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THE MAPPING CLASS GROUP ACTION ON THE HOMOLOGY
OF THE CONFIGURATION SPACES OF SURFACES

TETSUHIRO MORIYAMA

Abstract

In this paper, we study the natural action of the mapping class group Mg,1 on the (co)homology groups of
the configuration spaces of n-points on a surface Σ of genus g with the boundary ∂Σ ∼= S1. We present two
main results in this paper. The first result is that the kernel of the action of Mg,1 coincides with the kernel of
the natural action on the nth lower central quotient group of the fundamental group of Σ. The second result
is a new interpretation of the cohomology group H∗(Mg,1; T [H1]) of Mg,1 with coefficients in the free tensor
algebra T [H1] over Z generated by the first homology group H1 of Σ, by using the configuration spaces. More
precisely, we define a certain cochain complex C of Mg,1-modules by using the configuration spaces and prove
that H∗(Mg,1; C) is canonically isomorphic to H∗(Mg,1; T [H1]).

1. Introduction

Let Σ be a compact oriented surface of genus g with one boundary component, and with a
base point p0 ∈ ∂Σ, and let Mg,1 = π0(Diff+(Σ, ∂Σ)) be the mapping class group of (Σ, ∂Σ),
where Diff+(Σ, ∂Σ) is the group of orientation preserving diffeomorphisms of Σ restricting to
the identity on ∂Σ. Let H1 = H1(Σ; Z) be the first homology group of Σ; then Mg,1 acts on
H1 naturally.

In this paper, we study the action of Mg,1 on the (co)homology of the configuration space of
points on Σ. There are two main results. The first result (Theorem A) is that the kernel of the
natural action of Mg,1 on the compact supported cohomology group (which will be denoted by
Hn) of the configuration space of n-points on Σ \ {p0} coincides with the well-known subgroup
Mg,1(n) ⊂ Mg,1, which is the kernel of the natural action of Mg,1 on the nth lower central
quotient group Γ0/Γn of the fundamental group Γ0 = π1(Σ, p0) of Σ. The precise definition of
Mg,1(n) will be given in Section 2. The second result (Theorem B) is a new interpretation of the
cohomology group H∗(Mg,1;T [H1]) of Mg,1 by using the configuration spaces, where T [H1]
is the free tensor algebra over Z generated by H1. More precisely, we will give an isomorphism

H∗(Mg,1;T [H1]) ∼= H∗(Mg,1;C),

where C =
⊕

p�0 Cp is a certain cochain complex of Mg,1-modules constructed from the
homology groups Hn. The precise definition of C and its coboundary map dp : Cp → Cp+1

will be defined in Section 8. Roughly speaking, dp represents how points on Σ make collisions
with each other.

Johnson [4] introduced a homomorphism (the so-called Johnson homomorphism)
τn : Mg,1(n) → H

⊗(n+2)
1 such that Ker τn = Mg,1(n + 1). That the Johnson homomorphism

is related to the Massey products of the mapping tori, associated to elements of Mg,1(n), was
known to him [5], and later Kitano [8] proved that τn exactly measures the higher Massey
products of length n + 1 of the associated mapping tori. Morita [9] discovered a relation
between the Johnson homomorphism and a secondary characteristic class of surface bundles,
and the Casson invariant which is the simplest non-trivial finite type invariant of integral
homology 3-spheres; see Morita [9, 10, 11] or Johnson’s earlier results [4, 5] for more details.
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Additionally, [12] surveys recent works on the structure of the mapping class group of surfaces
mainly from the topological viewpoint.

Now, we introduce some homology groups Hn (n � 0) as follows. For each element
ϕ ∈ Diff+(Σ, ∂Σ), the diagonal action of ϕ on the nth Cartesian product Σn preserves the
subsets Δn, An of Σn, which are defined by

Δn = {(x1, x2, . . . , xn) ∈ Σn | xi = xj for some i �= j} ,

An = {(x1, x2, . . . , xn) ∈ Σn | xi = p0 for some i} .

Here, Σ0 is understood to be the one-point set {pt} on which ϕ acts trivially, and Δ0, A0 are
defined to be the empty set ∅. Define

Hn = Hn(Σn,Δn ∪ An; Z),

which has an Mg,1-module structure induced from the diagonal action. Let Cn(Σ′) =
Σ′n \ Δn(Σ′) be the configuration space of n-points on Σ′ = Σ \ {p0}. We remark that, as
an Mg,1-module, Hn is isomorphic to the compact supported cohomology group of Cn(Σ′):

Hn
c (Cn(Σ′); Z) ∼= Hn.

In this paper, we will use Hn instead of the left-hand side of the above equation.
Our first main theorem in this paper is the following.

Theorem A. For each integer n � 0, the kernel of the action of Mg,1 on Hn is Mg,1(n).
Namely, an element ϕ ∈ Mg,1 acts on Hn trivially if and only if ϕ belongs to Mg,1(n).

Therefore, for each ϕ ∈ Mg,1, the following statements are equivalent.
(1) The element ϕ ∈ Mg,1(n); that is, ϕ acts on Γ0/Γn trivially.
(2) For every integer 1 � i � n + 1, the Massey products of length i on the mapping torus,

associated to ϕ, vanish.
(3) The element ϕ acts on Hn trivially.

The equivalence of (1) and (2) is due to Kitano [8], and Theorem A states that (1) and (3) are
equivalent.

As a corollary of Theorem A, it turns out that the action of Mg,1 on
⊕

n�0 Hn is faithful
(Corollary 7.2).

A related result was obtained by Groufalidis and Levine in [3]. They investigated relations
among the Massey products of 3-manifolds, the Johnson homomorphism, and the Goussarov–
Habiro theory of finite-type invariants of 3-manifolds.

