 
homology classes of the v~ regarded as singular 1-cycles form a basis 
for H~(M; Z), any function which assigns an integer n i to each vi defines 
a homomorphism H~ ( M ; ~ ) ~ ] g  which can be identified with an element 
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of H i ( M ;  2g) since H I ( M ; Z  ) is free abel ian (M has the h o m o t o p y  type 
of a 1-complex). Let the element of H I ( M ; Z )  defined by the function 
which assigns u f '  to v~ (where v i = fi(S1)) for each i be represented by a 
singular cocycle which we denote  by d(X~, )(2): any two such representa-  
tive cocycles differ by a c o b o u n d a r y  and so take the same values on any 
given 1-cycle. (This construct ion is closely related to the s tandard  
obstruct ion theory for sections of  bundles:  see [9] for example.) If  
? = f ( S  1) is any  closed curve based at x then since ~ is homotop ic  (and 
hence also homologous)  to a sequence of the v~ and their inverses it is 
easy to check that  in the case when M is orientable we have 

u; = <d(X~, X2), ~') 

where-? is regarded as a l-cycle and  {s, ~ )  denotes the value of  the 
cochain s on the chain or. When  M is non-or ientable  the fact that  if 
f # : S  ~ ~ M  represents  the compos i t ion  v~)v i then u f'~ m a y  not  equal  
uS '+  u f~ (it will do so if v~ is or ientat ion-preserving)  means  that  we at 
best have 

uf = (d (X l ,  X2), 7) rood2. 

If X 1 is a given non-vanishing vector  field and d is any singular 
l-cocycte then when M is or ientable  we can construct  a non-vanishing 
vector field X2 on M such that  ( d ( X  t, X2), v~) = (d, vi) for 1 _<iN 2g 
+ r - 1. This m a y  be done  by deformat ion  retract ing M onto  a wedge W 
of circles in M, construct ing Xz on W C M such that  u g' = {d, # ; )  for each 
/L~ = 9~(S 1) belonging to W, and extending X 2 to the whole of  M. It then 
follows that  d(X~, X2) has the required p roper ty  since (d(X~, X2), t~) 
= (d,/,~) for each/t~ and the homology  classes of the #~ generate H~ (M; 7/). 
When M is non-or ien table  the same will be t rue if we take coefficients 
all the t ime in ;g2. Using L e m m a  (4.1) we thus easily obtain 

(4.2) Theorem. Let c p c  2 ..... c2~+~_ 1 ( M  orientable) or cpc  2 ..... c~+~_ 1 
( M non-orientable) generate rq (M, x). A non-vanishing vector,field X may 
be chosen to assign any given values (in Z or Z2 respectively) to the 
Ogx(Ci) (1 =< i < 2y + r - 1 or n + r - 1) and then for all other c ~ rr I(M, x) 
the value o( COx(C ) is independent of  the choice of  X .  

The following result relates winding numbers  and homology.  

(4.3) Lemma.  / f  ? ,y '  are regular closed curves based at v ,~  T~M, 
x e M, and ? is homologous to ),' with coq/./h'ients in Z ( M  orientable) or 
Z:  ( M  non-orientable) then 

COx,(7, x) = COx,(?', x ) c ' c o x , ( / ,  x) = cox,(7', x) 
or 

cox,(?, x) = cox,(7, x) mod2*'-COx,(?,', x) = COx,(7', x) mod2 
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respectively, where X 1 and X z are any non-vanishing vector fields with 
X~(x) = X2(x) = v~. 

Proof. By symmetry it is enough to prove the implications in one 
direction. By Lemma (4.1) the left hand sides imply 

<d(X~, X2), y> = 0 

taking coefficients in Z or Z2 as appropriate,  and so 

<d{&,  X2), 7"> = ( d(Xl, X2), ~" - r> 

= (d(X, ,  X2), 0t~> 

for some 2-chain fl, and 

(d (x , ,  x g ,  eft) = (ad(X, ,  X2), ~)  

= 0  

since d(X1,X2) is a cocycle. The right hand sides then follow, again 
using Lemma (4.1). 

(4.4) Corollary. I f  7 is homologous to zero with coefficients in Z 
( M orientable) or ~z ( M non-orientable) then cox(Y, x) is independent, or 
independent rood2, respectively, of the vector field X. 

Proof. Take 7' to be a nuilhomotopic simple closed curve. By Lemma 
(2.6) the winding number  o)x(),', x) is + 1, the sign depending on the 
orientation of 7 and not on X. Hence COx(y, x) is independent (or in- 
dependent mod2) of X by Lemma (4.3). 

§ 5. Removal of Base-Point Restrictions 

So far we have considered only regular curves with a given base-point 
and base-vector. In this section we see how the definition of winding 
number  can be extended to situations in which this restriction is removed. 

We continue to assume that M is smooth and admits non-vanishing 
vector fields, although we do not assume as in § 4 that M is compact.  

