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Winding Numbers on Surfaces. II 
Appl ica t ions  

D. R. J. Chillingworth 

§ O. Introduction 

This is a sequel to the paper [7] in which a theory of winding numbers 
of regular closed curves on surfaces, based on [16, 18], was extended to a 
theory of winding numbers of homotopy classes of closed curves on 
surfaces. We give here two applications of the theory. 

The main application is to the problem of determining when a given 
element of the fundamental group of a compact surface can be represented 
by simple closed curves: we are able to obtain a workable algorithm 
which uses the formulae for calculating winding numbers given in [7]. 
Earlier algorithms for solving this problem using non-euclidean geometry 
have been given by Reinhart [17] and C~ilug~ireanu [3], and a com- 
binatorial algorithm has been given by Zieschang [19, 21]. 

The second application is to the investigation of the structure of the 
homeotopy group of a closed surface, i.e. the group of homeomorphisms 
modulo those isotopic to the identity. Although the results produced at 
this stage are not essentially new, the fact that some concrete results can 
be obtained does suggest that a fuller understanding of the algebraic 
properties of winding numbers may lead to more powerful methods for 
analyzing homeotopy groups. 

The definitions and notations used throughout are those of [7]. 
A surface is a connected separable 2-manifold, called a closed surface if 
it is compact and with empty boundary. Any compact orientable or non- 
orientable surface may be regarded as a 2-sphere with a finite number 
r __> 0 of open discs removed and a finite number g > 0 of handles attached 
in the orientable case or a finite number n > 0 of MSbius strips attached 
in the non-orientable case; the genus of the surface is g or n. 

The author wishes to thank the referee for his many helpful comments, in the light of 
which the original version of this paper was substantially rewritten. 

§ 1. Geometric Preliminaries 

Let M be a compact surface, and x a point of M. In all that follows 
we shall assume that M is not a sphere, since the problems with which 
we are concerned are trivial in that case. 
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We begin with some technical constructions which provide a machi- 
nery for relating the algebraic structure of z h (M, x) to the geometry of M. 
These are taken directly from [-19-1 or [22]. 

We recall from [7, § 7-1 (see [19, 22]) that every compact surface M 
admits a canonical curve system Z described as follows. If M is orientable 
with boundary a M 4:0 then 27 consists of a system of oriented simple 
closed curves ~i, fli and 0.k (1 < i , j  < g; 1 < k < r) with the following 
properties: 

(i) the curves all meet at x and are otherwise disjoint; 
(ii) 0.k together with a component Ok C tgM bounds an annulus R k 

whose interior is disjoint from all the other curves of Z; 
(iii) cutting along the curves of 27 dissects M into the disjoint union 

of the RR together with a disc whose boundary runs 

1#i- 1,,2 ' -1 1 fig-1 f f l  0"2 " '"  0"r 

where here means backwards" etc. 
The fundamental group nl (M, x) has the presentation 

{ai, bj, SR(1 < i , j  < g; 1 < k < r)ld = 1} 

where ai, b j, s k denote the homotopy classes of 0~ i, t j, 0"k respectively, and 

d = al bl a~- 1 b~- 1 a2 b2 a2 1 bE 1 ... ag bg a~- 1 b~- 1 sl s2 ... St. 

When dM = 0 we ignore (ii) and dispense with the Ok, 0"k, Rk and sk. If M 
is non-orientable with t3 M 4:0 then 27 consists of a system of oriented 
simple closed curves r/i, 0"k (1 < i < n ;  1 < k < r )  satisfying (i), (ii) above 
together with: 

(iii)' cutting along the curves of ,Y dissects M into the disjoint union 
of the R k together with a disc whose boundary runs 

/~1 771 1~/2 ~'/2 " '"  P'ln?]n0"1 0"2"'" 0"r" 

In this case r h (M, x) has the presentation 

{ui, Sk(1 ~ i ~ n; 1 < k < r)ld' = 1} 

where ui, Sk denote the homotopy classes of r h, 0"k respectively and 

r 2 d = ul u22.., u 2 sl S2... Sr. 

When t~M = 0 we again ignore (ii) and dispense with Ok, 0"k, Rk and s k. 
The following definition also comes from [19] or [22]: 

(1.1) Definition. When M is orientable a dual dissection 27", cor- 
responding to the canonical curve-system 27, consists of a collection of 
oriented simple closed curves 0~*, t*  (1 < i , j  < O) and (if c3M 4: 0) arcs 0"* 
(1 < k < r) with the following properties: 
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(1) the curves and arcs all have a c o m m o n  base-point  q but  are 
otherwise disjoint;  

(2) a t  connects  q to a point  of Qk; 
(3) each at* (or fl*, (r*) meets  0t i (or fli, trk respectively) exactly once, 

and meets none of the other  curves of ,~; 
(4) cutt ing along the curves and arcs of X* dissects M into a disc D 

whose boundary  runs 

~1~, /~T~2/h ...~g /~g~'e~*-l~02~*-l...~,*~,~, *-1. 

(Note the difference between this and the expression for d.) 

If c~M = 0 there are no arcs tr*. 
When  M is non-or ientable  a dual dissection Z,* consists of oriented 

simple closed curves r/* (1 < i < n) and arcs try' (1 < k < r) satisfying (1), 
(2) above and 

(3') each r/* or a t  meets r/i or  trk respectively exactly once, and meets 
none of the other  curves of 

(4') cutting along the curves and arcs of Z* dissects M into a disc D 
whose bounda ry  runs 

, ,  ,12,12 ... ~/. ~ a l  0 1  a * -  ~ 2  e 2  ~ 2  . . . .  , ~ , - ,  • 

Again if ~M = 0 there are no arcs ~r*. 

(1.2) Definition. Define an equivalence relation " ~ "  on the set of all 
words in a given collection of symbols ("letters") by w 1 ,,~ w 2 if and only 
if w 1 is a cyclic permuta t ion  of w 2. Each equivalence class is called a 
cyclic word, and the equivalence class of w is denoted by (w). 

Any word  w in the generators  of n~ (M, x) and their inverses represents 
an element of n l (M,  x) which we denote  by [w]. If Wx ~ w2 then [wl]  
and [w2] are conjugate elements. 

Let  7 be an oriented closed curve not  passing through q, and in 
general position with respect to ,~* (i.e. 7 meets ,r* in at most  a finite 
number  of points none of which is a self-intersection point  of 7, and at 
each of which 7 crosses over the curve of 2~*). Let  X* be any curve or 
arc of 2~*, and let p be a point  of 7 c~ ~(*. By assigning to a ne ighbourhood  
of p the or ienta t ion induced by the path  qp along ~(* (in the positive 
direction) from some chosen fixed or ientat ion at q, we may  give meaning 
to the statements "7 cuts X* from right to left (positively) at p" or "y cuts 
Z* from left to right (negatively) at p". 