In [7], Kawazumi determined H∗(Mg,1;T [H1]) explicitly modulo the stable cohomology
group with trivial coefficients. As a corollary, the rational stable cohomology algebra of the
extended mapping class group Mg,1 � H1 was proved to be freely generated by the twisted
Morita–Mumford classes (see [6]) over the rational stable cohomology algebra of Mg,1. To
describe a relationship between H∗(Mg,1;T [H1]) and the homology groups Hn, we introduce
some notation. For integers n, l such that n � 0, let S(n, l) be the Stirling number of the
second kind, that is, the counting number of equivalence relations having l equivalence
classes defined on a set with n elements. Here, S(0, 0) will be understood to be 1, and
S(n, l) = 0 if n < l or n > 0 � l. For example, for n > 0, S(n, 0) = 0, S(n, n) = S(n, 1) = 1
and S(n, n − 1) = n(n − 1)/2. In Section 8, we will give the definition of C:

0 −→ C0 d0−−→ C1 d1−−→ C2 d2−−→ · · · dl−1−−−→ Cl dl−−→ · · · ,

Cp =
⊕
q�0

Cp,q, Cp,q ∼= H
⊕S(q,q−p)
q−p ,
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where Hn = {0} if n < 0. Here is the table of Cp,q for 0 � p � 4 and 0 � q � 4.

4 H4 H⊕6
3 H⊕7

2 H1 0

3 H3 H⊕3
2 H1 0 0

2 H2 H1 0 0 0
1 H1 0 0 0 0

q = 0 Z 0 0 0 0
p = 0 1 2 3 4

(1.1)

Let H∗(Mg,1;C) be the cohomology group of Mg,1 with coefficients in the cochain complex
C (cf. [1, VII,5]).

Theorem B. There is a canonical isomorphism

H∗(Mg,1;T [H1]) ∼= H∗(Mg,1;C).

In Section 2, we prepare the necessary notation and give a precise definition of the Hn. The
kernel of the action of Mg,1 on Hn will be denoted by Mg,1(n)′.

In order to prove Theorem A, we propose several supporting statements, which we prove in
Section 3. We shall see that Ĥ =

∏
n�0 Hn has some ring structure and study the relationships

between Hn and Hn−1 by using the product structure on Ĥ. The nth symmetric group Sn acts
on Hn by the permutation of points on Σ. It is easy to check that Hn is an (Sn × Mg,1)-module.
In Section 4, we determine the Sn-module structure of Hn. Therefore, to compute the
Mg,1-action on Hn, it is enough to work with a generating set of Hn as an Sn-module. In
Section 5, we define and study a Mg,1-equivariant ring homomorphism Φ : Zπ1(Σ, p0) → Ĥ
(from the group ring Zπ1(Σ, p0) of π1(Σ, p0) over Z). By using Φ, we explore the relationship
between Mg,1(n) and Mg,1(n)′. Combining the results in Sections 4 and 5, we give a generating
set Rn of Hn as an Sn-module. In particular, we can conclude that if a mapping class trivially
acts on Rn then it trivially acts on Hn. In Section 7, by using the results obtained in previous
sections, we give a proof of Theorem A, that is, Mg,1(n) = Mg,1(n)′ for all non-negative n.
In Section 8, we give a precise construction of the cochain complex C, and give a proof of
Theorem B.

2. Notation

Let π1(Σ, p0) = Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ . . . be the lower central series of π1(Σ, p0), namely,
Γn = [Γn−1,Γ0], n � 1. Let

ρn : Mg,1 −→ Aut (Γ0/Γn)

be the action induced from the natural action ρ : Mg,1 → Aut(π1(Σ, p0)), where Aut(G)
denotes the automorphism group of a group G. Let us write

Mg,1(n) = Ker ρn

for the kernel of ρn. By definition, Mg,1(0) = Mg,1, and Mg,1(1) is nothing but the Torelli
group, which is the subgroup of Mg,1 consisting of elements which act on H1(Σ; Z) trivially.

For an integer n � 1 and for a pair (X, Y ) of topological spaces such that Y ⊂ X, we define

Δn(X) =
{
(x1, . . . , xn) ∈ Xn | xi = xj for some i �= j

}
,

An(X, Y ) =
{
(x1, . . . , xn) ∈ Xn | xi ∈ Y for some i

}
,
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and we write

(X, Y )n = (Xn, An(X, Y )) ,

(X, Y )n =
(
Xn,Δn(X)∪An(X, Y )

)
,

which are generalizations of the standard notation

(X, Y )2 = (X × X, (X × Y ) ∪ (Y × X)).

When n = 0, we define X0 = {pt}, and we will write Δ0(X) = A0(X, Y ) = ∅ so that
(X, Y )0 = (X, Y )0 = ({pt}, ∅).

Since the diagonal action of Diff+(Σ, ∂Σ) on Σn preserves the subset Δn(Σ) ∪ An(Σ, p0),
the homology group H∗((Σ, p0)n) is an Mg,1-module. We will see later that Hi((Σ, p0)n; Z)
vanishes except when i = n (Proposition 3.3(i)). For simplicity, we will write Δn = Δn(Σ, p0),
An = An(Σ, ∂Σ), and Hn = Hn((Σ, p0)n; Z) as in Section 1. Denote by

ρ′
n : Mg,1 −→ Aut(Hn)

the action of Mg,1 on Hn and write Mg,1(n)′ = Ker ρ′
n. Then Theorem A is equivalent to

Mg,1(n)′ = Mg,1(n)

for all n � 0.

3. Homology group of (Σ, p0)
n

We introduce a formal series algebra Ĥ =
∏

n�0 Hn, the elements of which are infinite formal
sums
∑

n�0 un (un ∈ Hn). We will construct some algebraic structures on Ĥ as follows. The
actions ρ′

n, n � 0, induce the action

ρ′ =
∏
n�0

ρ′
n : Mg,1 −→ Aut(Ĥ).

The natural map ιm,n : (Σ, p0)m × (Σ, p0)n → (Σ, p0)m+n induces the multiplication μm,n =
ιm,n∗ : Hm ⊗ Hn → Hm+n, and we will write

uv = μ(u, v) =
∑

m,n�0

μm,n(um, vn)

for u =
∑

n�0 un, v =
∑

n�0 vn ∈ Ĥ. By definition, μ is associative (that is, (uv)w = u(vw) for
any u, v, w ∈ Ĥ), and it has the unit 1 = [pt] ∈ H0 ∼= Z (that is, 1u = u1 = u for any u ∈ Ĥ).
Note that ρ′ commutes with μ, because ιm,n commutes with the natural Diff+(Σ, ∂Σ)-action.
Let Sn, n � 0, denote the nth symmetric group, where S0 is the unit group. The Sn-action
on Hn, given by permutation of n-points on Σ, commutes with the Mg,1-action, and thus Hn

is an (Sn × Mg,1)-module. Let F be the descending filtration of Ĥ such that

FnĤ =
∏
i�n

Hi;

then (FmĤ)(FnĤ) ⊂ Fm+nĤ. Clearly, the action ρ′ preserves F , namely, ϕ∗(FnĤ) ⊂ FnĤ
for all ϕ ∈ Mg,1. The following lemma is easy to prove.