Let ~, = f ( S  ~) be a regular closed curve on M, and let X be a non- 
vanishing vector field on M. Two sections X:,  Z :  of E / c a n  be defined 
just as in § i, giving closed curves in E: based at e I = X:( t ) ,  e 2 = Z:(1) 
respectively. The homotopy class of Z :  determines a conjugacy class of 
elements in rc~ (E:, e ~). 

If y is orientation-preserving then rq(E:,  e 0 is abelian so we think of 
{Z:} as an element of rq(E:, el) and then {Z:} {X:}-1 defines a unique 
element w : e  rq(E o, e l )~-Z as before. If M is orientable we call this the 
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windin 9 number of 7 with respect to X, denoted by cox(y). If M is non- 
or ientable  we reduce w ~ rood2 before calling it the winding number  
e)x(7): this turns out to be convenient  for simplifying the s ta tements  of  
some results below. It is easy to check that  COx(7) does not  depend on 
the choice of  base-point  1 ~ S 1, provided the or ientat ion of the fibre 
of  E s over  the base-point  is chosen appropr ia te ly .  Intuitively, cox(J is as 
before the total  number  of t imes the tangent  vector  rotates  relative to the 
X-vec tor  on going once a round  7 in the positive sense, taken mod2 if M 
is non-orientable .  

If 7 is or ientat ion-revers ing then E I is a Klein bott le and 
ul,uz~gl(Ef, el) a r e  conjugate  if and only if ul=b2ru2 for some 
r e Z (see Remark  2 in § 1). Hence  wYE nl(Eo, el) is defined only up to 
mult ipl icat ion by an even power  of  the generator,  so we can only define 
cox(J in this case as an element of Z2. Again, any choice of base-point  z 
in S ~ gives the same result as z = 1. 

In both  cases COx(), ) can be described as follows. Choose  x ~ 7 and 
deform 7 by a regular h o m o t o p y  to a curve 7' based at X(x). Then 

COx(7) = COx(7', x) 

if M is orientable,  or 

COx(J = cox(7', x) reduced rood2 

if M is non-orientable .  
L e m m a s  (1.3) and (1.5) generalize immediate ly  to the base-point  

free case: 

(5.1) Lemma.  X~_ Y~COx(7)=COr(j for all 7. 

(5.2) Lemma.  7 ~ 6 =~ COx()') = O)x(6) Jot all X. 

In the new context  T h e o r e m  (2.7) becomes 

(5.3) Theorem. Let X be a non-vanishin 9 vector field on M, and let 
?'t, 72 be direct regular closed curves which are (freely) homotopic but 
not nullhomotopic. Then COX(~I)=COX(')~'2). 

Note. The original definition of direct (2.3) involved a base-point ,  
but is clearly independent  of  the choice of  base-point .  

Proof of Theorem. Free h o m o t o p y  classes cor respond to conjugacy 
classes in the fundamenta l  group. De fo rm 72 to a curve 7~ by a regular 
h o m o t o p y  such that  7~ and 7~ have the same base-vector  v~e T~M, 
x e M:  then { 7~ } = e {71 } e -  t for some e E ~z i (M, x). Defo rm ~ by a further 
regular h o m o t o p y  which takes x a round  a path  corresponding to e to 
obtain ],~ with {<;} = {h} ~ 7h(M,x). We suppose  that  ;~ is still direct 
(since the regular  homotop ie s  may  be per formed using smoo th  isotopies 
of the whole of M) and based at v~. Then if X is a non-vanishing vector  
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field with X(x) = v X we have 

¢o~(72) = O~x(72) 

by L e m m a  (5.2), and 

¢Ox(7~, x ) =  ~Ox(7~, x) 

(taken rood2 if 7~ is or ientat ion reversing) by Theorem (2.7). Hence  
¢Ox(7 0 = cox(72). 

(5.4) Corollary.  I f  c 1 and c: are conjugate elements of Tot(M, x) then 
COx(CO = O~x(C:). 

We can therefore define a winding number  cox(C) for every conjugacy 
class C of  elements  of the fundamenta l  group of M. Namely ,  if 1 ¢ C let 

Cox(C) = ¢Ox(C), c ~ C 

= Cox(7) 

where ~, is a direct regular curve representing C. Thus Cox(C)~Z or Z2 
according to whether  M is or ientable  or non-orientable .  If 1 6 C define 
~ x ( C )  = 1. 

Applying Theorem (3.3) to 7~ and 7~ in the p roof  of  Theorem (5.3) 
we immedia te ly  deduce the base-point  free version of Theo rem (3.3). 

(5.5) Theorem.  I f  71, 72 are direct, orientation-preserving regular 
closed curves on M, and neither curve is nullhomotopic, then 

71 ~Y2=:~) '1~72.  