(1.3) Definition. The total word ("Ablesung" in [19, 22]) of ~ with 
respect to 2~* is a cyclic word in the letters ap 1, bjL 1, Sk i ~ (1 < i, j < g ; 
1 < k <_ r) if M is orientable or u~ 1, Sk ! 1 (1 < i < n; 1 < k < r) if M is non-  
orientable,  obta ined from y as follows. Choose  any point  y on y and not  
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on any  curve or arc of  I;*, and  proceed once round  ~ in the positive 
direction. At each point  where 7 crosses a curve or arc of  ,~* write 

a~ if 7 crosses ~* posi t ively ,  

a71 if 7 crosses ~* negatively, 

b~ if 7 crosses t *  posi t ively ,  

etc. 

The  sequence of letters so ob ta ined  gives a word  w, and  the total word 
of 7 is then defined to be the cyclic word  (w), which we denote  by tw(7). 
Clearly, if we had chosen a different s tar t ing point  on 7 we would have 
obta ined  a word  w' with (w') = (w), and  so the total  word  does not  depend 
on the choice of s tar t ing point.  

The  curves ~t i, r/i etc. have total  words  (al), (ul) etc., and  it is easy to see 
that  if two closed curves have the same total  word  they are (freely) 
homotopic .  

Given  a cyclic word  (w) it is always possible to const ruct  a closed 
curve 7 on M with tw(~)=  (w). However ,  if w represents an element of 
nl (M, x) which is k n o w n  to conta in  simple closed curves, such a 7 may  
not  necessarily itself be simple. F o r  example,  on a torus a closed curve 
whose total  word  is (a 3 b 2) cannot  be simple a l though it is h o m o t o p i c  to a 
simple curve (e.g. with total  word  (a 2 bl al bl)). In [ 19, 22] Zieschang uses a 
m e t hod  of " reduc t ion"  of a word  w to a word  W with the p roper ty  that  
if the element [w] e nl(M, x) contains  simple closed curves then some 
element  conjugate  to I-w-I contains  a s imple closed curve whose total  
word  is (W). We follow this me thod  here. 

(1.4) Definition. A word  w in the a/~ 1 etc. (or u/~ 1 etc.) is completely 
reduced if it satisfies the following condi t ions:  

(i) w is cyclically reduced (i.e. no two cyclically adjacent  letters in w 
are mutua l  inverses); 

(ii) neither w nor  any cyclic pe rmuta t ion  of w contains  any  subword  
of the e lement  d e 1 (or d' el), or of any  cyclic pe rmuta t ion  of d + 1 (or d' + 1), 
whose length is m o r e  than  half  the length of d (or d'); 

(iii) if w or any  cyclic pe rmu ta t i on  of w contains a subword  which 
consists of exactly half  of  a cyclic pe rmuta t ion  of d~(e = +_ 1) then this 
half  contains  the first e lement  of  d (i.e. a 1, ul(g, n > O )  or sl(g, n=O))  
when e = + 1, or the last e lement  of d -  1 (i.e. ai- 1, ui- 1 or si- 1) when e = - 1. 

I f  w is any  given word  it is easy to see that  in general a complete ly  
reduced word  W m a y  be ob ta ined  f rom w by reducing w cyclically, 
replacing " long" subwords  of  d + 1 (or d '+ 1) by shorter  words,  replacing 
"half- length" subwords  if necessary, reducing cyclically again  if possible, 
and  so on. We call this process complete reduction. Except ions  to this 
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rule occur when M is a torus (g = 1, r = 0) or a Klein bottle (n = 2, r = 0), 
since for example the word al bx ax in the first case or the word u~ u2ul u2 
in the second case cannot be reduced to words satisfying (iii). However, 
these cases are treated separately in § 3. 

Note that [W] is conjugate to [w] in nl(M, x). 
If W is completely reduced and (W')=  (W) then W' is completely 

reduced. Therefore we also refer to the cyclic word (W) as being com- 
pletely reduced. The element 1 e n~(M, x) is represented by the empty 
word which is conventionally regarded as being completely reduced. 

The following two lemmas are taken straight from [19] with ap- 
propriate changes in notation. The proof of the first is elementary, 
whereas the second is more difficult and is based on the methods of [8]. 

(1.5) Lemma. Any simple closed curve ~ based at x on M may be 
deformed by an isotopy (which in general moves x) to obtain a simple 
closed curve whose total word is completely reduced. 

(1.6) Lemma. Suppose the number of generators of nl(M, x) is at 
least 5. I f  W and W' are completely reduced words such that [W] and 
[W']  are conjugate in ~zl(M, x) and [W] contains simple closed curves 

then (W) = (W'). 

(1.7) Lemma. I f  c6  ~zx(M, x) contains simple closed curves then any 
element conjugate to c contains simple closed curves. 

Proof. This follows immediately from the well-known elementary 
fact that any inner automorphism of n~(M, x) is induced by a homeo- 
morphism of M (see e.g. [20]). The inner automorphism defined by an 
element z is induced by a homeomorphism of M which may be described 
as the result of sliding x once round a closed curve representing z. 

We shall now assume until § 3 that the number of generators of 
n~(M, x) is at least 5: thus every word w in the generators of rq(M, x) 
and their inverses can be reduced completely, and if [w] contains simple 
closed curves the resulting completely reduced cyclic word depends 
only on the conjugacy class of [w] in nx(M, x). 

Lemmas (1.5)-(1.7) can be combined to yield the following: 

(1.8) Lemma. Let c ~ n~ (M, x) be a non-trivial element and let w be a 
word representing c. Let W be a word obtained by reducing w completely. 
Then there exists an oriented closed curve ~ in general position with respect 
to 27* such that the total word of y is (W), and 7 can be chosen to be simple 
if and only if c contains simple closed curves. 

We now turn attention to the geometric situation. Recall that 27* 
dissects M into a disc D. Let ), be any closed curve in general position 
with respect to 27" on M, and not nullhomotopic. On D the curve becomes 
a finite collection c~ of oriented paths whose end-points lie on OD and are 
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identified in pairs to form 7 from c~ when segments of OD are identified 
in pairs to form M from D. Let D o denote the interior of D (i.e. D ° =  D 
- OD). It is easy to see that 7 may be deformed by a homotopy if necessary 
to ensure that cg satisfies the following conditions: 

(1) each path of cg is a simple arc; 
(2) any pair of distinct arcs of cg are either disjoint or meet at just 

one point of D o where they actually cross; 
(3) no three arcs of cg have a common point of intersection. 

(1.9) Definition. If ~ is an oriented closed curve as described in 
Lemma (1.8) and such that cg satisfies conditions (1), (2) and (3) above, 
then 7 is called an elementary representative curve for the conjugacy 
class of c in nx(M, x). 

We recall from [7] that an orientation-preserving closed curve 7 in M 
is said to be direct if there is a covering of M such that ~ lifts to a simple 
closed curve. (In fact in [7] we choose an infinite cyclic covering, but 
this restriction is unimportant.) Lemma (2.4) of 1,7] characterizes these 
direct curves by the absence of null-homotopic loops. An orientation- 
reversing closed curve 7 is direct if 27 (the curve obtained by going twice 
round 7) is direct. 