Lemma 3.1. The algebra Ĥ is an associative, filtered algebra over Z with the multiplication
μ and the filtration F . The action ρ′ preserves μ and F . For each n � 0, Hn is an
(Sn × Mg,1)-module.

Proof. The proof follows from the above discussion.
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In order to consider the multiplication μn−1,1 : Hn−1 ⊗ H1 → Hn, we introduce some
notation as follows. Fix an integer n � 2 and write Yn = (Δn−1 × Σ) ∪ An so that

(Σ, p0)n−1 × (Σ, p0)1 = (Σn, Yn). (3.1)

Set In−1 = {1, 2, . . . , n − 1} on which Diff+(Σ, p0) acts trivially, and let

f : In−1 × Σn−1 −→ Δn ∪ An

be the Diff+(Σ, p0)-equivariant map defined by

f(i, (x1, x2, . . . , xn−1)) = (x1, x2, . . . , xn−1, xi).

By definition, f(In−1 × (Δn−1 ∪ An−1)) ⊂ Yn. There is a natural isomorphism

H∗(In−1 × Σn−1, In−1 × (Δn−1 ∪ An−1); Z) ∼= H∗((Σ, p0)n−1; Z)⊕n−1,

and we identify these groups as Mg,1-modules.

Lemma 3.2. Let n � 2 be an integer. The homomorphism

f∗ : H∗
(
(Σ, p0)n−1; Z

)⊕n−1 −→ H∗(Δn∪An, Yn; Z)

induced from f is an Mg,1-module isomorphism.

Proof. Let
f1 : In−1 × (Δn−1∪An−1) −→ Yn

be the restriction of f , and let V = Yn

⋃
f1

(
In−1 × Σn−1

)
be the attaching space. One can

regard Yn as a subset of V in the standard way. To distiniguish the notation Yn (⊂V ) from
the original Yn (⊂Σn), we rewrite W = Yn ⊂ V . Note that there is a natural isomorphism

H∗
(
(Σ, p0)n−1; Z

)⊕n−1 ∼= H∗
(
V, W ; Z

)
. (3.2)

It is easy to check that the map f is injective on the complement of In−1 × (Δn−1 ∪ An−1) in
In−1 × Σn−1. Therefore, f induces the injective continuous map

f2 : (V, W ) −→ (Δn∪An, Yn),

which restricts to the identity W → Yn.
For any x = (x1, x2, . . . , xn) ∈ (Δn ∪ An) \ Yn, there exists i, 1 � i � n − 1, such that

xi = xn, and so f(i, (x1, x2, . . . , xn−1)) = x. This means that f2 is surjective. Moreover, f2
is a homeomorphism, because it is a continuous bijective map from a compact space to a
Hausdorff space. Thus we obtain an isomorphism

f2∗ : H∗(V, W ; Z) −→ H∗(Δn∪An, Yn; Z),

which coincides with f∗ via the isomorphism (3.2).

Let us write ∂∗ : H∗((Σ, p0)n; Z) → H∗−1(Δn∪An, Yn; Z) for the homology connecting
homomorphism of the triple (Σn,Δn∪An, Yn). The composition

∂′
∗ = f−1

∗ ◦ ∂∗ : H∗((Σ, p0)n; Z) −→ H∗−1((Σ, p0)n−1; Z)⊕n−1

is an Mg,1-module homomorphism.

Proposition 3.3. Let n � 1 be an integer.
(i) If i �= n, then Hi((Σ, p0)

n; Z) = 0.
(ii) The sequence

0 −→ Hn−1 ⊗ H1
μn−1,1−−−−→ Hn

∂′
∗−→ H⊕n−1

n−1 −→ 0

is exact.
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(iii) Hn is a free abelian group of rank 2g(2g + 1) . . . (2g + (n − 1)).

Proof. The proof proceeds by induction on n. The statements are obvious when n = 1. Fix
an integer n � 2. Let us consider the homology exact sequence of the triple (Σn,Δn∪An, Yn):

· · · −→ Hi(Σn, Yn; Z)−→Hi((Σ, p0)n; Z) ∂∗−→ Hi−1(Δn∪An, Yn; Z) −→ · · · .

By Lemma 3.2, we can replace the last group with Hi−1
(
(Σ, p0)n−1; Z

)⊕n−1, and then ∂∗
becomes ∂′

∗. There is an Mg,1-module isomorphism

Hi(Σn, Yn; Z) ∼= Hi−1((Σ, p0)n−1; Z) ⊗ H1

induced from (3.1). If i �= n, then by the induction hypothesis, the groups of both ends on the
above sequence vanish, and hence we obtain (i). In the case i = n, the sequence is nothing but
the short exact sequence in (ii). (iii) is immediate from (ii).

Let gr Ĥ =
⊕

n�0 grn Ĥ, grn Ĥ = FnĤ/Fn+1Ĥ denote the associated graded algebra of Ĥ,
and we will identify grn Ĥ with Hn. Let T [H1] =

⊕
n�0 H⊗n

1 be the free tensor algebra
generated by H1 over Z. By Proposition 3.3, we obtain the following corollary.

Corollary 3.4. Let n � 1 be an integer.
(i) Mg,1(n − 1)′ ⊃ Mg,1(n)′.
(ii) The homomorphism ψn : H1

⊗n → Hn, defined by

u1⊗u2⊗ . . .⊗un �−→ u1u2 . . . un,

where ui ∈ H1, is an injective Mg,1-module homomorphism. Consequently, the induced
homomorphism

Ψ =
⊕
n�0

ψn : T [H1] −→ gr Ĥ

is an injective graded algebra homomorphism.