An unbased regular generating system for M is a collection of direct 
regular closed curves v~(i = 1 . . . . .  2g + r - 1 or n + r - 1) on M such that  
there is a (based) regular  generat ing system consisting of curves v I with 
v I freely homotop ic  to v i for each i. Using T h e o r e m  (5.3) and an unbased 
regular  generating system it is easy to show 

(5.6) Theorem. Let Ct ,  C 2 . . . . .  Czo+r-x ( M  orientable) or 
C1, Cz . . . . .  C,+r-1 (M non-orientable) be conjugacy classes of  generators 
of  the jundamentat group of M. A non-vanishing vector field X may be 
chosen to assign any given values (~ Z or ~2 as appropriate) to the cox(Ci) 
(l <_ i < 2g + r - 1 or n + r - l) and then for all other conjugacy classes C 
the value of  cox(C) is independent of  the choice of  X.  

It is obvious  that, after suitable rewording, L e m m a  (4.3) and Corol-  
lary (4.4) cont inue to hold in the base-point  free case. (The re-wording 
must  take account  of  the fact that  COx(7) e ~-2 for all 7 on a non-or ientable  
surface.) 

We end this section with an e lementary  but useful geometr ic  result. 
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(5.7) Lemma.  Let h . . . . .  L be disjoint regular simple closed curves 
on M which jorm the boundary components of a compact surface N C M,  
where N has genus denoted by 9' or n' according to whether N is orientabte 
or not. I f  N is orientable suppose that all the ?~ have orientations consistent 
with the orientation of ON induced by a chosen orientation of  N. Then 

~ COx(7; ) = +_ (r + 29' - 2) 
i = 1  

when N is orientable, the sign depending on the orientation of N, or 

~ COx(},/) = r + n' reduced rood2 
i = 1  

when N is non-orientable, jbr any non-vanishing vector field X on M. 

Proof. Span the y~ by discs D~ to obtain a smooth  closed surface N '  
f rom N. Let vi belong to the interior  of  Di, and extend X I N to a non-  

vanishing vector  field on N ' -  0 v~. Let X i be a field o f"para l l e l "  vectors 
i = 1  

in D~, defined using some specific d i f feomorphism between Di and the 
unit disc in IR 2. N o w  

O)x,(?%) = +_ 1 (rood2 if N is non-orientable)  

by L e m m a  (2.6), and COx,(?i)-O)x(Ti)= +-Qi (reduced mod2 if N non- 
orientable) where 0i is the index of X at v~, that  is the number  of  rota t ions  
the X-vec tor  makes  relative to the X~-vector, with respect to a chosen 
or ienta t ion of a ne ighbourhood  of  vl, on a (small) suitably oriented closed 
curve a round  v~ (see L e m m a  (4.1)). When  N is or ientable  the signs are 
both  + or  - together,  and depend only on the or ienta t ion of  y~; since 
the ~fi are oriented consistently the signs are the same for all i. The  sum 
of the Q~ is well known to be equal  to the Euler characterist ic Zu, of  N' ,  
and ZN, = 2 -  29' or  2 -  n'. This gives the result. 

Tak ing  r = 1 we have 

(5.8) Corollary.  I f  y is a regular simple closed curve homologous to 
zero, bounding a surface N of genus 9' (n') on M, then when N is orientable 

~,0xl~(~') = - (29' - 1) 

or when N is non-orientable 

COxlu(~, ) = n' -- 1 reduced rood2. 

Note. In fact it is easy to  show that  in the latter case COx(y, x) 
= ___(n'- 1), where x is any  base-point  on 7, and  the sign depends on a 
choice of or ientat ion of a ne ighbourhood  of 7 in M. 
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Taking r = 2 gives 

(5.9) Corollary. U" 71, 72 are disjoint regular simple closed curves 
which are the boundary components of an orientable surface N C M then 

(~)xl~(Tl) ~ ¢°xlN(72) mod2 

for every non-vanishing vector field X on M. 

Note. Knoppers has shown that if ~'i, ~'2 are homologous regular 
simple closed curves (not necessarily disjoint) on an orientable surface 
then COx(70 ~ ~Ox(72) rood2. If "simple" is replaced by "direct", however, 
there exist easy examples (which may be constructed using the formulae 
in § 7, for example) which show that the result then fails. 

§ 6. Winding Numbers on a Closed Surface 

If M is a closed surface (i.e. compact and with empty boundary) then 
M admits continuous non-vanishing vector fields if and only if XM is 
zero, but if v ~ M then M -  v always admits such fields. We now show 
how this allows us to define a notion of windin9 number for curves or 
homotopy classes of curves on a closed surface, although no longer 
necessarily as an element of ;g or 2g z. 

