Diffeomorphism Groups of Surfaces

S = compact, connected surface
Write Diff(S) for Diff($S, \partial S$). C^∞ topology.

Thm. If $S = S^2, \mathbb{RP}^2, T^2, KB$ then the components of Diff(S) are contractible.

Note: Diff(S^2) = Diff (\mathbb{RP}^2) = SO(3)
Diff (T^2) = T^2, Diff (KB) = S^1.

Proof has 3 steps. ① Reduction to case $\partial S \neq \emptyset$
will show π_i (Diff(S)) \cong π_i (Diff($S - D^2$)).
② Inductive step S cut along α
will show π_i (Diff(S)) \cong π_i (Diff($S\alpha$))
③ Base case
π_i (Diff(D^2)) = 0 $i > 1$.

Step 1. Reduction to case $\partial S \neq \emptyset$.

Fix $x_0 \in D \subseteq S$. Let $S_0 = S - \text{int} D$.
To show π_i (Diff(S)) = π_i (Diff(S, x_0)) = π_i (Diff(S, D)) = π_i (Diff($S\alpha$))

Last equality easy. Remains to do other two.
First equality. There is a fiber bundle, \(\text{Diff}(S, x_0) \rightarrow \text{Diff}(S) \rightarrow S \).

\[\uparrow \text{diffs fixing } x_0. \]

\[\rightarrow \text{LES:} \]

\[\pi_{i+1}(S) \rightarrow \pi_i(\text{Diff}(S, x_0)) \rightarrow \pi_i(\text{Diff}(S)) \rightarrow \pi_i(S) \]

But \(\pi_i(S) = 0 \) \(i > 1 \) (as \(S \neq \ast \)).

\[\rightarrow \pi_i(\text{Diff}(S, x_0)) \cong \pi_i(\text{Diff}(S)) \quad i > 1. \]

\(i = 1 \) case:

\[0 \rightarrow \pi_1(\text{Diff}(S, x_0)) \rightarrow \pi_1(\text{Diff}(S)) \rightarrow \pi_1(S, x_0) \]

\[\rightarrow \pi_0(\text{Diff}(S, x_0)) = \text{MCG}(S, x_0) \]

Suffices to show \(\ker d = 0. \)

But the composition

\[\pi_1(S, x_0) \rightarrow \text{MCG}(S, x_0) \rightarrow \text{Aut} \pi_1(S, x_0) \]

is \(\alpha \mapsto \text{inner automorphism conj. by } \alpha \)

To show this is inj, suffices to show \(\mathbb{Z} \pi_1(S) = 1. \)

For latter:

\[\mathbb{S} \cong \mathbb{H}^2 \]

\(\pi_1(S) \leftrightarrow \text{deck trans. in } \text{Isom}^+ \mathbb{H}^2 \)

& independent hyperbolic isometries do not commute.

Second equality. Another fiber bundle:

\(\text{Diff}(S, D) \rightarrow \text{Diff}(S, x_0) \rightarrow \text{Emb}(D, x_0), (S, x_0) \)

Claim: \(\text{Emb}(D, x_0), (S, x_0) \cong \text{GL}_2(\mathbb{R}) \cong O(2) \)

\[f \mapsto D_{x_0} f \]

As above, LES \(\Rightarrow \pi_i \text{Diff}(S, x_0) \cong \pi_i \text{Diff}(S, D) \quad i > 1. \)
i=1 case: \[0 \rightarrow \pi_1 \text{Diff}(S,D) \rightarrow \pi_1 \text{Diff}(S,x_0) \rightarrow \pi_1 \text{Emb}(D,x_0), (S,x_0) \xrightarrow{\partial} \pi_0 \text{Diff}(S,D) = \text{MCG}(S_o). \]

\[\mathbb{Z} \]

Again, need \(\ker \partial = 0 \).

But \[\mathbb{Z} \rightarrow \text{MCG}(S_o) \rightarrow \text{Aut} \pi_1(S_o, p) \]

is \[1 \rightarrow \text{conj. by } \partial \text{-element}. \]

Since \(\pi_1(S_o) \) is free, we are done.

Another point of view. We could have combined the two steps.

There is a fiber bundle

\[\text{Diff}(S,(p,v)) \rightarrow \text{Diff}(S) \rightarrow \text{UT}(S) \]

with fiber \(\partial \text{Diff}(S_o) \).

Apply same argument.
Step 3. Base step: $\text{Diff}_0(D^2)$ contractible

$D^2_+ = \text{top half of } D^2$

$\text{Emb}(D^2_+, D^2) =$ space of embeddings $D^2_+ \to D^2$ fixing $D^2_+ \cap \partial D^2$ and taking rest of D^2_+ to int D^2.

$x = D^1 =$ equator of D^2

$A(D^2, x) =$ embeddings of proper arcs in D^2 with same endpts as x.

\sim Fibration $\text{Diff}(D^2_+) \to \text{Emb}(D^2_+, D^2)$

\downarrow

$A(D^2, x)$

Claim 1. $\text{Emb}(D^2_+, D^2) \cong \ast$. Uses: the space of tubular nbds of a submanifold is contractible.

Claim 2. $A(D^2, x) \cong \ast$. More generally, $A(S, x) \cong \ast$. Proven below.

$\text{LES} \Rightarrow \text{Diff}(D^2_+) \cong \ast$. But $D^2_+ \cong D^2$.

Step 2. Induction step.

Induction on $-\kappa(S)$.

$x =$ proper arc in S.