Proof. The group Mg,1(n)′ acts trivially on H⊕n−1
n−1 because of the surjectivity of ∂′

∗
(Proposition 3.3(ii)). Thus, Mg,1(n − 1)′ ⊃ Mg,1(n)′. Next, we prove part (ii) as follows. Since
ρ′ and μ commute with each other, ψn is an Mg,1-module homomorphism. The proof of the
injectivity of ψn proceeds by induction on n. Obviously, ψ1 = id is injective. If n � 2, then ψn

coincides with the composition

H⊗n
1 = H⊗n−1

1 ⊗ H1
ψn−1⊗id−−−−−−→ Hn−1 ⊗ H1

μn−1,1−−−−→ Hn.

The homomorphism ψn−1 ⊗ id is injective by the induction hypothesis, and μn−1,1 is injective
by Proposition 3.3(ii). Thus, ψn is injective.

4. Cell decomposition of (Σ, p0)
n

In this section, we use a cell decomposition of (Σ, p0)
n to determine the Sn-module

structure of Hn. Let X = S1
1 ∨ S1

2 ∨ . . . ∨ S1
2g be the wedge of 2g copies of the oriented circle

S1 = R/Z with the base point 0 ∈ S1. Let αj ∈ π1(X, p0) denote the homotopy class of S1
j ;

then α1, α2, . . . , α2g generate π1(X, p0) freely. We assume that X is a subspace of Σ such that⋂
1�j�2g S1

j = p0 and that the inclusion is a homotopy equivalence. The symmetric group Sn

acts on (X, p0)n and (Σ, p0)n by permutation of n-points, and the map (X, p0)n → (Σ, p0)n

induced from the inclusion is a homotopy equivalence of Sn-spaces. Hence Hn can be
identified with Hn((X, p0)n; Z) as an Sn-module. For simplicity, we will write Δ′

n = Δn(X)
and A′

n = An(X, p0).
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xσ2g(k2g)
S1

1

xσ2(1) xσ2g(1)

xσ2g(2)

p0

S1
2

S1
2g

xσ1(1)

xσ2(2)

xσ1(k1)

xσ2(k2)

xσ1(2)

Figure 1. A point x = (x1, x2, . . . , xn) on Xn − (Δ′
n∪A′

n).

The subspace X \ (Δ′
1 ∪ A′

1) ⊂ X is homeomorphic to the disjoint union of 2g copies of the
open interval (0, 1) ∼= S1 \ {0}. By induction on n, one can see that Xn \ (Δ′

n∪A′
n) consists

of 2g(2g + 1) . . . (2g + (n − 1)) connected components, each of which is homeomorphic to an
open n-disc.

Fix a point x = (x1, x2, . . . , xn) ∈ Xn \ (Δ′
n∪A′

n). For 1 � j � 2g, we define

kj(x) = #
({

x1, x2, . . . , xn

}
∩ S1

j

)
,

where # denotes the number of elements in a set. There exists a unique injective map σj :
Ikj(x) → In, where Ii = {1, 2, . . . , i}, such that{

xσj(1), xσj(2), . . . , xσj(kj(x))
}

= {x1, x2, . . . , xn} ∩ S1
j , (4.1)

xσj(1) < xσj(2) < . . . < xσj(kj(x)); (4.2)

see Figure 1. In (4.2), we regard xσj(i) as points in (0, 1) ∼= S1
j \ {0} so that the inequalities

make sense. When n �= 0, we define

σ(x) =
(

1 2 · · · n
σ(1) σ(2) · · · σ(n)

)
∈ Sn (4.3)

to be the element such that

σ(k0(x) + k1(x) + . . . + kj−1(x) + i) = σj(i) (4.4)

for 1 � j � 2g and 1 � i � kj(x), where k0(x) = 0. If n = 0, then we define σ(x) ∈ S0 to be
the unit. The 2g-tuple

k(x) = (k1(x), k2(x), . . . , k2g(x))

belongs to the set

Kn =
{

(k1, k2, . . . , k2g) ∈ Z2g

∣∣∣∣ k1 + k2 + . . . + k2g = n,
kj � 0 for 1 � j � 2g

}
.

If two points x, y ∈ Xn \ (Δ′
n ∪ A′

n) are in a same connected component, then (σ(x), k(x)) =
(σ(y), k(y)). Therefore, we obtain a well-defined map

hn : π0(Xn \ (Δ′
n∪A′

n)) −→ Sn × Kn, [x] �−→ (σ(x), k(x)),

where [x] ⊂ Xn \ (Δ′
n ∪ A′

n) is the connected component containing x. Note that h0 : π0(X0 \
(Δ′

0 ∪ A′
0)) → S0 × K0 is given by h0([pt]) = (1, (0, 0, . . . , 0)).

Lemma 4.1. For n � 0, the map hn as defined above is a bijection.
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Proof. It is not difficult to see that hn is injective. In fact, if hn([x]) = hn([y]) then one can
easily construct a path from x to y in Xn \ (Δ′

n ∪ A′
n). Since

#(Sn × Kn) =
(2g + n − 1)!

(2g − 1)!
= #π0(Xn \ (Δ′

n ∪ A′
n)),

hn is a bijection.

For (σ, k) ∈ Sn × Kn, let us write

e(σ,k) = h−1
n (σ, k),

which is a connected component of Xn \ (Δ′
n ∪ A′

n). By Lemma 4.1, Xn can be decomposed
into the disjoint union

Xn = (Δ′
n∪A′

n) �
( ∐

(σ,k)∈Sn×Kn

e(σ,k)

)
.

Let Δn denote the n-simplex:

Δn =
{
(t1, . . . , tn)

∣∣ 0 � t1 � t2 � . . . � tn � 1
}
,

where Δ0 is understood to be the one point set {0}. For any element k = (k1, k2, . . . , k2g) ∈ Kn,
we write Δk = Δk1 × Δk2 × . . . × Δk2g , and its interior will be denoted by Int Δk. We define an
Sn-action on Sn × Kn by τ(σ, k) = (τσ, k) for (σ, k) ∈ Sn × Kn and τ ∈ Sn. Let Z(Sn × Kn)
be the Sn-module over Z generated by Sn × Kn.

Proposition 4.2. Let n � 0 be an integer. There exists a family{
ϕ(σ,k) | (σ, k) ∈ Sn × Kn

}
of continuous maps

ϕ(σ,k) : (Δk, ∂Δk) −→ (Xn,Δ′
n ∪ A′

n)

such that:
(i) ϕ(σ,k) maps Int Δk onto e(σ,k) homeomorphically, and
(ii) τϕ(σ,k)(t) = ϕ(τσ,k)(t) for τ ∈ Sn, t ∈ Δk.