Let M for the remainder of this section denote a closed surface, with 
x, v e M and x 4= v. Let X be a (continuous) non-vanishing vector field 
on M -  v, and let 7 C M -  v be a regular closed curve based at X(x). The 
index of X at v depends only on M and not on X: it is the Euler charac- 
teristic of M, which is 2 - 2 9 (M orientable of genus 9) or 2 - n (M non- 
orientable of genus n). Let N denote the complement in M of the interior 
D o of a closed disc D in M - x  such that v ~ D 0. The restricted bundle 
ToMID--*D is trivial, having total space D x S  ~ with infinite cyclic 
fundamental group generated by H, say. Using van Kampen's Theorem 
it is easy to see that rcdToM, 30 (where y =  X(x)/llX(x)llx) is obtained 
from 7z~(ToN, y) by adjoining the generator H and the relation 

H2a-Zd= 1 
o r  

H n - 2 d = l  

where d is an element of hi(ToN, y) corresponding to a closed curve 
in T0N covering some simple closed curve in N based at x and freely 
homotopic to ON = 8D. It follows from Smale's theorem (Lemma (3.2)) 
that two regular curves on N which are based at X(x) and which are 
regularly homotopic relX(x) on M have winding numbers which may 
differ by a multiple of 2 9 -  2 (or n - 2 )  (see [5]). Intuitively one may 
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imagine the winding number changing by 2 9 -  2 ( n - 2 )  as the curve 
passes through v during the homotopy.  

Clearly, then, we cannot hope for Theorem (2.7) to hold for closed 
surfaces. Instead, we have the following. 

(6.1) Theorem. Let  71,72 be direct regular curves based at X(x )  on M,  
where M is a closed surface and X is a vector f ield van,shin9 only at 
V • 71 Q')72" Suppose {7t } = {72} but {71 } =t = 1 ~ rq(M,  x). Then 

O3x(71, x) =- ~Ox(72, x) mod2 9 - 2 

([ M is orientable, and !f  M is non-orientable then 

(t)X()~I, X) ~(DX(T2 , X) m o d n -  2 

(fl the 7, are orientation-preservin9, or 

(Ox(7~, x) -tOx(Y2, x) rood(2, n - 2) 

i f  the 7 are orientation-reversing, where 9 or n is the 9enus o f  M and 
(2, n - 2) denotes the hiohest common factor  o f  2 and n - 2. 

Proof. If M is the projective plane then n = 1 and the result holds 
trivially. Hence assume M is not the projective plane. 

The technique of proof  is to construct direct regular curves y', (i = 1,2) 
on N based at X(x )  such that 7'~ and 7~ are homotopic to each other on 
N and such that 

7, ~ Y'~ rel X(x )  

on M. The result then follows by applying Theorem (2.7) to ;/t, 7~ on N, 
since we have already shown above that 

~ox(Ti,x)=-e~x(7~,x) m o d 2 g -  2 or n - 2 .  

We construct 7'~ ( i=  1,2) as follows. First assume that ]'~,72 are 
orientation-preserving. Let p: M*--+M be the covering defined in §2, 
corresponding to the cyclic subgroup of rt~(M,x) generated by {~l,} 
= {72}, with differential structure on M* induced from M by p. There 
exists a point x* e p-~(x) with two regular closed curves 7", 7* based at 
X*(x*),  where X* is the vector field on M* induced from X on M, such 
that P(7*)= 7~ (i = 1, 2) and 7", 7~' both represent the same element of 
7tl(M*,x* ). Note that * * Y~,Y2 are simple since 7~,72 are direct. Let 
D* = p -  I(D), which consists of the disjoint union of a countable number 
of discs in M*. Let U be a deformation retract of M*, under a deformation 
retraction which keeps x* fixed, such that Uc~D*=0 :  it is easy to 
construct U since M* is an open cylinder. Take a smooth ambient isotopy 
H,(0 < t < 1) of M*, such that Ho is the identity and H 1 (y* v3y~)C U, and 
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such that H t is the identity sufficiently close to x*. This is easy to do since 
~,*~1w~2" is compact. Define 7~=pH1(7") for i = 1 , 2 .  Each ~'~ is regular 
and direct (since H1(7" ) is simple), and 

so HI(7*) is homotopic to HI(~,~) (relative to x*) on M*. Therefore 
HI(7*)~H~(7*) (relx*) in U since U is a deformation retract of M*. 
However, p(U)C N and so ~,'~ -~ ~,~ relx in N as required. 

When 71,72 are orientation-reversing the argument is similar, 
although we lift to the double cover M** of M* and use isotopies which 
commute with the covering translation of M**. Here M** is an open 
cylinder since M is not a projective plane. 

Applying Theorem (3.3) to 7'~ and ~ on N also gives: 

(6.2) Theorem. Theorem (3.3) holds also when M is a closed surface. 

