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TRIPLE POINTS AND SINGULARITIES OF PROJECTIONS

OF SMOOTHLY IMMERSED SURFACES

THOMAS BANCHOFF

ABSTRACT.  For a transversal smooth immersion of a closed 2-dimen-

sional surface into Euclidean 3-space, the number of triple  points is congru-

ent modulo 2 to the Euler characteristic. The approach of this paper includes

an introduction to normal Euler classes of smoothly immersed manifolds by

means of singularities of projections.

In this note we prove that for a (transversal) smooth immersion of a

closed 2-dimensional surface into Euclidean 3-space, the number of triple

points is congruent modulo 2 to the Euler characteristic. The approach used

here includes an introduction to the normal Euler class of a smoothly im-

mersed manifold and is related to the theory of Stiefel-Whitney classes in

terms of singularities of projections as developed in [2].

The main result of this paper is correct also for manifolds which are not

smooth, and such a proof has been carried out using surgery techniques in [3].

1. Singularities of projections and the Euler characteristic.  Let

f: M    —» R    be a smooth immersion of a closed 2-dimensional surface into

real 3-dimensional space with a coordinate system (x, y, z).  Let  nz: R   —►

R(z) denote the orthogonal projection into the z-axis and let §_(/) be the

set of critical points of 77   ° / : M   —► R(z), i.e. the set of points where the

tangent plane to f(M) is orthogonal to the z-axis.  Let  nxz'. R   —* R(*. z)

denote the orthogonal projection into the xz-plane, and let  à    (/) be the set

of singularities of 77      ° /: M    —» R(x, z), i.e. the set of points where the

tangent plane to f(M) is orthogonal to the xz-plane.

We assume that the coordinate system in 3-space is so chosen that the

set o (/) consists of a finite number of points, consisting of rnA7rz ° f)

local minima, m An   ° /) nondegenerate saddle points, and m An   ° /) local

maxima.

Received by the editors November 15, 1973.

AMS (MOS) subject classifications (1970).  Primary 57D45, 57D20, 57D35.

Key words and phrases.  Triple points, singularities of projections, immersions,

Euler characteristic.

Copyright © 1974, American Mathematical Society

402

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



TRIPLE POINTS, SINGULARITIES OF PROJECTIONS 403

If A is a finite set, let N(A) denote the number of points of A.

Proposition 1.   For an immersion satisfying the above conditions,

N(Sz(/)) = X{M2) (mod 2).

Proof. For a function a ° / satisfying the above conditions, the Euler

characteristic  \{M ) can be expressed as

yiM2) = m0{rr2 of)- mAjrg o f) + mAn z of)

(tot an elementary treatment of this result see [l]).  But then

Ni&zif)) = m0Í7Tz of) + mAjrz of) + m2{n z of)

= xiM2) + 2m1irrz o f) = y{M2) (mod 2).

Proposition 2.  N^Af) D Syz(/)) = M§//)).

Proof. This follows from the observation that the tangent plane to f(M)

at f(p) is orthogonal to the z-axis if and only if it is orthogonal to both the

xz- and yz-planes.

Remark.  If M    is a domain in the xy-plane and if /: M   —» R    is given

by a graph of a differentiable function g(x, y) so f(x, y) = (x, y, g(x, y)),

then S    (/)  consists of all (x, y) in  M such that {dg/dy) {x, y) = 0 and

S z(/) = lix, y) in M I (z5g/f3x)(x, y) = 0Î. The intersection §xz(/) H Syj¡(/) =

í(x, y)  in  M I idg/dx) {x, y) = 0 = {dg/dy) {x, y)\ and these are the critical

points of the height function in the z direction.

2. The double locus and the fold set.  Let /(/) be the set of double

points of /, i.e.  1(f) = [p in M | f{q) = f{p) for exactly one  q 4 p  in M\.  We

assume that / is transversal so that it p 4 q but f{p) = f{q), then the tan-

gent planes to f{M)  at f{p) and f{q) intersect in a line.  We assume further

that if f{p.) = f{p2) = fip,) tot distinct points  p-, p , p,, then the tangent

planes to f{M) at /(p.), f{p2) and /(p,)  intersect at a single point.  We

assume moreover that there is no point of R    which is the image of more

than three points of M.

We assume as well that the coordinate system of R    has been chosen

so that /(/) n o (/) =0 and so that /(/) is transversal to both ^>xzif) and

o    (/). This, in particular, means that /(/) O o    (/) consists of a finite

number of points, N{l{f) O §(/))» and that at each point p of S    (/) n /(/),

there is exactly one q 4 p in M with /(p) = fiq), and the tangent plane to /(zM) at

/(z/) is not orthogonal to the xz-plane.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



404 THOMAS BANCHOFF

Lemma,  ö    (/)  and /(/)  together form the boundary of a 2-dimensional

region on M.

