CHARACTERISTIC CLASSES IN SEVEN PAGES

DAN MARGALIT

Suppose you want to tell the difference between two vector bundles. If the
two bundles are an annulus and a Mobius band, you probably don’t need
any help. But what if the two bundles are the tangent bundle of a sphere
and the trivial bundle? Or the tangent bundles for two different smooth
structures on the same topological manifold? The theory of characteristic
classes is one very helpful tool for distinguishing between such bundles.

The goal of this note is to serve as a concise and accessible overview of the
theory of characteristic classes for topologists. Hopefully it will inspire the
reader to undertake a more in-depth study of this beautiful theory. Some
references are provided at the end for this purpose.

1. CHARACTERISTIC CLASSES

A vector bundle over a base space B is a space E together with a map
p: E — B so that each fiber, that is, each p~!(b), has the structure of a fixed
vector space V, and so that B is covered by open sets U where p~1(U) is
homeomorphic to U x V' and the homeomorphism respects the vector space
structure on each fiber.

A major reason why vector bundles are so useful is that every smooth
manifold has a canonically associated vector bundle, the tangent bundle.
Also, any manifold embedded in another manifold has the associated normal
bundle. Therefore, we can hope to distinguish between different manifolds
and different embeddings of manifolds by studying the invariants of their
associated vector bundles.

A characteristic class for vector bundles is a function

x : {vector bundles V — E — B} — H*(B;G),

for some fixed choices of V, k, and G, that is natural under pullbacks in the
sense that
X(f(E)) = f*(x(E))

for any pullback bundle f*(F). We emphasize that the base B is allowed to
vary, that is, x is a function defined on all vector bundles over all spaces, as
long as the fibers are isomorphic to V. We also allow ourselves to restrict
to special types of bundles, for instance oriented bundles.

We immediately ask: do characteristic classes exist? If so, can we list
them all? To what extent do they help us distinguish between different

bundles? We will address all of these questions.
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In the case where V = R", kK = n and G = Z, it turns out that there
is a characteristic class defined on oriented bundles called the Euler class
e. If B is a manifold and E is the tangent bundle T'B, the Euler class
e(E) € H"(B;Z) = Z is equal to the Euler characteristic x(B). In other
words, the familiar Euler characteristic is a special case of a characteristic
class, the grandfather of them all.

One reason why the Euler characteristic is interesting is that it has varied
definitions, including:

(1) Combinatorial: x(M) = >_(—1)*(number of i-cells)
(2) Geometric: x(M) = (1/vol S™) [}, k(z) dvoly

(3) Homological: x(M) = > rank H;(M;Z)

(4) Cohomological: x(M) = self-intersection of M in TM

The last description has an important consequence: if M has a nonvanishing
vector field, then x(M) = 0. In this sense, we can think of x(M) as an
obstruction to having a nonvanishing vector field. This point of view will be
echoed by the other characteristic classes.

By the work of Stiefel, Whitney, Pontryagin, and Chern we have a com-
plete list of all characteristic classes in the following cases.

vector bundle | coefficients characteristic classes
real Lo Stiefel-Whitney
complex Z Chern
real Z Pontryagin, Stiefel-Whitney
oriented real / Pontryagin, Stiefel-Whitney, Euler

Below we will give more detailed descriptions of each of these kinds of
characteristic classes. In a word, all of the characteristic classes tell you
something about how twisted the vector bundle is. For instance the first
Steifel-Whitney class is zero if and only if the bundle is orientable.

2. GRASSMANN MANIFOLDS AND CHARACTERISTIC CLASSES

The Grassmann manifold G, is the space of all n-dimensional linear sub-
spaces of R*® (note G; = RP*). It has a canonical R"-bundle F,, — G,.
This is the subspace of G,, X R* consisting of all pairs

(n-plane in R, vector in that plane).
For a paracompact base space B, there is a bijective correspondence:
{R"-bundles over B} /isomorphism +— {maps B — G, }/homotopy.

The map in one direction is easy: given a map B — G, just take the pull-
back of the canonical bundle E,. Amazingly, all bundles come from this
construction. This is similar to the familiar fact about group homomor-
phisms and maps to K (G, 1) spaces.