In view of Theorem (6.1) it is now clear that i fM is a closed orientable 
surface of genus 9 we can define winding numbers for elements ofTr~ (M, x) 
as integers rood20 - 2. We merely let 

~Ox(C) = COxlN(~', x) mod2g-  2 

for each vector field on M with one singularity v, where N is the com- 
plement of the interior of a closed disc in M containing v and 7 is a direct 
regular closed curve on N based at X(x) with {t'} = c #  1 ~ gl(M,x).  
We also let tnx(1 ) = 1 mod29- 2. Similarly, if M is non-orientable of 
even genus we can define such winding numbers as integers rood2. 
If M is non-orientable of odd genus n then winding numbers cannot be 
defined meaningfully as above since (2, n -  2 )=  1. However the more 
interesting applications of winding numbers are to orientable surfaces, 
and in any case it is often quite convenient to use winding numbers of 
curves restricted to compact  surfaces with non-empty boundary. 

Note that Theorem (4.2) continues to hold when Z is replaced by 
~Z0_2, and vector fields are defined on M minus one point. 

The removal of base-point restrictions makes little further difference 
in the case of a closed surface. We can define e)x(C)~ Zzg-2 or Z2 for a 
conjugacy class C of elements of the fundamental group of M, except in 
the case when M is non-orientable and of odd genus. Theorem (5.5) 
continues to hold (combine Theorem (6.2) and the proof  of Theorem (5.3)), 
as does Theorem (5.6) with Z2g-2 in place of Z, and vector fields defined 
on M minus one point. 

Since we shall not in fact need to use winding numbers on closed 
surfaces in the applications which follow, we leave to the reader the 
straightforward task of supplying proofs of the above statements and 
constructing any other analogues of results in § 5 that may be of interest. 
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§ 7. The Calculation of ox(c ) 

In this section we suppose that  M is compact .  
Let x be a point  in the interior  of  M. If o&(ci) is known for each 

element e~ of a set of  generators  of  n l (M,  x) then mx(C) is de termined for 
all other  c~  ~zt(M, x) (Theorem (4.2) and  § 6), a l though we recall that 
COx is not  a h o m o m o r p h i s m .  Since c is expressible in terms of  the c i it is 
useful to have an explicit formula  for calculat ing Cnx(C ) in terms of  the 
~Ox(q). In this section we derive such a formula  in the case when the c~ 
are suitable " s t andard"  genera tors  for 7q(M, x). The  me thod  generalizes 
tha t  of  [5, 6] where a formula  was given for the case when M is orientable 
and c contains  simple curves. 

Suppose first that  M is or ientabte  of  genus g with r (r >= 1) boundary  
componen t s  Q~, ... ,  0,. We  can choose in the interior o f M  a system X of 
oriented simple closed curves ~i (t ~ i < g), fl~ (1 =<j =< g) and  ak (1 =< k = r) 
with the following propert ies :  

(i) the curves all meet  at x, and  are otherwise disjoint 
(ii) ~ together  with 0k bounds  an annulus R k whose interior is 

disjoint f rom all the other  curves of  X 
(iii) cutt ing a long the curves of Z dissects M into the disjoint union 

of the R~ together  with a disc whose b o u n d a r y  runs 

O~lfll 0{1 1/~;~ i 0{2/]2 . . . . .  ~q/~gO~g-1fig-1 0"1 0"2 . . .  O" r 

where " a (  1,, means  "cq backwards"  etc. 
We call X a canonical curve-system for M,  as in [11], or  [12, p. 114-]. 

It is easily verified that  a round  x the curves of Z read as follows: 

1 leaving 

fll arriving 

al arriving 

fl ~ leaving 

~2 leaving 

fig leaving 

a 1 leaving 

a 1 arriving 

17 Math Ann 196 

a r arriving 
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with respect to some particular direction of  rotat ion about  x. We now 
assume the orientat ion of  M to be chosen such that this direction is 
regarded as a negative rotat ion in a ne ighbourhood  of  x. 

If ai, bj, s k denote  the h o m o t o p y  classes of  ~i, fls, O"k respectively, then 
n~(M, x) is generated by these with the one defining relation d = 1 where 
d denotes the element 

al bl a-( l b i t a~b 2 . . . . .  a~ l b~- J sl ... s , .  

I f M  is closed and orientable the situation is the same, except that we 
dispense with the Ok, ak, Rk and s k. 

In the case when M is non-or ientable  of  genus n, the system S consists 
of  oriented simple closed curves r h (t < i < n) and a k (1 < k < rl satisfying 
(i), (ii) above together  with 

(iii)' cutting along the curves of  Z dissects M into the disjoint union 
of the R k together with a disc whose boundary  runs 

~]1 ~1 ~2V]2 " "  V]n?]nO'l "'" Or" 

We can choose an orientation of a ne ighbourhood  of  x (and thus an 
orientat ion of the fibre of  To M over x) such that  the curves read 

r h leaving 

q ~ arriving 

qz leaving 

rlz arriving 

q, arriving 

cq leaving 

~ arriving 

cr r arriving 

with respect to a negative rotat ion about  x. Ifui,  Sk denote the h o m o t o p y  
classes of r h, ak respectively, then rc~ (M, x) is generated by these with the 
one defining relation d' = 1 where d' denotes the element 

2 2 , .  t t 2 S I  . . ,  Sr ~1 a 2  • 

As before, i f M  is closed there are no Qk, ~rk, Rk or s k. 