(1.10) Lemma. An elementary representative curve is direct. 

Proof. If ~ is an orientation-preserving elementary representative 
curve which is not direct then by Lemma (2.4) of [7] it contains a null- 
homotopic loop. By (1) the loop cannot be disjoint from 2~*, and so 
t w ( j  = (w) for some w containing a null subword, i.e. a subword re- 
presenting 1 ~nl(M, x). However, a word containing a null subword 
must fail to satisfy (i) or (ii) of Definition (1.4): as nl(M, x) has at least 
five generators this fact follows from Reidermeister's solution of the 
word problem [15, pp. 200-204] or from [22, Satz IV.15]. (See [22, p. 130] 
or [19, p. 26] for details of the argument when OM #: 0; see also [19, p. 20] 
for other references.) Similarly, if ~ is orientation-reversing and not direct 
then it is easy to see that ww contains a null subword and that this is 
impossible when (w) is completely reduced. 

§ 2. Construction of  the Algorithm 

From now until Lemma (2.8) (excepting Lemma (2.4)) in order to 
save space we shall only give proofs of lemmas in the case when M is 
orientable. However, the results remain valid in the non-orientable case, 
winding numbers (see below) being taken mod2  where appropriate. 
The detailed proofs for the general case can be found in I-4, pp. 127-147]. 

Let M be given some fixed differentiable structure. A closed curve in 
M will be called regular if it has a continuous non-vanishing tangent: 
see I-7]. 
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The Simple Case 

Suppose c4:1 • tel(M, x) contains simple closed curves, and let y 
be a simple elementary representative curve for the conjugacy class C of c. 
Without loss of generality 7 may be chosen to be a regular curve. Since 
7 is simple the arcs of cg are mutually disjoint. We assume that c is not 
one of the elements a~ 1, b~ 1, s~ 1, so that c4 contains at least two arcs. 
Let Xl, x2 be any two arcs of c¢, and let v be a smooth arc in D O joining 
a point Pl on x 1 to a point P2 on ~2, otherwise disjoint from x l w x  2, and 
chosen so that v meets no other arc of ~g more than once. Let ~ denote 
the arc in D obtained by going along x 2 in the negative direction to P2, 
then along v-1 to pl, and finally along x~ in the positive direction; let ¢~ 
be the arc going along x2 in the positive direction to P2, then along v- 1 
to p~, and then along Xl in the negative direction. Approximate ~'~, ~ 
by smooth arcs ~1, ~2 which are the same as ~ ,  ~ outside a closed disc B 
with v C B ° C B C D O (where B ° denotes the interior of B), and which meet 
just once, touching or crossing according to whether the orientations 
of x~, x 2 at Pl, P2 are the same or opposite with respect to an orientation 
of v. See Fig. 1, which illustrates the two possibilities. Furthermore,  
assume that the point p =  ~ n ~ 2  lies on no arc of cg, and that ¢i meets 
each arc K of cg_ (x 1 wx2) exactly once or not all depending on whether 
the end-points of ¢i separate those of x on ~D or not (i = 1, 2). 

Fig. 1 
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The arcs 41 and 42 and those of (~--(Klk.)/£2) fit together to give 
(with a suitable parametrization) a regular curve 7' on M. Let 6 denote 
the curve which starts at p and proceeds along ~1 in the positive direction 
and then around the rest of,/' until first returning to p (along 42), and let e 
be the curve which starts at p and proceeds along 42 in the positive 
direction and then around 7' until first returning to p (along 41). Choose 
parametrizations such that each of 6, e is regular, and y' is the com- 
position of 6 with e. If tw(,/) = (W) then some cyclic permutation of W is 
of the form uv where (u)= tw(6) and (v)= tw(e-i),  and tw(~')= (uv-1). 

Let Q be an open disc neighbourhood of q (the common intersection 
point of the curves of X*) not meeting 7' and not containing the base- 
point x of M, and let N = M - Q. The curves 7, 3, e and `/' can be thought 
of as curves in N. Any word w in the letters a/~ 1, b~ 1, Sk • 1 represents an 
element of n l (N ,  x) as well as an element of n l (M,  x): we continue to 
denote the element of n l (M,  x) by [w], and we denote the element of 
nl (N, x) by [w]'. 

In Lemmas (2.1)-(2.7) which follow we shall understand nullhomotopic 
to mean nullhomotopic in N, and by a null word or null subword we shall 
mean a word (subword) which represents 1 s n l (N ,  x). Clearly a word 
which represents 1 e nl (N, x) also represents i e n 1 (M, x). 

(2.1) Lemma. I f  u ,t= v then tS, e and 7' are not nullhomotopic and are 
direct (as curves on N) .  

Proof. If 6 is nullhomotopic then tw(v) contains a null subword, 
which is impossible since 7 is an elementary representative curve. If ~ is 
not direct on N then by [7, Lemma (2.4)] it contains a nullhomotopic 
loop 2. Since ), is simple the arcs of rg are mutually disjoint so the vertex 
of 2 lies in K where 

K = (41 u 42)c~ (rg _ (x I u •2))" 

But 41, ~2 are arcs meeting only once so 2 ( D  O and hence tw(7) again 
contains a null subword, which is impossible. Therefore 6 is direct. 
Similar arguments apply to e. 

If y' is nullhomotopic then [ u v - 1 ] ' =  1 ~ n l ( N , x  ) and since uv is 
cyclically reduced this implies u = v. If Y' is not direct it contains a null- 
homotopic loop kt which cannot lie in D O and by the above cannot be 
contained in 6 or in e. The vertex k ofp  must lie in K, and this then implies 
that p contains the whole of 6 or the whole of e. In the first case u v -  1 
is of the form uzy  where z, y are subwords and either uz is null and y is 
non-empty, or yu is null and z is non-empty. Therefore either vu = y -  1 uu 
or uv = u u z -  1 where the arc kpl  P2 or Pl P2 k ofy gives rise to the subword 
uu. It is easy to verify that this is impossible since y is simple and k lies 
between the arcs x~ and ~c 2 in D. Thus/z cannot contain the whole of 3. 
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Similarly, it cannot contain the whole of e. This is a contradiction, so V' 
is direct. 

We now invoke the theory of winding numbers developed in [7]. The 
following is a brief summary  of part  of the theory that we shall need here, 
with the non-orientable case included for completeness. We refer to 
[7, ~ 1, 2 and 5] for precise definitions and further explanations. 