If x is a characteristic class for R™-bundles, then we can evaluate it on the
universal bundle E,, — G, to obtain x(E,) € H*(G,;G). Conversely, given
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x€H k(Gn; (), we can use the naturality property and the correspondence
between bundles and pullbacks of E,, in order to define x(F) = f*(x(Ey)),
where E = f*(E,) for f : B — G,. Thus the characteristic classes of
R™-bundles are in bijective correspondence with cohomology classes of G,,.

We can now reinterpret one of our statements from the previous section.
When we said that we know all characteristic classes for, say, real vector
bundles with Zs-coefficients, what this means is that we have a complete
description of H*(Gy,; Z2). We will describe this ring precisely as a polyno-
mial ring in the next section.

Why are characteristic classes the right thing to look at? Well, we have no
better chance of understanding maps B — G, than we do of understanding
R™bundles over B. However, we do have a chance of understanding the
induced map on cohomology H*(G,) — H*(B), and that is exactly what
the characteristic classes capture.

The downside, of course, is that cohomological data is in general strictly
weaker than topological data. That holds true here: we can readily find
examples of nonisomorphic bundles with the same characteristic classes.
For instance the characteristic classes of the tangent bundle of S° are all
trivial but the bundle is not. However, we will see that the characteristic
classes can give lots of interesting information about vector bundles.

There are similar stories for characteristic classes of complex vector bun-
dles and characteristic classes of oriented real vector bundles. For those
cases we need to replace G, = G,(R) with G,(C), the space of com-
plex n-dimensional linear subspaces of C", or Gy, the space of oriented
n-dimensional linear subspaces of R*°.

3. STIEFEL-WHITNEY CLASSES

The first kind of characteristic class we should try to understand is the
case of real vector bundles and coefficient group G = Zy. We will see that
even with such a simple coefficient group, we will be able to obtain a lot of
information about our bundles.

As per the previous section, we can list all characteristic classes of real
vector bundles with Zg coefficients if we can compute H*(Gy;Zs). It turns
out this ring is isomorphic to a polynomial algebra in n variables:

H*(Gn;Zz) = Zg[wl, e ,wn].

This computation makes use of a specific, explicit cell structure on G,,; the
cells are called Schubert cells.

Each w; has degree 7 in the cohomology of GG,,, and the w; are in natural bi-
jection with the symmetric polynomials in the n generators for H*((RP*°)"; Zs).
The characteristic class w; is called the ith Stiefel-Whitney class.

The first Stiefel-Whitney class has a concrete interpretation: we can iden-
tify the class w; with the homomorphism Hj(B;Zy) — Zo that records
whether the pullback bundle is trivial over a given element of H;(B;Zs). In
particular, wy is equal to 0 if and only if the bundle is orientable. So this is
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precisely the class that distinguishes between the annulus and the Mobius
band.

It turns out that the higher Stiefel-Whitney classes have similar interpre-
tations: w; measures the obstruction to finding n—k+1 independent sections
over the i-skeleton of B. (For a 4-manifold M, it follows that wo(T'M) is an
obstruction to finding a spin structure on M)

There is also an axiomatic description of the Stiefel-Whitney classes. The
w; form the unique sequence of functions wy, ws, ... assigning to each real
vector bundle E — B a class w;(E) € H(B;Zs), depending only on the
isomorphism type of F, such that:

(1) wi(f*(E)) = f*(wi(E)) for a pullback f*(E)

(2) w(E1 & Ey) = w(Ey) ~« w(Es), where w = 14wy +--- € H*(B : Z)

(3) wi(E)=0if i >dim F

(4) For the canonical line bundle E — RP*°, w;(FE) is a generator of

H'(RP>; Zs).
One more thing before we end: given an R™ bundle £ — B, the total

Stiefel-Whitney class is 1 + w1 (E) 4 - - - + wy,(E). This gadget organizes all
of the Stiefel-Whitney classes into a single object.

4. APPLICATIONS AND COMPUTATIONS

Whitney duality says that if M is a submanifold of Euclidean space, then

where NM denotes the normal bundle and w; denotes the multiplicative
inverse of w;

We can use Whitney duality to compute the total Stiefel-Whitney class
w of several bundles. Below, 77" is the canonical line bundle over RP™ and

7, is orthogonal complement of 4§ in the (n+1)-dimensional trivial bundle.