(i) Calculation when M is orientable. 

Let X be a given non-vanishing vector field on M, or on 
M - v(v + x 6 M)  if c3M = 0, and let c be an element of rc~ (M, x). Let S 
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be a canonical  curve-system for M chosen to  have  the fol lowing addi t iona l  
p roper t i e s :  

(iv) each curve of  Z is regular  except at  x, and  if ~ M  = 0 then no  
curve passes th rough  v 

(v) if each curve is pa ramet r i zed  by  t ( 0 < t < l )  such that  cq(0) 
= [3j(0) = ~7k(0) = x = el( l )  =/3~(1) = ak(1) then the tangent  to each curve 
approaches  X(x)  as t - ~ 0  from above,  and  app roaches  - X ( x )  as t ~  1 
from below. See Fig. 4. 

x \ 
k " \ \  \ 

\ 

o× 
Fig. 4 

Thus  all  the curves are  bunched  toge ther  to form a cusp at  x, a l though  
they are  still d is jo int  except  at  x. 

N o w  any  word  in the " le t ters"  a [  1 b f  1 s~ ~ (1 < i , j  <__ 9; 1 <_ k <_ r if 
r >  1) represents  an e lement  of  g l ( M ,  x), and  any element  may  be repre-  
sented (not  uniquely) by  such a word. (The e lement  l e g l ( M , x )  is 
represented by  the " emp ty"  word.)  Wri te  c =  [w] if the e lement  c is 
represented by  the word  w. 

If  c = 1 then c0x(c)= 1 by  defini t ion,  so there is no th ing  to calculate.  
F o r  the rest o f  this sect ion we assume c 4: 1. 

Given  c s g t ( M ,  x) choose  w such that  c = [w] and  w is reduced  (i.e. 
no two ad jacent  let ters  in w are  mutua l  inverses) and  conta ins  no  subword  
which is more  than  half  of a cyclic p e r m u t a t i o n  of  d -+ 1. I t  follows f rom 
[3] if r = 0  or  from [12, p. 83] in general  2 that  w then conta ins  no null 

2 it must here be assumed that there are at least 3 generators and that d (or d' in the 
non-orJentable case) contains at least 5 letters. However, in the few exceptional cases it is 
easy to check by other direct means whether or not w contains any null subword, 
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subword, i.e. subword  representing 1 e nl(M, x). Suppose w =  zvy, where 
z, v and y are subwords  such that [yz] = 1. Then [w] is conjugate to Iv], 
and so by Corol lary (5.4) we have cox([W])=~Ox([V]). Therefore it 
suffices to be able to calculate cox(C) for elements c = [w] such that no  
cyclic permutat ion of w contains a null subword. 

Let 7 with {7} = c be the closed curve which is the composi t ion of  
curves in 2; and their inverses in the order in which their h o m o t o p y  
classes appear  in w. By (iv) above, 7 is regular except for the cusps at x. 
To calculate cox(c ) it is necessary to find a direct regular curve 7' with 
{),'} = c. This is now easily done as follows. 

Let 7* be a closed curve on M* covering 7 as in the paragraph 
preceding Definition (2.3t. Since w contains (cyclically) no null subword 
it is impossible for 7 to contain a nul lhomotopic  loop. Therefore as in 
Lemma (2.4) the curve 7* is simple. Each of  the cusps of  ?,* may be 
" rounded off '  (keeping all points o f p  - l(x) fixed) to give a regular simple 
curve 3'** on M* such that 7' =P?,** is a regular curve on M whose 
tangents at x (which may  be a self-intersection point) are all in the same 
direction as X(x), and such that {7'} = c. If ~M = 0 we may  take 7' to lie 
in a ne ighbourhood  of  1; not  containing v. The curve ?,' is direct since 7** 
is simple. 

Now by definition COx(C)=~)x(y',x ) (mod2g-2 if c~M=0). We 
interpret cox(?", x) as the total increase in the angle O that  the tangent 
vector to 7 makes with the X-vector  on traversing ?, once in the positive 
sense, and we consider the two contr ibut ions (1) from the "branches" 
of  3' corresponding to c~[ 1 etc., (2) from the rounding off from one branch 
to another  near the cusp at x to obtain 7'. If we denote the contr ibutions 
(1) by Ox(C~[ 1) etc., then it is not  difficult to verify that when dM + 13 

Ox(Cq-+ 1) = +_2ncox(ai)+_rc (1 <i<g) 

and Ox(fl+t)= +_27rCox(bj)T rc (1 <j<g) 

Ox(a~)= +_2rtO)x(Sk)+n ( 1 N k < r ) ,  

with similar expressions, taking account  of the fact that cox(ai)EZ2~-2 
etc., when 0M = 0. For  (2), we let ~ denote the following ordering of 
the letters a +1 etc." 