$A(S, x) =$ emb's of proper arcs in S, iso to x, same endpts

\sim fiber bundle $\text{Diff}_0(S, x) \to \text{Diff}_0(S) \to A(S, x)$

\downarrow diffeos fixing x ptwise., $\cong \text{Diff}_0(S \text{ cut along } x)$.

$\text{LES + induction + Claim 2 } \Rightarrow \text{Diff}_0(S) \cong \ast$.
SMALE'S Proof. (Original version of Step 3)

Ihm. The space of C^∞ diffeos of I^2 that are id in nbd of ∂I^2

is contractible.

Some ideas. Given $f: I^2 \rightarrow I^2 \rightsquigarrow$ vector field V:

$$V(x,y) = df^{-1}(x,y)(1,0).$$

There is a homotopy V_t s.t. $V_0 = V$, $V_1 =$ const. vector field $(1,0)$,

$V_t =$ nonvan. vector field since $V_0, V_1 : I^2 \rightarrow \mathbb{R}^2 - (0,0)$.

id in nbd of ∂I^2.

Then define, $f_t : I^2 \rightarrow \mathbb{R}^2 \times [0,1]$:

$$f_t(x,y) = \text{flow along } V_t, \text{ start at } (0,y), \text{ for time } t.$$

Clearly $f_1 = \text{id}$, $f_0 = f$. (n.b. no spiralling, for then there would

be a singularity).

Problem: $\text{Im } f_t$ maybe not $= \mathbb{R}^2$.

Solution: Precompose each f_t with a reparameterization

in the x-dir. Result is a homotopy of f to id through diffeos.

By fixing once and for all a retraction of $\mathbb{R}^2 - (0,0)$ to a point, get a consistent way

of deforming an arbitrary diffeo to id, at

all times $= \text{id}$ in nbd of ∂I^2.

(See Lurie's notes for an Earle-Eells-style approach.)
CERF'S STRAIGHTENING TRICK. (Toy case for Claim 2).

We'll need to know that some basic spaces of embeddings are contractible. We start with a warmup.

Prop. The space of smooth embeddings of arcs in \(\mathbb{R} \times [0, \infty) \) based at 0 is contractible.

Pf. The space of linear arcs is clearly contractible — it is homeo to \(\mathbb{R} \times [0, \infty) \).

Here is a canonical isotopy from an arbitrary arc \(f \) to a linear one:

\[
F_t(x) = \begin{cases}
 f((1-t)x) & t < 1 \\
 \frac{1}{1-t} & t = 1
\end{cases}
\]

Can soup this up:

Prop. The space of smooth embeddings of arcs in \(S \) based at \(p \in \partial S \) is contractible.

Pf. By previous prep, need a canonical isotopy of an arbitrary arc into a fixed tubular nbd of \(p \).

For any compact set of arcs, can use

\[F_t(x) = f(ax) \quad a = \max \{ \epsilon, (1-t)x \} \]

i.e. \(F_t(x) \) traces out shorter \& shorter subarcs.

This implies weak contractibility.
Claim 2: Contractibility of arc spaces

\[\alpha = \text{proper arc in } S \]
\[A(S, \alpha) = \text{space of proper arcs } \preceq \alpha, \text{ same endpoints as } \alpha. \]

Case 1. \(\alpha \) connects distinct components of \(\partial S \).

\[T = \text{surface obtained from } S \text{ by capping with disk at one end of } \alpha \]
\[\sim \text{fiber bundle } \quad \begin{array}{c}
\text{Emb}(I,S) \to \text{Emb}(I\cup D^2, S) \\
\uparrow \quad \downarrow \\
\text{both endpoints fixed} \quad \text{Emb}(D^2, T-\partial T)
\end{array} \]

Claim. \(\text{Emb}(I \cup D^2, S) \cong \ast \).

PF of claim. Another fiber bundle:
\[\text{Emb}((I,p),(S,x)) \to \text{Emb}(I \cup D^2, S) \]

Base, fiber contractible by variations on Cerf's straightening.

Claim. \(\forall \text{Emb}(D^2, T-\partial T) \quad i > 0 \)

PF. Yet another fiber bundle:
\[\text{Emb}(D^2, T-\partial T) \]
\[\downarrow \text{eval}\circ \zeta \]
\[T-\partial T \]

By two claims, plus LES for main fiber bundle, \(\text{Emb}(I,S) \) has contractible components, one of which is \(A(S, \alpha) \).
Case 2. α joins a component of ∂S to itself

Idea: add a handle $T = S \cup R$ s.t.
α joins distinct comps of ∂T
Suffices to show
$\pi_1 A(T-\beta) \to \pi_1 A(T)$ injective.

Key: there is a cov. space of T hom. eq. to S.
because $\pi_1(T) = \pi_1(S) \ast \mathbb{Z}$
so $\tilde{T} = \text{cover corr to } \pi_1(S)$

\tilde{T} looks like T cut along β

Identify $A(T-\beta, \alpha)$ with space of arcs in this region of \tilde{T}.
$A(T, \alpha)$ with a space of arcs in \tilde{T}.

Lifts of arcs in T \to $A(T, \alpha) \subseteq A(\tilde{T}, \alpha)$ \to arcs in \tilde{T}

Suffices to show composition $A(T-\beta, \alpha) \subseteq A(T, \alpha)$ is inj on π_1. Need a retraction $r: A(\tilde{T}, \alpha) \to A(T-\beta, \alpha)$ s.t. $r \circ i = \text{id}$.
The r is induced by shrinking the two contractible pieces.