Moreover, the homomorphism

Z(Sn × Kn) −→ Hn, (4.5)

taking (σ, k) ∈ Sn × Kn to the homology class [ϕ(σ,k)] ∈ Hn of ϕ(σ,k), is an Sn-module
isomorphism.

Proof. When n = 0, the unique map ϕ(1,(0,0,...,0)), such that ϕ(1,(0,0,...,0))(0) = pt, satisfies
the statement. Assume that n � 1. For 1 � j � 2g, let α̃j : ([0, 1], {0, 1}) → (S1

j , p0) be the map
induced from the identification R/Z = S1

j . Fix any element (σ, k) ∈ Kn × Sn, and let {σj}2g
j=1

be the associated data determined by (4.4). We express the coordinates of points on Δk as
follows:

t = (t1, t2, . . . , t2g) ∈ Δk,

tj = (tj,1, tj,2, . . . , tj,kj ) ∈ Δkj (1 � j � 2g).

Define a map ϕ(σ,k) : Δk → Xn by

ϕ(σ,k)(t) = (x1, x2, . . . , xn),
xσj(i) = α̃j(tj,i) (1 � j � 2g, 1 � i � kj).
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It is not difficult to check that ϕ(σ,k)(∂Δk) ⊂ Δ′
n ∪ A′

n and that ϕ(σ,k)(Int Δk) ⊂ e(σ,k). Since
α̃j |(0,1) : (0, 1) → S1

j − {p0} is a homeomorphism, so is

ϕ(σ,k)|Int Δk : Int Δk −→ e(σ,k).

This completes the proof of part (i).
For τ ∈ Sn, let {(τσ)j}1�j�2g be the associated data determined by (4.4) with σ replaced

by τσ. Then
(τσ)j(i) = τ(σ(k0 + k1 + . . . + kj−1 + i)) = τ(σj(i)).

This implies that
τ(ϕ(σ,k)(t)) = ϕ(τσ,k)(t)

for t ∈ Δk, which proves part (ii).
By (i) and (ii), the map

χ =
∐

(σ,k)∈Sn×Kn

ϕ(σ,k) :
∐

(σ,k)∈Sn×Kn

(Δk, ∂Δk) −→ (Xn,Δ′
n ∪ A′

n)

induces an Sn-module homomorphism

χ∗ =
⊕

(σ,k)∈Sn×Kn

ϕ(σ,k)∗ :
⊕

(σ,k)∈Sn×Kn

Hn(Δk, ∂Δk; Z) −→ Hn.

Since Hn(Δk, ∂Δk; Z) ∼= Z, the group
⊕

(σ,k)∈Sn×Kn
Hn(Δk, ∂Δk; Z) is identified with

Z(Sn × Kn), and so we can write

χ∗ : Z(Sn × Kn) −→ Hn.

By the definition of χ, we have χ∗(σ, k) = [ϕσ,k] for any (σ, k) ∈ Sn × Kn. Since χ induces a
homeomorphism ∨

(σ,k)∈Sn×Kn

(Δk/∂Δk) −→ Xn/(Δ′
n × A′

n),

χ∗ is an isomorphism.

Corollary 4.3. The homology group Hn is a free Sn-module of rank 2g(2g + 1) . . . (2g +
n − 1)/n! with a basis {[ϕ(1n,k)] | k ∈ Kn}, where 1n ∈ Sn is the unit.

Proof. It is clear that Z(Sn × Kn) is a free Sn-module with basis {(1n, k) | k ∈ Kn}.
The rank is equal to #Kn = 2g(2g + 1) . . . (2g + n − 1)/n!.

Remark 1. Consequently, Hn(Σn/Sn, (Δn∪An)/Sn; Z) is isomorphic to the nth symmet-
ric tensor power SnH1 of H1. The kernel of the action Mg,1 → Aut(SnH1) is the Torelli group
for any n � 1.

5. A homomorphism Φ : Zπ1(Σ, p0) → Ĥ

Let Zπ1(Σ, p0) be the group ring of π1(Σ, p0) over Z, which is an Mg,1-module with the
action induced from ρ. In this section we define some Mg,1-equivariant ring homomorphism
Φ : Zπ1(Σ, p0) → Ĥ. Using this map, we will be able to compare the action of Mg,1 on π1(Σ, p0)
with that on Ĥ.

Let γ ∈ π1(Σ, p0) be any element, and choose a representative γ̃ : [0, 1] → Σ, γ̃(0) = γ̃(1) = p0,
of γ. For an integer n � 1, we define an n-chain cn

γ̃ : Δn → Σn by

cn
γ̃ (t1, t2, . . . , tn) = (γ̃(t1), γ̃(t2), . . . , γ̃(tn)),
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for (t1, t2, . . . , tn) ∈ Δn. Note that cn
γ̃ (∂Δn) ⊂ Δn ∪ An and that the homology class [cn

γ̃ ] ∈ Hn

of cn
γ̃ depends only on γ and does not depend on the choice of γ̃.

Definition 1. Define an additive homomorphism φn : Zπ1(Σ, p0) → Hn by

φn(γ) =

{
[cn

γ̃ ] if n � 1,

1 if n = 0,

for any γ ∈ π1(Σ, p0), and define the map Φ : Zπ1(Σ, p0) → Ĥ to be the formal series
Φ =
∑

n�0 φn.

Clearly, every φn, n � 0, and Φ are Mg,1-module homomorphisms. Let I = Kerφ0 denote
the augmentation ideal of Zπ1(Σ, p0). Then Zπ1(Σ, p0) is a filtered algebra with the descending
filtration {In}n�0. The action of Mg,1 on Zπ1(Σ, p0) preserves this filtration.

Proposition 5.1. The map Φ is a filtered algebra homomorphism.