The winding number COx(V) of an oriented regular closed curve V with 
respect to a (continuous) non-vanishing vector field X on a (smooth) 
surface N (0N 4= 0) is defined to be the number  of times the tangent vector 
to 7 rotates relative to the X-vector on going once round 7, reduced 
mod2 if N is non-orientable 1. If N is orientable the sign depends on a 
choice of orientation of N. If two curves are direct and homotopic (but 
not nullhomotopic) they have the same winding number  ([7, Theorem 
(5.3)]). Homotopy  classes (base-point free) correspond to conjugacy 
classes of elements of r h (N, x), and so we can define the winding number 
cox(C) of the conjugacy class C C zq (N, x) as an element o fZ  (N orientable) 
or Z 2 (N non-orientable) by 

cox(C) = cox(J  

where V represents C and is direct. Finally, for c 4:1 ~ rrl(N, x) let 

cox(e) = COx(C) 

where C = conjugacy class of c, and let COx(l) = 1. 
Now let X be any continuous non-vanishing vector field on the 

surface N = M - Q which we are considering. Such a vector field exists 
since ON #: O. 

If w is a word representing an element [w]'  of nl(N, x) we shall write 
COx(W) instead of COx([W]'). 

(2.2) Lemma. ¢Ox(7') = COx(6) + COx(e). 

Proof. Immediate,  since 7' is the composit ion 6oe. 

(2.3) Lemma. I f  u 4= v then COx(UV-1)= COx(U)+ COx( v- z) where u, v are 
as in Lemma (2.1). 

Proof. Immediate  from Lemmas (2.1) and (2.2) and the definition of 
COx(U) etc. 

This is a key result in the construction of the algorithm. It completes 
our study of the simple case. 

1 In the non-orientable case with 7 orientation-reversing it is necessary to choose a 
starting-point Xo o n  ~, at which the tangent to y is in the same direction as X(xo), a n d  to 
transport an orientation at x o around ~: see [7, § 5]. 

10 Math. Ann. 199 
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7he Non-Simple Case 

The following lemma applies whether M is orientable or not. 

(2.4) Lemma. For every conjugacy class C containing elements of the 
form [W] where W is completely reduced and not of the form V V for any 
subword V there is a regular elementary representative curve 7 with 
tw(7) = W and with the following property. I f  ~ and rl are any two paths 
in 7 with the same beginning points and same end points, and ~ c~ rl consists 
of a finite number of points, then the closed curve consisting of the com- 
position ~o rl-1 is not nullhomotopic in N. 

Proof. Let 7~ be any regular elementary representative curve for C 
with tw(7)= W, and suppose ~ and r/are two paths of 71 described as 
above, but with ~or/- 1 nullhomotopic (in N). Let ~' be a path covering 
in the universal cover M' of M and let ~/' be a lift of t / to M' starting at the 
starting point of ¢'. Each of ~' and r/' is an arc since 7 is direct (Lemma 
(1.10)). Since Cot/-1 is nullhomotopic it follows by the homotopy lifting 
property that r/' ends at the end point of ¢'. Suppose without loss of 
generality that the number of points ~'np-1(P1) is greater than or equal 
to the number of points of r/ 'n p-  1 (P1) where P1 is the set of double points 
of 71 and p : M ' ~ M  is the covering map; if this is not so, rename ~ and r/. 
Let ¢" and ~/" denote arcs in p-1(71) obtained by extending ~' and r/' 
slightly, i.e. to include no more points of p-  ~(P1) or points of p-  ~(7~c~X*). 

Let the number of points of r/ 'np-I(P~)(including the end-points 
of r/') be n(>2), the number of those belonging to ~'n~/' being k(>2). 
There is a homotopy of ~" (keeping its end-points fixed) to a path h~" 
near r/" which meets r/" exactly once or not at all and which meets p- ~ (71) 
a total ofn - k + 1 or n - k times respectively (not counting the end-points 
of h~"). Suppose h~" to be chosen sufficiently close to ~/" so that h~" 
rip-1 (X.) has the same number of points as r/"n p-1 (X,). Since the end- 
points of ~' project to distinct points of M (otherwise ~ and ~/would be 
closed curves and 7 = ~o~/would be homotopic in N to 24, contradicting 
the hypothesis on the conjugacy class C) the homotopy of ~" to he" can 
be chosen to induce a homotopy of T~ on M, keeping r/fixed, to a curve 72 
whose number-of self-intersections is less than that of 71. Since ~o~/-1 
is nullhomotopic on N and nl (N, x) is the free group on the generators 
of nl(M, x) it follows that the contribution to tw(71) from ~ is exactly 
the same as the contribution from r/, which is the same as the contribution 
from phi", and so tw(71) = tw(72). Without altering tw(72) or  increasing 
the number of self-intersections we may now replace 72 by a regular curve 
which is an elementary representative curve. By repeating this whole 
process a finite number of times we must eventually obtain a regular 
curve 7,~ which is an elementary representative curve for C satisfying 
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the condition of the lemma, since a curve with no self-intersections 
automatically satisfies the condition. The lemma is thus proved. 

An elementary representative curve satisfying the condition of 
Lemma (2.4) will be called minimal. 

Suppose now that c e rq(M, x) does not contain simple curves. 
Suppose the conjugacy class C of c is as in Lemma (2.4), and let 7 be a 
minimal regular elementary representative curve for C lying in N. The 
arcs of cg cannot all be disjoint. Assume the construction of cg and the 
parametrization of 7 to be such that whenever two arcs xl, ~c2 e cg meet, 
the tangents to xl and x2 at r =  x 1 nrc 2 coincide. 

Let xl, x2 be two arcs of cg which meet; let r = xx nx2.  Let 6, be the 
curve which begins at r and proceeds along xl and then continues 
around 7 until first returning to r, and let 5, be the curve which begins at r 
and proceeds along xi- 1 and then continues around 7-1 until first return- 
ing to r, each parametrized so that 7 is the composition 6,oe~- 1. Now the 
composition 6,°5, has two cusps at r; let 7', be a regular curve in N, which 
is the same as 6,°5, outside a closed disc B where r e B°C B C D o and 
(BnCg) C xl ux2,  obtained by rounding off the cusps of 6,oe, at r in such 
a way that BnT'r is the disjoint union of two arcs. If tw(7)= (W) then 
(W) = (uv) where (u) = tw(6,), (v) = tw(e71), and tw(7;) = (uv-  1). 

In order to save space in the proofs which follow we now revert to our 
assumption that M is orientable. The results still hold, however, in the 
non-orientable case. 

Clearly 6,, e, are not nullhomotopic, since 7 is direct. 

(2.5) Lemma. The curves 6, and e, are direct on N.  

Proof. Suppose t5 r contains a nullhomotopic loop 2 with vertex s. 
Since 7 is direct, 2 must contain r. Thus 2 = ~oq- 1 where ~ and r/are both 
paths in 7 from s to r. This contradicts the minimality of 7 and hence 6, 
contains no nullhomotopic loop and is therefore direct. Similarly, 5, is 
direct. 

Now let X be any continuous non-vanishing vector field on N as 
before. 

(2.6) Lemma. I f  7', is also direct on N then 

O~x(UV- 1) = O~x(U) + COx( v-  1) + 1. 

