Characteristic Classes in Degree One

We know now: \(H^*(\text{MCG}(S_g)) \cong \text{Ring of char classes for } \Sigma_g\text{-bundles} \)

Thm. \(H^1(\text{MCG}(S_g); \mathbb{Z}) = 0 \quad g \geq 1 \).

Pf. We'll do \(g \geq 3 \). Ingredients:

1. \(\text{MCG}(S_g) \) is gen. by Dehn twists about nonseparating curves
2. Any two such Dehn twists are conjugate in \(\text{MCG}(S_g) \)
3. There is a relation among such twists of the form
 \[T_x T_y T_z = T_a T_b T_c T_d \]
 It follows that \(H^1(\text{MCG}(S_g); \mathbb{Z}) \cong \text{MCG}(S_g)^{ab} \) is trivial.
 hence \(H^1(\text{MCG}(S_g); \mathbb{Z}) = 0 \).

Ingredient 2. Follows from: \(f T a f^{-1} = T_{f(a)} \) and classification of surfaces.

Ingredient 3. Follows from: Lantern relation
 \[T_x T_y T_z = T_T T_a T_c \]
 (prove by checking action on \(\mathbb{S}^3 \) and using \(\text{Mod}(D^2) = 1 \)) and the embedding:
Generating MCG (Ingredient 1).

Two (sub)ingredients:

1. The complex of curves \(C(S_g) \) is connected \(g \geq 2 \).
 Vertices: isotopy classes of simple closed curves
 Edges: disjoint representatives

2. The Birman exact sequence \(\chi(S) < 0 \).

\[1 \rightarrow \pi_1(S, p) \rightarrow \text{MCG}(S, p) \rightarrow \text{MCG}(S) \rightarrow 1. \]

Outline of proof:

1. \(\Rightarrow \) complex of nonsep. curves \(N(S_g) \) is connected.
 \(\Rightarrow \) given any two isotopy classes of nonsep s.c.c. in \(S_g \)
 \(\exists \text{TTc}_i \) ci nonsep taking one to other.*
 \(\Rightarrow \) \(\text{MCG}(S_g) \) gen. by nonsep twists if
 \(\text{MCG}(S_g - c) \) is.

 But \(\text{MCG}(S_g - c) \cong \text{MCG}(S_g/2) \)

2. \(\Rightarrow \) by induction, \(\text{MCG}(S_g, 2) \) is gen by nonsep twists
 if \(\text{MCG}(S_g - 1) \) is.

Done by induction. Base case is \(\text{MCG}(S_1) \cong \text{SL}_2 \mathbb{Z} \)
 gen by \((\sigma^1), (-1, 0) \).

* Use the relation \(T_b T_a (b) = a \) for \(i(a, b) = 1 \).
Connectivity of $C(S_g)$

Take two vertices of $C(S_g)$, represent them by s.c.c. in S_g.
Choose smooth funs f_0, f_1 s.t. a is a level set of f_0, b of f_1.
Connect f_0 to f_1 by a path $f_t \in C^\infty(S_g, \mathbb{R})$.

Cert Lemma. Any path $f_t \in C^\infty(S_g, \mathbb{R})$ can be approx. by $g_t \in C^\infty(S_g, \mathbb{R})$
so each g_t is in one of following classes:

∞ ∞ ∞

1. Morse functions with at most 2 coincident
 critical values \leftrightarrow crit. values passing each other

2. functions with distinct crit vals and exact one
degen. crit pt of the form: $x^2 + y^2 + c$ \leftrightarrow crit vals
 merging/splitting

Claim. Each g_t has a level set rep. a vertex of $C(S_g)$.

Not by curves are isotopic $\Rightarrow \{ t : v \in C(S_g) \text{ is rep by a level set of } g_t \}$
is open in \mathbb{R}

Also, level sets of the same g_t are disjoint.
Result follows from compactness of $[0,1]$.

Remains to prove claim. Take nbd of crit set:

If two circles bound disks, modify the function to
get rid of this crit pt.
Look at another crit pt.

Or: Given $f : S_g \to \mathbb{R} \rightsquigarrow$ graph Γ_f by crushing level sets.
$\text{rk}(\Gamma_f) = 9$, except in case 2 above where $\text{rk}(\Gamma_f) = 9 - 1$.
Any nontrivial cocycle (= pt) in Γ_f corresponds to a
nontrivial level set in S_g. (this shows $N(S_g)$ connected!)