(1) w(s") =1

(2) wlyp) =1+a

(8) wia) =l+a+---+a"

(4) w(RP") = (1 + a)"*!
In particular, Stiefel-Whitney classes do not distinguish nontrivial bundles
from trivial bundles, and there are bundles with all Stiefel-Whitney classes
nonzero. Also, the last computation shows that if RP™ is parallelizable, then
n + 1 = 2% (it turns out to be parallelizable exactly when n = 1,3,7).

Some further applications: (1) If RP?” immerses in R?"**, then k > 2" —1,
and (2) any n-dimensional division algebra must have n = 2.

Wu’s formula gives one description of the Stiefel-Whitney classes in terms
of the Steenrod squares of a particular cohomology class, the total Wu
class. In the case of a simply-connected, orientable 4-manifold M, Wu’s
formula has the pretty interpretation that (w2(T'M),[S]) is equal to the
self-intersection of S modulo two.
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Say we have a manifold M. If we take a collection of non-negative in-
tegers 7; with ) ir; = n, then we get an element of H"(M;Z/2), namely
> w;(TM)"i. We can pair this with the fundamental class of the manifold
M to get a number associated to the monomial Y w;(T'M)":. These are the
Stiefel-Whitney numbers of M. We have the following remarkable theorem
due to Pontryagin and Thom: two smooth closed n-manifolds belong to
the same cobordism class if and only if their corresponding Stiefel-Whitney
numbers are equal.

The last theorem is a gateway to another of Thom’s landmark theorems.
The set of cobordism classes of smooth, oriented manifolds forms a ring
099 where addition is disjoint union and multiplication is given by the
direct product. Thom gives an amazingly simple description of the tensor
product of this ring with the rationals:

0%° @ Q = Q[CPY,CP?,...].
5. CHERN CLASSES

The integral cohomology for the complex Grassmannian looks a lot like
the Zs-cohomology for the real Grassmannian:

H*(Gn((C); Z) = Zz[cl, ce ,Cn].

The ¢; are called Chern classes. They live in H*(G,,(C); Z), and they corre-
spond exactly to the elements of H*(CP";Z). Like Stiefel-Whitney classes,
the Chern classes can be described axiomatically. The axioms are the same,
with w; replaced by c¢;, Zo replaced by Z, RP* replaced by CP*°, and
H'(RP>; Zs) replaced by H?(CP>;Z). The proof of existence and unique-
ness of Chern classes is almost exactly the same as for the Stiefel-Whitney
classes.

So far, there is one relationship between the characteristic classes worth
noting. Given any complex vector bundle F, we can regard it as a real vector
bundle and as such it has the associated Stiefel-Whitney classes. Under the
map H*(B;Z) — H*(B;Zz), we have

c¢(E) — w(E).
Therefore, we can think of ¢ as a refinement of w in the complex case.
A sample computation for Chern classes is
¢(TCP") = (1 + a)"™!

where a is a generator for H?(CP™;Z).

6. THE EULER CLASS

The Euler class for oriented vector bundles lies in H"(G,). While it is
not the only characteristic class for oriented vector bundles (see the next
section), it is interesting (and special) enough to deserve separate attention.

The image of the class e in Hom(H,,(B;Z),Z) can be described as follows:
given an n-chain x in B, we place it in general position with the 0-section
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B; the intersection will be a finite collection of points with sign and the sum
is e(x).
The Euler class further satisfies the following properties:

(1) e(E) = —e(E), where E is E with the opposite orientation

(2) G(El D EQ) = G(El) ~ €(E2)

(3) e(E) = —e(F) if the fibers are odd-dimensional (i.e. e(FE) has order

two)
(4) e(E) =0 if E has a nonvanishing section
(5) (e(TM),[M]) = x(M), where [M] is the fundamental class.

In the course of proving the last property, another beautiful fact is estab-
lished: both quantities are equal to the self-intersection number of M in
M x M.

Amazingly, vector bundles with two-dimensional fibers are completely
characterized by their Euler classes. In the case where the base is a surface,
e lies in H%(B;Z) = Z, and it is not hard to realize each element of Z as an
Euler class—so this is a very tidy classification!

The Euler class is related to two other classes we have seen so far. If we
have a complex vector bundle F, then we can also think of F as a real vector
bundle, and we have

e(E) =c(E).
This is consistent with the fact that
e(E) — wy(FE)

under the map H"(B;Z) — H"™(B;Zs2). In other words, the Euler class
is obtained from the Chern class by ignoring the complex structure, and
the top Stiefel-Whitney class is obtained from the Euler class by ignoring
orientation.