Proof. By choosing B sufficiently small the contributions to tOx(7',) 
from 6, and 5, outside B may be made arbitrarily close to tOx(6,), COx(e,) 
respectively, and the contribution from 7',rib may be made arbitrarily 
close to _+ 1 since the contributions from rounding off the cusps are both 
arbitrarily close to +½ or to -½. See Fig. 2. Hence O9x(7',) may be made 
arbitrarily close to ¢nx(6,)+ O~x(e,)_+ 1, and since winding numbers are 
10" 
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Fig. 2 

integer-valued we have 

eOx(T'~) = O3x(6~) + O3x(e~) + 1. 

The result then follows f rom L e m m a  (2.5) and the definitions of  OOx(U ) etc. 
Note. In  the non-or ientable  case it is necessary to pay close at tention 

to start ing-points and to t ranspor ta t ion  of  orientat ions a round  curves. 

(2.7) Lemma.  Every minimal elementary representative curve 7 for C 
either contains at least one double point r, for which 7", is direct on N, or has 
total word (W) with W = V" where V is a subword and m > 2. 

Proof. For  x e cg let e(r) denote  the end-point  (as opposed  to the 
beginning-point) of  x. If  x i n x j + O  and r =  tqc~xj let D(r) denote the 
"triangle" (a topological  2-disc) in D bounded  by the arcs re(xl), e(x~) e(xj), 
e(xj)r in xi, 0D and x j, respectively, and not  containing the rest of x~wr~j. 
For  rq, x 2 e ~ write x 1 --~ x 2 if, after identifying segments of  0D to give 2;*, 
the points e(xl) and e(x2) lie on the same curve X of  2;* and x 1 and x 2 
meet X from the same side. Let z(x) denote  the successor to K, i.e. the 
arc of  ff  which follows x in the sequence of  the arcs which describes 7; 
define inductively z°(x)=x,  z"(x)=z(z"-l(r)) ,  n =  1, 2 . . . . .  Given any 
double point  r of ~ we have r =  xic~rj for some xi, x j e ~ ;  let n(r)< 
be the least upper  b o u n d  of all integers n such that  zs(x~) ,,~ zs(xj) for all 
s with 0 < s < n. If  x~,~ xj put  n(r) = - 1. No te  that if n(r) = ~ then 
z~(x~) ~ z~(xj) for all integers s, and it is easy to see that  in that  case some 
non-trivial cyclic permuta t ion  of W is the same as W (where (W) = tw(7)) 
and hence that  W is of  the form V m where V is a subword  and m > 2. We 
thus assume n(r) < ~ for the remainder  of the proof. 

Let n o be the min imum of n(r) taken over all double points r, and let r o 
be a double  point  for which n(ro) = no. N u m b e r  the arcs of  c~ so that 
ro = xl c~r2, and construct  the curve ~',o as above. If Y'ro is direct we take 
r ,  = to. If 7',0 is not  direct it contains a nu l lhomotopic  loop 2 with vertex 
r~, say, and since tw(y) is completely  reduced 2 must  contain  at least one 
of  the two arcs of y',oC~ Bo (where Bo denotes  the small disc containing ro 
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inside which the cusps of  6,oOe,o are rounded  off to give Y'ro) otherwise y 
would  contain  2. In  fact, since ? is minimal,  2 must  contain  bo th  arcs of 
7"onBo, since otherwise two arcs ~, r /going  from rl to ro (or ro to rl) in ? 
would  be such that  ~or/-1 is nul lhomotopic .  Hence 2 contains the whole 
of  fifo or  the whole of e,o, and by renumber ing  x 1 and x 2 if necessary we 
may  assume 2 contains 6~o. This means  u must  be of  the form pq and 
v = phq where p, q, h are (possibly empty) subwords.  The complementa ry  
loop to 2 in 7 contr ibutes the subword  h. We have r~ e zl(x2) where 
l = length of p (taken to be zero if p is empty). 

Let ~c 3 = z~(x2), and let x4 be the other  arc of ~ containing r~ (i.e. 

r 1 ~ /~3 ~/£4)" 
First suppose n o > 0, so x i ~ xj for all rq, xj with x i c ~ j  4: I~. Cor-  

responding to  the fact that  u and v bo th  begin with the subword  p we have 

zS(Xl),-~ zs(x2), s = 0, i . . . . .  l -  1 

and then since v = phq and  u also ends with q we have 

z~(x4)~zt+~(rl) ,  s = 0 , 1  . . . . .  l ' - i  

w h e r e / ' = l e n g t h  of q. However ,  z"(x4) = x 1 and zz+r(Xl) = x 2 and so in 
fact 

z~(x4),,~z/+~(xl), s = 0 ,  1 . . . . .  l ' + n  o. 

By definition of n(rl) we have 

z~(x3),,, zs(x4), s = 0, 1 . . . . .  n(rl) 

and hence 

zt+~(xl),,~ zt+~(x2), s = 0, 1 . . . . .  min(n(rl), l ' +  no) 

because x 3 = zt(x2). Therefore by definition of  n o = n(ro) we have 

l + min(n(rl), l' + no) < n o . 

The choice of  r 0 implies n o < n(rl) and so 
l = 0  

and 
n(r l) = n o = n(ro) 

as l' cannot  be zero if l = 0. Thus  

K~3 ~ / ~ 2  

and r 1 lies between r 0 and e(tc2) on/£2. Also the sub-arc r t e(x4) of x 4 
is disjoint f rom the sub-arc roe(x1) of x 1, since if r '~rle(r4)C~roe(rl)  
there would  exist two arcs 4, r /from r '  to r 0 in y with ~ o ~/- 1 nul lhomotopic ,  
thus contradict ing the minimali ty of  ),. Hence the "triangle" D(rl) is 
strictly conta ined in D(ro). 
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If n o -- - 1 then we arrive at the same results as these, although the 
proof has to be worded slightly differently. 

Now either ~1 is direct (in which case we take r ,  = r~) or by replacing 
r 0 by r I in the above (remember n(r 0 = no) we obtain a double point r 2 
with n(r2)= n o and D(r2) strictly contained in D(rl). The point r 2 lies 
on/£2 = /£3 or on /£4 according to which of 6,~ or e,1 is contained in the 
nullhomotopic loop of 7'~,. If 7', is not direct for any double point r we 
thus obtain by induction a sequence of double points r0, rl, r 2 . . . .  with 
n(rl)=n o and D(ri+~) strictly contained in D(ri), i = 0 ,  1,2 . . . . .  The 
sequence must have repeats since the number of double points is finite. 
However, it is impossible for the sequence to repeat if D(r~+OCD(r~) 
strictly. This contradiction shows that there must exist some double 
point r .  for which ~'~, is direct, which proves the lemma. 

We now have all the ingredients that are needed for the construction 
of the algorithm, except in the case when tw(v) is of the form (V') (m > 2). 
However, this case will easily be disposed of using the following well- 
known result. For  a proof see e.g. 1-17] or [19-1, or [10, Theorem 4.2]. 