al,b~l, a71, bl,a2, b2 t . . . . .  a~l, bo, sl ,s~l,s: ,  ...,St 1 

This describes the way the curves of  Z arrive at and leave x, rotating 
round  x in the negative sense. If  c?M = 0 then Y,~ contains no s k terms, 
Let x~ and x,,+ ~ be two consecutive letters in the word w taken cyclically, 
and let Z,,, )5,+ ~ be the curves of  2; (or their inverses) whose h o m o t o p y  
classes are xm, x,.+~ respectively. If  x2, ~ appears  before x,,+~ in the 
order ing N then to round off the cusp between the end of  ~,~ and the 
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beginning of Z,,+ ~ we have to turn the tangent through an angle of~z + r/m, 
where q,, may  be made arbitrarily small. On  the other  hand, if x,~ ~ 
appears after x,,+ ~ in ~ the tangent turns through an angle of - r e  + qm' 
Notice that x2, ~ and x,,+ t cannot  be identical, since w contains no null 
subword. Let w = x~ ,.. Xp with p > 1. I fp  = 1 there is nothing to compute,  
since we are assuming the winding numbers  of  the generators of  nl (M, x) 
to be known. Therefore suppose p > I. The winding number  of  7' is the 
sum of all the increases in O on going round the )~,, (1 < m < p) outside 
a small ne ighbourhood  of  x, together with the sum of the changes in 
going f rom )~,, to X,,+ 1 (1 < m _< p, where Xp+ ~ means Z~). F r o m  the above 
this total is 

O x ( Z m ) + ( P - N ) ~ +  rl,. 
2 7~ , - 1  rn= l 

where each r/m may be made arbitrarily small, and 

P = number  of  values of m for which x~, ~ appears 

before xm+ 1 in the ordering ~ ,  

N -- number  of  values of  m for which x£ l appears 

after xm + i in the ordering ,~. 

P 

Since Ox()~m) is an integral multiple of  rc for each m, the term ~ tim 
m = l  

must in fact be zero. 
For  each i (1 < i < g) let A i denote the number  of letters xm in w such 

that x m = ai, and let Z i be the total number  for which xm = a [  ~. Similarly 
g 9 

de,he ~j, ~ .  S~, ~ and let A = Z A~, X= Z X,, etc. 
i =  ! i =  1 

Then when c~M :# 0 we have 

g 

2rCCOx(7', x) = Z (2rC°x(a~) + r0 ( A f -  .,T~) 
i = 1  

g 

+ Z t2~o,~(b,) - ~)(B j -  ~) 
j = l  

+ ~ (2~ox(~) + ~)(s~- ~) 
k = l  

+ ( P -  N)rc. 

If ~ ? M = 0  there are as usual no s k terms, and integers are reduced 
rood2 9 - 2. 

Let F be the free g roup  generated by a~ (l < i <  g), bj (1 < j  < g) and 
(if c?M:l:0) S k ( l < k < r ) ,  and let ~ p x : F ~ Z  (or Z20-2 )  be the homo-  
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morphism defined by ¢px(a~)=~ox(aO, etc. Then regarding 
element of F, and using the fact that  

A -  f f I - B +  B + S - S +  P - N = 2 ( A  + B + S - N )  

(since A + / f  + B + B + S + S =  p = P + N), we obtain 

Formula I. 

C,Jx(C) - ~0x(w) = (A + B + S) - N (c')M 4: 0) 
o r  

cox(c) - ~ox(w ) = (A + B) - N m o d 2 g  - 2 ( ? M  = 0). 

Since P + N = p etc., we may also write the above as 

w as a n  

o r  

Formula 1'. 

~x(C) -- ~Ox(W ) = P - (A  + B + S) 

C O x ( C ) - - ~ p x ( w ) = P - ( f f  + B ) rood2 9 -  2 

((?M 4= O) 

(c~M = 0).  

(ii) Catculaffon when M is non-orientable. 

Assume that  M has even genus in order  that  COx(C ) be defined. 
Let c be a non-trivial element of  7zl(M, x) represented by a word w 

in the letters u + 1, s~ 1 (I < i _-< n, 1 < k < r if r > 1). As in (i) we consider 
only those elements c = [w] for which every cyclic permutat ion of  w is 
reduced and contains no subword  which is more  than half a cyclic 
permutat ion of d' ± 1 ; then no cyclic permutat ion of  w contains a null 
subword [12] 2. It is easy to check that  except in the case r = 0, n = 1 
(M = projective plane) this condi t ion implies that  no  cyclic permutat ion 
of  w w  contains a null subword. The projective plane case can, however, 
be dismissed since ~zl(M, x)-~Z2 and so the only non-trivial element is a 
generator.  