Proof. We need only to prove that Φ preserves the product and the filtration. The function
Φ preserves the product if and only if

φn(γδ) =
n∑

i=0

φi(γ)φn−i(δ) (5.1)

for any γ, δ ∈ π1(Σ, p0) and n � 0. To prove this, we consider the partition of Δn as follows:

Δn = D0∪D1∪ . . .∪Dn,

Di =
{
(x1, . . . , xn) ∈ Δn

∣∣ xi � 1
2 � xi+1

}
, (0 � i � n),

where x0 = 0, xn+1 = 1. Let γ̃, δ̃ : ([0, 1], {0, 1}) → (Σ, p0) be the paths representing γ and δ

respectively. Let γ̃δ̃ be the path defined by

γ̃δ̃(t) =

{
γ̃(2t) 0 � t � 1

2 ,

δ̃(2t − 1) 1
2 � t � 1,

which represents γδ. Since γ̃δ̃(1/2) = p0, the homology class [cn
γ̃δ̃

|Di ] ∈ Hn of cn
γ̃δ̃

|Di :
(Di, ∂Di) → (Σ, p0)n can be defined, and we have

φn(γδ) = [cn
γ̃δ̃

|D0 ] + [cn
γ̃δ̃

|D1 ] + . . . + [cn
γ̃δ̃

|Dn ].

The equation
[cn

γ̃δ̃
|Di ] = [ci

γ̃ ][cn−i

δ̃
] = φi(γ)φn−i(δ)

is a consequence of the natural homeomorphism Di
∼= Δi × Δn−i. Therefore, we obtain (5.1)

as required.
By Lemma 5.2(i) below, the restriction (φ0 + φ1 + . . . + φn−1)|In is zero; that is, Φ(In) ⊂

Fn(Ĥ). Hence Φ preserves the filtration.

Lemma 5.2. Let n � 1 be an integer. For any element of the form (γ1 − 1)(γ2 − 1) . . .
(γn − 1) ∈ In, γi ∈ π1(Σ, p0), we have

Φ
(
(γ1 − 1)(γ2 − 1) . . . (γn − 1)

)
≡ φ1(γ1)φ1(γ2) . . . φ1(γn)

modulo Fn+1Ĥ. In particular, we have:
(i) Kerφn−1 ⊃ In,
(ii) φn

(
(γ1 − 1)(γ2 − 1) . . . (γn − 1)

)
= φ1(γ1)φ1(γ2) . . . φ1(γn).
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Proof. The statement is immediate from the facts that Φ(γi − 1) ≡ φ1(γi) modulo F2Ĥ
and that Φ is a ring homomorphism.

6. Properties of Φ

Let qn : Zπ1(Σ, p0) → Zπ1(Σ, p0)/In+1 be the quotient map. Since Kerφn ⊃ In+1 by
Proposition 5.2(i), φn induces the homomorphism

φ′
n : Zπ1(Σ, p0)/In+1 −→ Hn

such that φ′
n◦qn = φn. The homomorphism Φ gives the associated graded homomorphism

gr Φ : gr Zπ1(Σ, p0) −→ gr Ĥ

such that gr Zπ1(Σ, p0) =
⊕

n�0 grn Zπ1(Σ, p0), grn Zπ1(Σ, p0) = In/In+1 and grn Φ =
φ′

n|In/In+1 : In/In+1 → Hn.
Remember that there is an injective graded algebra homomorphism Ψ : T [H1] → gr Ĥ

(Corollary 3.4(ii)).

Lemma 6.1. The graded homomorphism gr Φ is an isomorphism onto the subalgebra
Im Ψ ⊂ Ĥ.

Proof. Clearly, gr0 Φ is an isomorphism. Suppose that n � 1. By Lemma 5.2, for γ1, γ2, . . . ,
γn ∈ Zπ1(Σ, p0), we have

grn Φ((γ1 − 1)(γ2 − 1) . . . (γn − 1)) = ψn([γ1] ⊗ [γ2] ⊗ . . . ⊗ [γn]),

where [γi] is the homology class of γi. Since the homomorphism In/In+1 → H⊗n
1 defined by

(γ1 − 1)(γ2 − 1) . . . (γn − 1) �−→ [γ1] ⊗ [γ2] ⊗ . . . ⊗ [γn]

is an isomorphism, grn Φ is an isomorphism onto Im ψn. Hence, gr Φ is an isomorphism onto
Im Ψ.

Let Φn : Zπ1(Σ, p0)/In+1 → Ĥ/Fn+1Ĥ be the homomorphism induced from Φ.

Proposition 6.2. The homomorphism Φn is injective.

Proof. Write Qn = Zπ1(Σ, p0)/In, n � 0. Since Φ preserves the filtrations (Proposition 5.1),
there exists a commutative diagram

0 −−−−→ In/In+1 −−−−→ Qn+1 −−−−→ Qn −−−−→ 0

grn Φ
⏐⏐� Φn

⏐⏐� Φn−1

⏐⏐�
0 −−−−→ Hn −−−−→ Ĥ/Fn+1Ĥ −−−−→ Ĥ/FnĤ −−−−→ 0

where the two rows are short exact sequences. By Lemma 6.1, grn Φ is injective for any n � 0,
and therefore the injectivity of Φn is proved by induction on n.

Lemma 6.3. Let α1, α2, . . . , α2g be the free generators of π1(Σ, p0) (∼= π1(X, p0)) introduced
in Section 4. For any (σ, k) ∈ Sn × Kn such that k = (k1, . . . , k2g),

[ϕ(σ,k)] = σ∗
(
φk1(α1)φk2(α2) . . . φk2g

(α2g)
)
.

Proof. Since [ϕ(σ,k)] = σ∗[ϕ(1n,k)] by Proposition 4.2(ii), we prove the statement only when
σ = 1n. Let li = (0, . . . , 0, ki, 0, . . . , 0) ∈ Kki be the 2g-tuple of integers such that the only ith
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component is ki and the others are zero. Referring to the construction of ϕ(σ,k) in the proof of
Proposition 4.2, one can verify that

[ϕ1ki
,li ] = φki

(αi)

and

[ϕ(1n,k)] = [ϕ(1k1 ,l1)][ϕ(1k2 ,l2)] . . . [ϕ(1k2g
,l2g)].

Therefore, we obtain

[ϕ(1n,k)] = φk1(α1)φk2(α2) . . . φk2g
(α2g).

Let R ⊂ gr Ĥ be the subalgebra, generated by
⋃

n�0 Im φn, over Z.

Proposition 6.4. The module Rn = R ∩ Hn generates Hn as an Sn-module.