(2.8) Lemma. Let c = br"~ zh(M , x) where b is non-trivial and m > 2. 
Then c contains simple closed curves if and only if m = 2 and b contains 
simple closed orientation-reversin 9 curves. 

§ 3. The Algorithm 

We have been assuming above that the number of generators of 
nl(M, x) is at least 5. In order to give a comprehensive solution to the 
problem of finding whether an element of nl(M, x) contains simple 
closed curves we shall first consider the exceptional cases (i.e. where 
nl(M,  x) has at most four generators) and then give the algorithm for 
the general case (including M non-orientable). In cases (i)-(vi) we shall 
by abuse of notation not distinguish between an element of n l ( M , x  ) 
and a word which represents it. 

Case (i) : nl (M, x) = {s 1 . . . . .  s r Is1 ... sr = 1} where 1 < r < 4. ( M  = disc 
with r -  1 holes.) 

When r = 1 there is no problem. Otherwise, we observe that ~zl(M, x) 
can be presented as the free group generated by s 1 . . . . .  st-  1. The whole of 
§§ 1 and 2 continue to be valid with cyclic reduction (see Definition (1.4)) 
in the free group playing the role of complete reduction in the original 
presentation. For  example, the analogues of Lemmas (1.8) and (1.10) 
continue to hold in this context. We can therefore apply to this case the 
algorithm as it is formulated for the general case (vii) below, with s, 
replaced by s,-_11 ...s~ -1 and "completely reduced" then replaced by 
"cyclically reduced". Of course, these remarks apply equally well when 
r > 4 .  
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Case (ii) : rq(M, x) = {u 1 [u 2 = 1}. ( M  = projective plane.) 
Clearly both homotopy classes contain simple closed curves. 
Case (iii)" it 1 (M,  x) = {u 1, s l lu  2 s 1 = 1 }. ( M  = M6bius  strip.) 
Here 7t 1 (M, x) can be considered as the infinite cyclic group generated 

by u 1, and the only non-trivial elements represented by simple closed 
curves are up 1 and up 2. 

Case (iv) : zh(M, x ) =  {Ul, sl, s2[u2sl s2 = 1}. ( M  = M6bius  strip with 
(open)  disc removed.)  

Bearing in mind Case (iii) it is easy to show that the only non-trivial 
elements represented by simple closed curves are those conjugate to Ul, 
u~, u 1 s 1, (u I sl) 2, s 1, u2sl ,  or their inverses. In order to check whether 
or not a given word represents an element conjugate to one of these one 
replaces s 2 by s ;  1 ui-2 and then checks for the conjugacy in the free 
group generated by s 1 and u 1. 

Case (v)  : rh(M, x) = { a l ,  bl [al bl a~- 1 b~- 1 = 1}. ( M  = torus.) 
It is well known that the element a~ b] contains simple curves if and 

only if (p, q) = (0, 0), (0, + 1), ( 4-1, 0) or p and q are coprime. This may 
easily be proved by observing that any non-trivial element c contains 
simple closed curves if and only if there is an automorphism of nl(M, x) 
taking c to al. A different proof can be found in 1-17]. 

Case (vi)  : n l ( M ,  x) = {u 1, u2lu ~ u~ = 1}. ( M  = Kle in  bottle.) 
I t  is easy to deduce from the results about isotopy classes of simple 

curves on M in [-12] that the only simple curves are those whose homo- 
topy classes are conjugate to 1, up 1, uS 1 or up 2. A full list of these con- 
jugate elements may be computed easily by writing ul = a, u 1 u 2 = b so 
that l h ( M , x ) =  {a, b l a b a - l b =  1}, and it consists of the elements 1, 
(ul u2) ±1, up 2, and (u l (u lu2) ' )  ±1 for any n = 0 ,  ___1, _+2 . . . . .  

Case (vii) " 7he general case. 
Given an element c~ rh(M, x) first express c as a word w in the 

generators a/, b s, sk (or u/, sk) of nl(M, x) and their inverses, and then 
reduce w completely (Definition (1.4)). Denote the resulting completely 
reduced word by I4/. If W is empty (i.e. c = 1) or consists of only one 
letter, then I-W], and hence c, contains simple closed curves. Therefore 
suppose W = x 1 x2 . . .  x v where p >__ 2. There are ½p(p - 1) ways of express- 
ing the cyclic word (W) as (uv) where u, v are non-empty subwords: call 
each such expression a division of W. 

Let X be any continuous non-vanishing vector field on N = M - Q, 
where Q is an open neighbourhood of the base-point of a dual dissection 
of M as in § 2. 

If c contains simple curves it follows from the results in § 2, cul- 
minating in Lemma (2.3), that 

O~x(UV- 1) = ~Ox(U) + Ox(V- 1) 

for every division (W) = (uv) with u 4: v. 
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If c does not contain simple curves, then by Lemmas (2.6), (2.7), and 
(2.8) either W =  Vm(m> 2) or there exists a division (W)=(uv)  with 

cox(UV- 1) ~ COx(U) + COx(V- 1). 

Therefore the final result may be stated as follows: 
The element c contains simple curves if and only if a completely reduced 

word W obtained from c as in § 1 satisfies one of the conditions: 
(i) W is empty (i.e. c = 1) or contains only one letter, 

(ii) W = V 2 where IV] contains an orientation-reversing simple closed 
curve, 

(iii) W contains at least 2 letters, W 4: V m for any V and any m >= 2, 
and for every division (W) = (uv) the equation 

COx(UV- 1) = COx(U) + COx(V- 1) 

is satisfied, where X is any continuous non-vanishing vector field on 
N = M - Q .  

Note. In case (ii) the algorithm must be applied in turn to IV] (which 
is completely reduced since (V 2) is completely reduced), but case (ii) will 
not arise a second time since if V = Z 2 then I-V] can contain only orienta- 
tion-preserving curves. 

The algorithm is clearly not complete, however, until we are able 
effectively to compute whether or not the equation 

COx(UV- 1) = COx(u) + cox(v- 1) 

is satisfied for each division (W)= (uv). To do this we will invoke the 
Formulae 1 or 2 of I-7, § 7-1 : see below. 