Write w = x1 ... Xp and suppose as in (i) that  p > t. Let 7 be a closed 
curve with {7} = c constructed f rom curves of  ~r as in (i); let 6 = 2 7, and 
let 6' be a direct regular curve approximat ing  to 6 also as in (i). Clearly 
6' can be chosen such that 6' = 2-/' for some orientation-reversing regular 
curve 7' which is thus by definition direct, and {7'} = c. We now proceed 
as in the orientable case, but  must  beware of  the following differences: 

(a) the sign of  the change in O in rounding  off the cusp when going 
from ~m to Zm+ 1 depends on whether the number  of  Zj with j < m such 
that Zj = some r/{ ~ is odd or even; this is because each r/i is orientation- 
reversing. 

(b) ~Ox(Uf-1)=cox(Ui)+l for all i (l < i < n )  but COx(S[1)=COx(Sk) 
(t <k<=r) (see (2.12)). 

Remember  that  all winding numbers  of  h o m o t o p y  classes are 
elements of  Z 2. 
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Corresponding to equations in (i) we have the following: 

OOx(U{ ~) = ~-~ (Ox(rl? ~) + ;z) rood2 (1 < i < n) 

and if (3M 4= 0 

COx(S~)= ~ ( O x ( O  ~ ) T ; z )  rood2 (l<=k<=r) 

where for exampIe cox(r/i) is defined using the orientations at points 
x '~  t h induced from the orientation at x by the path xx '  of rh. Let .~' 
denote the following ordering of the letters u + i etc.: 

U l , u t l ,  u2 , u 2 1  ...~Un , u n I , S 1 , S I 1  $2 , . . . ~ S r l  . 

If~,M = 0 then ~ '  contains no s k terms. Let F'  be the free group generated 
by the ui (1 < i =< r~) and (if (?M 4= 0) the sk (1 __< k < r), and let ~Px : F'  ~ g 2  
be the homomorphism defined by ~p~c(u0= COx(U~), etc. A tedious but 
elementary computation gives 

Formula 2. 

cox(c)- qo'x(w) = P' - S rood2 (OM 4= O) 
or  

cox{c) - q)'x(W) = P' mod2 (~?M = 0) 

where P '  is defined from ~ '  in the same way that P was defined from ~.  
Full details of all the above calculations can be found in [1, 

pp. 104 1153. 
Remark. We observe from the above formulae that the expression 

cox([W]) - q~x(W) (or COx([W])- qo~(w)) is independent of X. It must thus 
have some algebraic significance in the structure of nl(M, x), which it 
would be necessary to elucidate in order to understand cox, 

§ 8. Generalizations 

Winding numbers can be directly generalized in at least two different 
directions. The most natural is to consider an immersion 

f :M, mo-~Q, qo 

of an m-manifold M in a q-manifold Q, where M is orientabte and Q is 
equipped with a distribution a of oriented tangent m-planes - i.e. a section 
of the Grassmanian bundle, denoted by G+.,,q(Q). The pull-back f *  G.+,,,~(Q) 
is a bundle over M with fibre G+.,,q (the space of oriented m-planes in 
q-space), and it has two sections induced (i) from the section a and (ii) 
from the tangent map T f : T M ~ T Q  which are analogous to the 
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sect ions X : ,  Z :  in § 1. If the set o f h o m o t o p y  classes [M, G,+,.q] has a g roup  
s t ructure  (e.g. if M is an associat ive  H ' - space  with inverse) then there 
is an exact  h o m o t o p y  sequence 

[ S M ,  M ]  ~ [M,  G+,~] ~ [M,  f *  G~,q(Q)] -+ [M,  M ]  

(where S M  is the suspens ion  of  M)  of  the f ibrat ion 

~;L.-+ :* 62,~(Q)--, M 

and  as in § t  the  two sect ions of /'* + . Gm, q(Q) define an  e lement  o f  
[M,G+,, ,q]/ im([SM, M]).  This may  be thought  of  as a general ized 
winding number .  

+ I [ S M ,  M]  = ~z(S  ~) ( I n § l w e h a d m = l , q = 2 ,  M = S  l a n d G , . , ~ = S  ; 
which is trivial.) 

Al ternat ively,  we can take  M to be the m-sphere  S"  (m > 1), and assume 
that  M and Q bo th  admi t  con t inuous  non-van ish ing  vector-fields (thus 
m is necessar i ly  odd). Defining E :  as in § 1 we ob ta in  as before an exact  
sequence 

rim + 1 (S") ~ zt~(S q - 1) ..+ 7tin(E: ) _.+ 7z,,,(S") 

which yields a "wind ing  number"  as an e lement  of  n,,(S q- 1)/ira (rim+ 1(S~)), 
or  of  

n,,(S q-  1)/(elements of o rder  2) 

when m > 2 since n,,+ 1(S')  ~ Z 2 .  
I t  would  be in teres t ing to know whether  any  of  the results  in ~j 2 - 6  

can be general ized meaningful ly  in e i ther  of the a b o v e  two contexts.  
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