One more word about why the Euler class is special. The Stiefel-Whitney
classes and Chern classes are stable in the sense that w;(E @ E') = w;(FE)
when E’ is trivial (similar for ¢;). However, e(E & E') is always equal to
zero, since I/ @ E’ has an obvious nonvanishing section, so unlike the other
classes, the Euler class is unstable.

7. PONTRYAGIN CLASSES

We would be remiss not to discuss the last player in the story, the Pon-
tryagin classes, as they describe the integral homology of oriented and non-
oriented vector bundles.

The Pontryagin class p;(E) € H*(B;Z) can be defined as (—1)cy;(E®),
where EC is the complexification of E (if we think of a real vector space V
as the formal R-span of some vectors, then VC is the formal C-span).

The integral cohomology of the Grassmannian G, is described as follows:
the torsion in H*(Gy;Z) consists of elements of order two, and

H*(G,;Z)/torsion = Z [pl,...,pm/%] .
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Moreover, the generators of the torsion subgroup correspond to the images
of the Stiefel-Whitney classes under a certain Bockstein homomorphism.
Similarly,

H*(Gy; Z)/torsion = Z []31, ... ,ﬁtn/gj] /~

where p; is the evaluation of p; on the canonical oriented bundle over én,
where ~ represents the relation e = 0 if n is odd and e? = Pny2 i nis
even. Again the torsion is generated by (images of) the Stiefel-Whitney
classes. The proof of this theorem uses two important tools, namely the
Thom isomorphism and the Gysin sequence.

We will mention a few applications of the Pontryagin classes. First, we
can define Pontryiagin numbers in the same way we defined Stiefel-Whitney
numbers. It is not hard to show that a manifold admitting an orientation-
preserving diffeomorphism must have all of its Pontryagin numbers equal to
zero (such a diffeomorphism preserves the Pontryagin classes and reverses
the fundamental class). In particular, CP"™ does not admit an orientation-
reversing diffeomorphism when n is even, since

[n/2]
1
p(CP") = Z (nz )CL%-

k

Also, Wall proved the following analogue of Thom’s theorem mentioned
earlier: a smooth, compact, oriented manifold is an oriented boundary if
and only if all of its Pontryiagin and Stiefel-Whitney numbers are zero.

For a smooth 4-manifold M, the first Pontryagin class has a particularly
useful interpretation in terms of the signature o(M). Specicially, the first
case of the Hirzebruch signature theorem says that

p1(M) = 30(M).

The Pontryagin classes are certainly the most mysterious of the character-
istic classes discussed in this overview, and it would be most useful to have
geometric interpretations of the other Pontryagin classes.

We will end our discussion by mentioning one of the most spectacular
applications of characteristic classes. A basic question in topology is: if
two manifolds are homeomorphic, then must they be diffeomorphic? Milnor
showed that the answer is no: there are exotic 7-spheres, that is, manifolds
that are homeomorphic to S7 but not diffeomorphic to S7. This is hard
to believe! But Milnor gives an explicit example a topological 7-sphere M
and proves that it is exotic by studying the Pontryagin numbers of the
closed 8-manifolds obtained by filling in M on both sides. Novikov showed
that homeomorphic manifolds have the same Pontryagin classes, thus giving
another method for detecting non-diffeomorphic manifolds. For these works,
Milnor and Novikov were both awarded the Fields Medal.
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8. FURTHER READING

The theory of characteristic classes was developed in the first half of the
20th century and has been continuously active since that time. As a result,
there are now a number of excellent references, of which we will mention
just a few. The standard text is Characteristic Classes, written by Mil-
nor and Stasheff. Hatcher has an (unfinished) textbook, Vector Bundles
and K-theory, available for free on his web site. The obstruction theory
point of view is detailed in Steenrod’s book, The Topology of Fibre Bun-
dles. Differential Forms in Algebraic Topology by Bott and Tu develops
the theory from the point of view of de Rham cohomology. We also recom-
mend Morita’s book, Geometry of Characteristic Classes, which treats the
theory of vector bundles and then segues into the analogous theory for sur-
face bundles. Finally, many of the original sources in this subject are very
accessible, for instance Milnor’s construction of exotic spheres in “On mani-
folds homeomorphic to the 7-sphere” and Hirzebruch’s Topological Methods
in Algebraic Geometry, and so we encourage the reader to seek out these
classics.