It is to be expected that if the equation is satisfied for one choice 
of vector field X it will be satisfied for all vector fields: whether c contains 
simple curves or not does not depend on X. Now COx(U) means COx([U-1' ), 
but we cannot necessarily apply Formulae 1 (1') or 2 from [7-1 immedia- 
tely, since we are using the generators of n~(M, x) to generate the free 
group nl(N, x). However, to apply the machinery of [7] to N we need 
only introduce another generator st+ 1 corresponding to the boundary 
of Q. If ~ denotes a cyclically reduced word obtained from u (here ~ is 
not necessarily completely reduced) then ~ contains no subword which is 
null in nl(N, x). Hence cox([U]')=COx([V]') since [u]' is conjugate to 
~ ] ' ,  and then calculating COx(EU--J') by Formulae 1' or 2 of [7] we have 

COx(U) - tpx(~ ) = T ~ )  ( M orientable) 
or  

COx(U)- ~O'x(-ff) = T ~ )  mod2 ( M non-orientable) , 

where ~0x(tpj¢) is the unique homomorphism nl(N, x)~Z(Z2) coinciding 
with the function COx on the chosen generators of nl(M, x) (here we 
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identify a word in the generators  with the element of n l (N,  x) which it 
represents), and where T(~) is defined as follows: 

T(-a) = P ~ )  - ( ,7(~) + Bfa )  + g(~))  

where ~ = Yl Y2... Yq(q > 1) and (with yq+ 1 denoting Yl) 
P(~) = number  of y~nS (1 _--< m __< q) for which ym I c o m e s  before Ym+l in 

the ordering 

al,  bi- 1, ai- 1, bl ' a2 ' b~ 1, a ;  1, b2 . . . . .  a~- l, bg, s 1, si- 1, s2 . . . . .  s71 

for M orientable,  or the ordering 

Ul, u? 1, u2, u~ 1 . . . . .  ul, Un 1, Sl, S; 1, S2 . . . . .  S;- 1 

for M non-orientable,  

.4(~) = number  of Ym s which are a/- 1 for some i, 

B(~) = number  of Ym S which are bj for some j, and 

S(~) = number  of Ym S which are s~- 1 for some k. 

If q = 1 we define T(~) = 0 if ~ ~ u/- 1 (1 < i < n), or T(~) = 1 e Z2 if 
= u/- 1, since a~x(C ) + Ogx(C- 1) = 0 or 1 according to whether  c contains 

orientat ion-preserving or -reversing curves (see Proposi t ion (2.2) of I-7]). 
There  are similar expressions involving ~x(V-1) and Ogx(UV-1). 
N o w  tpx(~ ) = (Px(U) etc., and 

~Ox(UV- 1) = ~Ox(U) + ~Ox(V- 1) 

since q~x is a homomorph i sm.  The same applies to q~,. Hence the formula 

(Dx(UV- 1) = O)x(U) ..~ (DX( v-  1) 

reduces to 
T(uv-  ~) = T(-~) + r ( v -  ~) 

in the orientable case, or 

T(uv-  1) =_ T(-a) + T(v -  1) mod2 

in the non-or ientable  case, and is patent ly independent  of the vector 
field X. Therefore  we see that  condi t ion (iii) in the algori thm may  be 
replaced by: 

(iii)' W contains at least 2 letters, W =~ V rn for any V and for 
any m >__ 2, and 

T(uv -~) = T(u) + T(v -  f) rood2 

for every division (W) = (uv) . 

A few examples illustrating the working of the algori thm are given 
in 1-6]. 
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§ 4. Application of Winding Numbers to Homeomorphisms of Surfaces 

By [9], [11, 13], and [12, 14], [5] it is known that any homeo- 
morphism of a closed surface M may be expressed as a product of 

(i) homeomorphisms isotopic to the identity; 
(ii) "twists" (defined in [11]) about members of a finite family of 

simple closed curves as shown in Fig. 3 (M orientable) or in [5, Fig. 2] 
(M non-orientable); 

Fig. 3 

and if M is orientable 
(iii) a fixed orientation-reversing homeomorphism; 

or if M is non-orientable 
(iii)' a Y-homeomorphism, as defined in [12]. 
A homeomorphism h keeping x fixed induces an automorphism 

h,  : nx(M, x)~nl(M,  x), and i fx  is not fixed then h,  can be defined only 
up to inner automorphism. However, if C is a conjugacy class of elements 
in rq(M, x) then h,C is a well-defined conjugacy class. If a~x(k,C ) is 
known 2 (for some vector field X) whenever k is a homeomorphism 
isotopic to the identity, to a twist or to a Y-homeomorphism, then a 
knowledge of ~ox(h,C ) for a general h leads to information about the 
composition of h in terms of twists, etc. In particular, taking h = identity 
may throw some light on the problem of finding a set of relations for the 
generators of the homeotopy group or mapping class group AM which is 
the group of homeomorphisms of M factored by those isotopic to the 
identity. (See e.g. [1, 2] for some recent results relating to this problem.) 

The following three lemmas concerning the effects of homeo- 
morphisms on winding numbers are given without proof. The first is 
trivial (since k,  C = C), the second is elementary, and the third is a little 
more complicated technically but essentially a matter of straighforward 
verification. All non-orientable surfaces will be supposed to have even 
genus so that winding numbers of conjugacy classes are defined, and 
vector fields will be assumed to be continuous and non-vanishing on M 
minus a point. 

2 We recall from I-7, § 6] that for a closed surface M winding numbers of conjugacy 
classes are defined as elements of Z2g-2 (M orientable) or Z 2 (M non-orientable, and of 
even genus), and vector fields are taken to be defined on M minus one point. 
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(4.1) Lemma. I f  k is isotopic to the identity then a~x(k,C)=o~x(C ) 
for all C. 

(4.2) Lemma. Let B, C be conjugacy classes in nx(M, x), where B is 
represented by a simple closed curve fl, and let ho be a twist about ft. Denote 
by B', C' the homology classes corresponding to B, C with coefficients in Z 
if M is orientable (and oriented) or in 7Z 2 if M is non-orientable, and let 
n(~Z or Z2) be the intersection-number (B' . C'). Then 

¢ox(h,, C) = ¢ox( C ) + nCox(B ) 

as an element of ~ ' 2 g - 2  o r  Z2 as appropriate. 

(4.3) Lemma. Let y be a Y-homeomorphism defined using a space 
Y C M (see [12]) and let #1, ]A2 be two disjoint simple closed orientation- 
reversing curves on Y whose ZE-homology classes generate HI(Y;TZ2). 
Then 

¢Ox(y, C) = ~ox(C) + nl + n2 

where n i e Z 2 (i = 1, 2) is the intersection-number of the homology class C' 
with the homology class of Pi. 

The following result has a proof similar to that of Lemma (4.2) but 
is more elementary. These Lemmas (4.2) and (4.4) are mutually indepen- 
dent. 

(4.4) Lemma. 144th the notation of  Lemma (4.2), (htj, C) '= C'+ nB'. 

We now apply the foregoing Lemmas to the word problem in AM. 
Let M be a closed orientable surface of genus g. By [13], the group 

G M of homeomorphisms of M is generated by an orientation-reversing 
homeomorphism, homeomorphisms isotopic to the identity, and twists 
about curves ~i (1 <= i <= g), fli (1 =< i =< g) and 7i (1 =< i =< g - 1) as in Fig. 3. 
Let K denote the union of all these curves, and let N be a regular neigh- 
bourhood of K in M, i.e. a smooth closed neighbourhood of K which 
contracts to K. All twists may be assumed to take place in N. If h ~ G M 
let {h} C AM denote the isotopy class of h. 