Proof. By Corollary 4.3, Hn is generated by the set {[ϕ(1n,k)] | k ∈ Kn} as an Sn-module.
This generating set is contained in Rn by Lemma 6.3. Therefore, Rn generates Hn as an
Sn-module.

7. Proof of Theorem A

In the following, we will work with the three Mg,1-modules Zπ1(Σ, p0)/In+1, Ĥ/Fn+1Ĥ,
and Rn (instead of π1(Σ, p0) and Hn) to compare the subgroups Mg,1(n) and Mg,1(n)′. As
we will see, the kernels of the actions on these modules coincide with Mg,1(n), Mg,1(n)′,
and Mg,1(n)′, respectively. The last two kernels are determined with no difficulty and will be
described in the proof of Theorem A below. For the first group Zπ1(Σ, p0)/In+1, the kernel
can be determined as a consequence of a classical result given by Fox [2].

Lemma 7.1. For any integer n � 0, the kernel of the action

Mg,1 −→ Aut(Zπ1(Σ, p0)/In+1)

is Mg,1(n).

Proof. This statement is proved easily by using the fact that γ ∈ π1(Σ, p0) belongs to Γn+1
if and only if γ − 1 ∈ In+1 (see [2]).

We are now ready to prove Theorem A. For this, let us recall that we have an Mg,1-
module homomorphism Φn : Zπ1(Σ, p0)/In+1 → Ĥ/Fn+1Ĥ. Also recall that, by definition, any
element in Rn is the sum of elements of the form a1a2 . . . al, such that aj ∈ Im φkj , kj � 0, and∑l

j=1 kj = n.

Proof of Theorem A. First, we will prove that Mg,1(n)′ ⊂ Mg,1(n). Let S denote
the kernel of the action of Mg,1 on Ĥ/Fn+1Ĥ. Since Φn is injective (Proposition 6.2),
we have S ⊂ Mg,1(n) by Lemma 7.1. On the other hand, Ĥ/Fn+1Ĥ is isomorphic to
H0 ⊕ H1 ⊕ . . . ⊕ Hn as an Mg,1-module, and thus S =

⋂n
i=0 Mg,1(n)′ = Mg,1(n)′ by Corollary

3.4(i). Hence, we have Mg,1(n)′ ⊂ Mg,1(n).
Next, we will prove the converse result that Mg,1(n)′ ⊃ Mg,1(n). Since Rn generates Hn as

an Sn-module (Proposition 6.4), it is enough to prove that Mg,1(n) acts on Im φi trivially for
all i = 1, 2, . . . , n. Let ϕ ∈ Mg,1(n) and γ ∈ π1(Σ, p0) be any two elements; then

ϕ∗(φi(γ)) = φ′
i(ϕ∗(qi(γ))).
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Here, the notation ϕ∗ denotes the action of ϕ on Hi and Zπ1(Σ, p0)/Ii+1. It follows from
Lemma 7.1 and Mg,1(i) ⊃ Mg,1(n) that ϕ∗(qi(γ)) = qi(γ), and therefore ϕ∗(φi(γ)) = φi(γ).
Hence, Mg,1(n) acts on Im φi trivially.

This completes the proof of Theorem A.

As a corollary of Theorem A, it turns out that ρ′ : Mg,1 → Aut(Ĥ) is faithful.

Corollary 7.2. The action ρ′ : Mg,1 → Aut(Ĥ) is faithful.

Proof. By Theorem A, Ker ρ′ ⊂
⋂

n�0 Mg,1(n) = {1}.

8. Some cohomology of the mapping class group

For integers n, l such that n � 0, let S(n, l) be the set of ‘ordered partitions’ of the set
In = {1, 2, . . . , n} with l blocks. More precisely, S(n, l) is defined as follows. In the case l > 0,
we define

S(n, l) =

⎧⎨
⎩(J1, J2, . . . , Jl)

∣∣∣∣∣∣
∅ � Ji ⊂ In

J1 ∪ J2 ∪ . . . ∪ Jl = In

Ji ∩ Jj = ∅ (i �= j)

⎫⎬
⎭ ,

and in the case l � 0, we define

S(n, l) =

{
{()} if (n, l) = (0, 0),

∅ otherwise.

Here, S(0, 0) is understood as the set consisting of the ‘empty partition’ () of I0 = ∅.
By definition, S(n, l) = ∅ if n < l or n > l = 0. The set S(n, l) has a free right Sl-action defined
by Jσ = (Jσ−1(1), Jσ−1(2), . . . , Jσ−1(l)) for J = (J1, J2, . . . , Jl) ∈ S(n, l) and σ ∈ Sl, and it also
has a left Sn-action as a permutation of In. Consequently, the free abelian group ZS(n, l)
generated by S(n, l) is a free right Sl-module and a left Sn-module. We remark that the
number S(n, l) = #(S(n, l)/Sl) of elements in the quotient set S(n, l)/Sl is nothing but the
Stirling number of the second kind.

Recall that the (Sn × Mg,1)-module Hn is defined only when n is a non-negative
integer. For simplicity of notation, if n < 0 then we denote by Hn = {0} the trivial
(Sn × Mg,1)-module, where Sn = {1} is the trivial group. Similarly, if n < 0 then we define
Σn = An = ∅, on which Sn acts trivially.

For integers p, q such that q � 0, we define an (Sq × Mg,1)-module Cp,q by

Cp,q = ZS(q, q − p)
⊗

ZSq−p

Hq−p.

Note that Cp,q is isomorphic to Z(S(q, q − p)/Sq−p)
⊗

Z
Hq−p

∼= H
⊕S(q,q−p)
q−p with the Sq-action

induced from the left action on S(q, q − p)/Sq−p. For example,

S(3, 2) =

{
({1}, {2, 3}), ({2}, {3, 1}), ({3}, {1, 2})
({2, 3}, {1}), ({3, 1}, {2}), ({1, 2}, {3})

}
,

and so C1,3 is isomorphic to H
⊕S(3,2)
2 = H⊕3

2 (with the permutation action). See also
equation (1.1) of Cp,q given in Section 1. By definition, Cp,q = {0} if 0 = p � q or p > q.