Proof.   From any point f(p) we may consider the open ray in the direc-

tion of the positive x-axis and see how many times the ray meets the image

of f(M).  We say that such a ray intersects f(M) at f(q) it the ray contains

f(q) and if the tangent plane to f(M) at f(q) does not contain the ray.  Let

0{f, yz) = \p in  M\ the open ray from f(p)  in the x-direction intersects f(M)

at f(q) fot an odd number of distinct points  q. of M\.  The boundary curves

of this region include the points of u    (/)  and the points of /(/), and any

point not in the closure of these two sets has a neighborhood which either

is contained in Ö (/, yz) or is disjoint from this region.   Thus  a\){f, yz) =

UpuSjf).
As a corollary of this lemma, we have

Proposition 3.   zV(Syz(/) O S^/)) = MX/) Cl &xzif)) (mod 2).

Proof.   Each curve of o    (/)  alternately enters and leaves the region

U(/# yz) and ends up where it started, so e    (/)  meets the boundary

dO{f, yz) an even number of times.  Thus 0 = N{&    (/) n dQ(f, yz)) =

MS   (/) n /(/)) + MS   (/) n S   (/)) (mod 2).
XZ XZ yZ

Remark.  The above argument shows that for any sufficiently general

orthogonal projection n ° f : M   —> E    into a plane, the singularity set is a

collection of curves which determines a homology class independent of the

projection, since each is homologous to /(/).  This homology class is the

first normal Whitney class of /.

3. Triple points.   The image D(f) of /(/) consists of a collection of

closed curves in  R    and a collection of curve segments with both endpoints

in the set of triple points  T{f) - \s in R3 | s = /(pj) = fip2) = /(p?) for dis-

tinct points p., p2, p,  of M\.

Proposition 4.  M§    (/) O /(/)) = MT(/))  (mod 2).

Proof.   Let 0d(/, xz) = \s in D{f) \ the open ray from  s  in the  y direc-

tion intersects  f(M) at an odd number of points  f{q)\.  The set ÜD{f xz)  is

a collection of closed curves and curve segments with endpoints either in

T(f) or in the image of the set S    (/) O /(/).

Note that even though each point in D(f) has two pre-images in M, no

two points of §    (/) n ¡if) have the same image, so M§    (/) O /(/)) =

N{f{o    if) fi /(/))).  Each of these image points lies in the boundary
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d{ÖD{f, xz)), and each triple point lies in the boundary of exactly three of

the segments of ÖD(/, xz).  Therefore

MASxz(/)n/(/)) + 3M7X/)))

= 2/V(curve segments in £'D{f, xz)) = 0 (mod 2).

It follows that  N{§>xz{f) n /(/)) = Mr(/))  (mod 2).

Remark 1. The foregoing argument can be summarized by saying that the

Euler class of the tangent bundle of M  in  H   {M   ; Z )  is equal to the cup

product square of the first normal Whitney cohomology class, W  , and this is

given by the Poincare dual of the intersection product of the 1-dimensional

fold homology class which is the Poincaré dual of  W , and the intersection

product is homologous to three times the triple point set.

Remark 2.  For smoothly immersed surfaces in R  , the Whitney duality

theorem   1 = (l + w ) u (l + w   + w )  implies that w    = w.  and w    U w   =

w  , so the method of §1 may be considered as a geometric interpretation of

this result.  More generally for a smoothly immersed hypersurface  M"~     in

R", the Whitney duality theorem  1 = (l + w J U (l + w   + • • • + wn_ j) im-

plies that w    = w    and w. - {w A1 fot any  z = 1, 2, • • • , 77 — 1.  Again the

method of §1 provides a geometric interpretation of this result since the

intersection of z fold (77 — l)-chains transversally situated will be an (n - i — 1)-

dimensional chain which is the singularity chain for a projection to an (n — 1)-

dimensional linear subspace and the homology class of such a chain is the

Poincaré dual of the z'th Stiefel-Whitney cohomology class of M"       (com-

pare [2]). The author would like to thank Glen Bredon for his comments

leading to this remark.

Remark 3.  The author would like to thank James White for helpful con-

versations during this project and in particular for discussions of his manu-
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script [5].  The result of this paper is related to that of Lashof and Smale [4]

which uses techniques of much greater sophistication.  (The authors have

communicated the fact that this paper contains some errors.)
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