Observe that HI (M;Z)  is the free abelian group generated by the 
homology classes of the :¢i and fli, and//1 (N; Z) is similarly generated by 
the homology classes of the ~i, fl~ and ~i. 

(4.5) Lemma. Let h ~ GM and let k be a homeomorphism of N given by 
k = h  1 . , .h r where {h} = {hi} ... {h,}, and each h i is a "generating" twist 
about a curve in K. Choose one of the ~i, say ~j, and suppose 

g g g--1 

(k~j)"= Z 2,~','+ Z # , f l ' +  Z viT'i' 
i=1 i=1 i = l  
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where here" denotes homology class in N,  and the curves of  K are oriented 
as shown in Fig. 3. 7hen 

(i) /f the homeomorphism h of  M induces the identity on Ha (M; T,) 
we have g 

# i=O,  2 j = 1 ,  2 ~ = O ( i , j )  
i=1  

and (ii) if h is isotopic to the identity the above equations hold and also 

g - I  

(g - i) p~ - 0 rood 2g - 2. 
i=1  

Proof. On M we have fli - fli+ 1 ~ - ~ i  (1 __< i __< g - l) and so in case (i) 
since hotj~~g on M it follows by equating coefficients of homology 
classes in M that 2~ = l, 2~ = 0 ( i , j )  and 

0 = #  I - v  x 

0 = ~ 2  "-]- ~ 1 - - V  2 

: (,) 

0 = # o - 1 + % - 2 - % - 1  

O = p o + v o _ l  . 

Hence by addition/~1 + "'" +/~g = 0. 
By Lemmas (4.2) and (4.4) it follows that for any vector field X on M 

minus one point we have 
0 0 g - 1  

°gx(k~J)= ~, 2i°gx(~ti) + ~ #it~x(fli) + Z vi°gx(?i) 
i=1  i=1  i=1  

where we may assume the 0t i etc. to be regular and k to be smooth. Since 
fli, ~ and fl/-+a 1 are the boundary components of a surface of genus zero 
in M it follows by [7, Lemma (5.7) and § 6] that 

~x(fli) + COx(~i) - t°x(fli+ 1) =- 1 mod2g - 2 .  

Now the COx(0Ci) and COx(fli ) can be given arbitrary values mod2g - 2 by a 
suitable choice of X (see [7]; in particular Theorem (5.6) and the end of 
§ 6). In case (ii) since ho~j ": o~j we have 

Cox(kcti) = tOx(~j) mod 2g - 2 

(see Theorem (5.3) of [7]). Therefore by equating coefficients of the 
O~x(~ti) and tOx(fli ) the Eqs. (,) of case (i) arise again m o d 2 g -  2 and we 
obtain also g- 1 

~., v i - O  m o d 2 g -  2. 
i = l  

Combining this with (,) gives the result. 
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Note. In view of the note at the end of § 5 in [7], the hypothesis (i) 
of Lemma (4.5) suffices to prove the entire result modulo 2. 

These equations may be used to give information about A M in some 
particular cases as follows. 

(4.6) Corollary. I f  9 = 2 it is impossible to express the isotopy class 
of the twist hat (j = 1 or 2) in terms of the other 9enerators of AM. 

(In fact generators and relations for AM are known when g = 2 ;  
see [23. ) 

Proof. Suppose {haj}={h} where .j is either 1 or 2 and {h} 
. . .  h +1 Let k = h  a...h, and apply ={hi}  {hr} where none of the hi are aj • 

the lemma to k - l h  and ~j. The Eqs. (i) and (ii) are pt 

2j = 1, 2i = 0 (i 4:j) 

#1 +P2 = 0  

Pl - O m o d 2  

where #i is the coefficient of fl'[ in (k- 1 "at ~' ~pv" But/~j = _+ 1 (depending 
on the orientation of M) since ctj crosses flj once, and this is a contra- 
diction. 

(4.7) Corollary. I f  9 = 3 it is impossible to express {ha2 } in terms of the 
other 9enerators, and if {hat } = {h} where h~ 1 does not appear in h(j = 1, 3) 
then ha, j appears in h. 

(The first (and probably both) of these facts can also be easily deduced 
from known results about generators and relations in AM; see [2].) 

Proof. Applying the lemma to k - l h  and ctj as above gives the at 
equations tq +#2 + P3 = 0  and 2tq +P2---0 mod4. These cannot hold 
when tt 2 = _+ 1 or when #1 + #a = - 1. 

As g increases, the information about AM obtained in this way 
becomes more complicated and correspondingly less useful. Nevertheless, 
these examples illustrate at least the possibility of using winding numbers 
to obtain algebraic results. The possibility would become more real 
if the structure of Ogx" nl(M, X)-"~7~-20_ z w e r e  better understood. 

Some similar results may be derived when M is non-orientable; 
if n is even, using Lemma (4.3). When n is odd an isotopy will not in 
general preserve winding numbers, and the above methods cannot be 
used. 

If 7 is a simple closed curve homologous to zero (Z) on M, which we 
take to be orientable, then (cf. Lemma (4.2)) a twist about 7 preserves 
the homology class and the winding number with respect to any X of 
any other curve on M. Since homeomorphisms exist which preserve 
homology but not winding numbers (see example below) it follows that 
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homology-preserving homeomorphisms are not in general expressible 
as products of twists about curves which are homologous to zero. How- 
ever, the following conjecture may be true. If so it would provide a useful 
link between the geometric and algebraic analyses of homeomorphisms. 

Conjecture. I f  M is orientable (a M ~ O) with a given continuous non- 
vanishing vector field X on M, and h is a diffeomorphism of M such that 

(i) h, : HI(M ; Z ) ~ H I ( M ;  Z) is the identity and 
(ii) cox(hT) = cox()') for all regular curves ~ on M, 

then h is a product of twists about curves which are homologous to zero 
relative to aM. 

Condition (ii) could be replaced by: 
(ii)' cox(h, C)= cox(C)for all conjugacy classes C in ~zl (M, x). 

If a M = 0 (where X is defined on M minus one point) then the con- 
jecture with (ii)' is the more natural but is easily seen to be false, since 
cox(C) is an element only of ~'2g--2' For example, consider two simple 
closed regular curves )'1, )'2, forming the oriented boundary of a 
surface N of genus 2 contained in a closed orientable surface M of genus 3. 
Then cox()'1) + COx()'2) - 0 mod4 by [7, Lemma (5.7)]. Suppose 71 '~ 0, 
and choose X such that ~x() ' l )=  3, ox() '2)= 1 (the singularity of X may 
be chosen not to lie on N). Let h = h 2 h -2 Then h preserves homology ~'1 ~2 ' 
and preserves Cox(C ) (~ Z4) for all C, but if )' meets )'1 and ~)2 once each 
then Cox(h),)= Cox()')_+4, so h is not a product of twists about curves 
homologous to zero. 
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