In order to explain a geometric meaning of Cp,q (Lemma 8.1), we introduce a filtration of
(Σn, An):

. . . = An,−1 ⊂ An,0 ⊂ An,1 ⊂ . . . ⊂ An,n−1 ⊂ An,n = . . . (8.1)
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such that An,−1 = An and An,n = Σn as follows. In the case n > 0, we define

Δn,l = {(x1, x2, . . . , xn) ∈ Σn | # {x1, x2, . . . , xn} � l} ,

An,l = Δn,l ∪ An,

and in the case n = 0, we define

A0,l =

{
Σ0 (= {pt}) if l � 0,

∅ if l < 0.

Let
Fn,l : (S(n, l) ×Sl

Σl,S(n, l) ×Sl
Al) −→ (An,l, An,l−1)

be the map defined by

Fn,l([J, x]) = (y1, y2, . . . , yn), yi = xj if i ∈ Jj

for [J, x] = [(J1, J2, . . . , Jl), (x1, x2, . . . , xl)] ∈ S(n, l) ×Sl
Σl, where S(n, l) ×Sl

Σl is the quo-
tient space of S(n, l) × Σl by the equivalence relation (Jσ, x) ∼ (J, σx), (J, x) ∈ S(n, l) × Σl,
σ ∈ Sl, and [J, x] is the quotient image of (J, x). Here, in the extreme case (n, l) = (0, 0), the
set S(0, 0) ×S0 Σ0 consists of exactly one element [(),pt], and F0,0 is defined to be the unique
map, namely, F0,0([(),pt]) = pt.

Immediately, there is a canonical isomorphism

Hl(S(n, l) ×Sl
Σl,S(n, l) ×Sl

Al; Z) ∼= ZS(n, l)
⊗
ZSl

Hl = Cn−l,n,

and hence Fn,l gives an (Sn × Mg,1)-module homomorphism

Fn,l∗ : Cn−l,n −→ Hl(An,l, An,l−1; Z). (8.2)

Lemma 8.1. For integers n, l such that n � 0, the homology group Hm(An,l, An,l−1; Z)
vanishes if m �= l, and Fn,l∗ is an isomorphism.

Proof. The proof is very similar to that of Lemma 3.2. Let fn,l : S(n, l) ×Sl
Al → An,l−1

denote the restriction of Fn,l, and let

V = An,l−1

⋃
fn,l

(
S(n, l) ×Sl

Σl
)

be the attaching space. It follows from Proposition 3.3(i) that

Hm(V, An,l−1; Z) ∼= ZS(n, l)
⊗
ZSl

Hm(Σl,Δl ∪ Al)

=

{
Cn−l,n if m = l,

0 if m �= n.

There Fn,l induces a homeomorphism

(V, An,l−1) ∼= (An,l, An,l−1),

which is proved in the same way as the proof that the map f2 (defined in the proof of
Lemma 3.2) is a homeomorphism. Therefore, Hl(V, An,l−1; Z) ∼= Hl(An,l, An,l−1; Z).

From now on, we will identify Cp,q with Hq−p(Aq,q−p, Aq,q−p−1; Z) via the isomorphism (8.2).
Let

dp,q : Cp,q −→ Cp+1,q
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denote the homology connecting homomorphism for the triple

(Aq,q−p, Aq,q−p−1, Aq,q−p−2),

and write

dp =
⊕
q�0

dp,q : Cp −→ Cp+1, Cp =
⊕
q�0

Cp,q.

Since dp+1dp = 0, the sequence

0 −→ C0 d0−→ C1 d1−→ C2 d2−→ . . .
dp−1−−−→ Cp dp−→ . . .

is a cochain complex of Mg,1-modules, and we denote this cochain complex by C. Since
the set S(q, q) consists of exactly one element ({1}, {2}, . . . , {q}) for q � 0, we shall identify
the (Sq × Mg,1)-modules C0,q with Hq. Consequently, C0 = gr Ĥ. Let H∗(Mg,1;C) denote
the cohomology group of the group Mg,1 with coefficients in C (cf. [1, VII,5]).

Remember that there is an injective Mg,1-module homomorphism (Corollary 3.4(ii)):

Ψ =
⊕
q�0

ψq : T [H1] −→ gr Ĥ = C0.

Proposition 8.2. The sequence of Mg,1-module homomorphisms

0 −→ T [H1]
Ψ−→ C0 d0−→ C1 d1−→ . . .

dp−1−−−→ Cp dp−→ . . . (8.3)

is exact.

Proof. Fix an integer n � 0, and consider the homology spectral sequence associated to the
filtration (8.1) of (Σn, An):

E1
r,s = Hr+s(An,r, An,r−1; Z) =⇒ Hr+s(Σn, An; Z)

(cf. [13, pp. 472–473]). By Lemma 8.1,

E1
r,s =

{
Cn−r,n if s = 0,

0 otherwise,

and the differential d1
r,0 : E1

r,0 → E1
r−1,0 coincides with dn−r,n. Since E1

r,s = 0 unless s = 0, the
spectral sequence converges at the E2-term so that E2

r,0
∼= E∞

r,0. On the other hand,

E∞
r,0 = Hr(Σn, An; Z) =

{
H1

⊗n if r = n,

0 otherwise.

This means that the sequence

0 −→ H1
⊗n ψn−−→ C0,n d0,n−−−→ C1,n d1,n−−−→ . . .

dn−1,n−−−−→ Cn,n dn,n−−−→ 0 −→ . . .

is exact, and this is the degree-n part of (8.3).

Let H∗(Mg,1;T [H1]) be the cohomology of Mg,1 with coefficients in T [H1]. Note that
H∗(Mg,1;T [H1]) coincides with the cohomology group of Mg,1 with coefficients in the trivial
cochain complex 0 → T [H1] → 0 → 0 → . . .. Let

Ψ∗ : H∗(Mg,1;T [H1]) −→ H∗(Mg,1;C) (8.4)
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be the homomorphism obtained by regarding Ψ as a cochain homomorphism.

0 −−−−→ T [H1] −−−−→ 0 −−−−→ 0 −−−−→ . . .⏐⏐� Ψ

⏐⏐� ⏐⏐� ⏐⏐�
0 −−−−→ C0 d0−−−−→ C1 d1−−−−→ C2 d2−−−−→ . . .

(8.5)

We are now ready to prove Theorem B.

Proof of Theorem B. Proposition 8.2 implies that the cochain homomorphism (8.5) is a
quasi-isomorphism. Consequently, Ψ∗ is an isomorphism.
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