Mathematics 8803

Characteristic Classes
Homework 1
Prof. Margalit
1 October 2013

- 1. Show that a product of spheres has trivial tangent bundle if at least one of the spheres has odd dimension.
- 2. Find a nonvanishing vector field on S^n when n is odd.
- 3. Find explicit Poincaré duals for the Stiefel–Whitney classes of the closed nonorientable surfaces.
- 4. Prove that the number of triple points of an immersion of a surface M into \mathbb{R}^3 is congruent modulo 2 to $w_1^2(M) \in H^2(M; \mathbb{Z}_2) \cong \mathbb{Z}_2$.
- 5. Use the splitting principle to show that the first Stiefel-Whitney class of a bundle is trivial if and only if the bundle is orientable.
- 6. Show that the second Stiefel–Whitney class of an orientable surface is trivial. What about the nonorientable surfaces?
- 7. Show that, in the case of a complex vector bundle, w_{2i} is the image of c_i under the coefficient homomorphism $H^{2i}(B; \mathbb{Z}) \to H^{2i}(B; \mathbb{Z}_2)$. What does c_1 measure?
- 8. Show that the projection $V_n(\mathbb{R}^k) \to G_n(\mathbb{R}^k)$ is a fiber bundle with fiber O(n) by showing that it is the orthonormal n-frame bundle associated to the vector bundle $E_n(\mathbb{R}^k) \to G_n(\mathbb{R}^k)$. Here $V_n(\mathbb{R}^k)$ is the Stiefel manifold of orthonormal n-frames on \mathbb{R}^k and $E_n(\mathbb{R}^k)$ is the canonical bundle.
- 9. Determine the Stiefel–Whitney classes of a product of two bundles. Do the same for the tensor product of two bundles. Show that the tensor product of two even-dimensional vector bundles is orientable.
- 10. If an *n*-manifold M can be immersed in \mathbb{R}^{n+1} show that $w_i(M) = w_1(M)^i$ for all i. Use this to show that if $\mathbb{R}P^n$ can be immersed in \mathbb{R}^{n+1} then n must be of the form $2^r 1$ or $2^r 2$.
- 11. Show that if the tangent bundle to a complex manifold M of odd dimension is isomorphic to its conjugate bundle, then $\chi(M) = 0$.
- 12. Express the mod 2 euler class as a polynomial in terms of the Steifel-Whitney classes.