Seifert Manifolds

S^1-bundles

A manifold M is an S^1-bundle over a manifold B if there is $p: M \to B$ and B covered by U with $p^{-1}(U) \cong U \times S^1$.

Prop. B = orientable surface

$\forall \kappa \in \mathbb{Z}$ \exists! S^1-bundle $M_\kappa \to B$

s.t. $k = i(B, B)$ in M_κ.

(\text{so } k = 0 \iff M_\kappa \text{ has section})

Construction of M_κ. Let $B^0 = B \setminus \text{open disk}$

$M_\kappa = B^0 \times S^1$

$s: B^0 \to M_\kappa$ any section.

Glue $D^2 \times S^1$ so $s(\partial B^0)$ wraps k times around S^1-dir.

\text{e.g. } B = S^2, \ k = \pm 1 \to \text{Hopf fibration of } S^3.$

Model Seifert manifolds

B = compact surface, maybe not orient.

$B^0 = B \setminus \text{several open disks}$

$M^0 = \text{orientable } S^1$-bundle over B^0 (twisted over 1-sided loops).

s = section \ (regard M^0 as two orientable I-bundles glued on ∂I by i^d).

On each T^2 boundary, $s(\partial B^0) = 0$-curve fiber = ∞-curve

Glue $S^1 \times D^2$ to i^{th} T^2 sending meridian to S^1-curve.
The S^3-fibration extends to Seifert fibering

Note: $\sigma_i \in \mathbb{Z}$ means the meridian hits $\partial\Sigma \sigma_{b_0}$ σ_i times fiber 1 time.

as in construction of M_k.

so $\sigma_i \in \mathbb{Z}$ \iff locally have S^3-bundle (as opposed to Seifert).

\rightarrow model $M(\pm \sigma, b; \sigma_1, \ldots, \sigma_k)$

\uparrow

\Rightarrow gluing slopes

\downarrow

$\#$ boundary

\circ genus

orientable or not

Prop. Every orientable Seifert manifold is \cong to one of the models.

Further $M(\pm \sigma, b; \sigma_1, \ldots, \sigma_k) \cong M(\pm \sigma, b; \sigma'_1, \ldots, \sigma'_k)$

iff the following hold

1. $\sigma_i \equiv \sigma'_i \mod 1 \quad \forall i$

2. $b > 0$ or $\Sigma \sigma_i = \Sigma \sigma'_i$ (euler number).

Prop. $M(\pm \sigma, b; \sigma_i)$ has a section iff $b > 0$ or $\Sigma \sigma_i = 0$.

Examples: Lens spaces

T, T' solid tori

meridian of $T = \infty$-curve, longitude σ 0-curve.

glue meridian of T' to plq curve in T

\cong Lens space L_{plq}

As quotient of S^3:

slope p curves invariant

\rightarrow longitudes on quotient.
Proof of classification of Seifert man's in terms of models

\[M = \text{Seifert} \]
\[M^o = M \setminus \text{nbds of special fibers} \]
\[\rightarrow S^1 \rightarrow M^o \rightarrow B^o \]
Let \(s : B^o \rightarrow M^o \) section.
\[\rightarrow s(\partial B^o) = \text{circles of slope 0 in } \partial M^o = \mathbb{R}^2 \]
fibers = circles of slope \(\infty \).
\[\rightarrow \text{slopes } s_i \text{ for gluing the Seifert fibred pieces back.} \]

Changing the \(s_i \) by twisting:
\[a = \text{arc connecting } \partial B^o \]
\[\text{replace } \]
\[\text{with } \]
\[\text{m times} \]
\[\text{changes } s_i \rightarrow s_i + m \text{ at one end} \]
\[s_j \rightarrow s_j - m \text{ at other} \]

So if \(b \neq 0 \) can connect one end of \(a \) to \(\partial M \), modifying
one \(s_i \) by \(m \).

Remains to check: any two sections differ by these twist moves. Indeed, cut \(\partial B^o \) along arcs to get a disk.
Away from arcs, one choice of section. Near arcs, only have twisting.

\[\Box \]
Classification of Seifert Fiberings

Thus. Seifert fiberings of orientable Seifert manifolds are unique up to isomorphism, except:
(a) $M(0, 1; \alpha/\beta)$ the fiberings of $S^1 \times D^2$
(b) $M(0, 1; 1/2, 1/2) = M(-1, 1;)$ fiberings of $S^1 \times S^1 \times I$
(c) $M(0, 0; s_1, s_2)$ various fiberings of $S^3, S^1 \times S^2$, lens sp
(d) $M(0, 0; 1/2, -1/2, \alpha/\beta) = M(-1, 0; \beta/\alpha) \quad \alpha, \beta \neq 0.$
(e) $M(0, 0; 1/2, 1/2, -1/2, -1/2) = M(-2, 0)$ fiberings of $S^1 \times S^1 \times S^1$

The two fiberings of $S^1 \times S^1 \times I$.

Let $f: S^1 \times I \to S^1 \times I$ reflection in both factors.

f has 2 fixed pts

$S^1 \times S^1 \times I$ is mapping torus:

fibring by horizontals has two special fibers.
fibring by verticals has no special fibers.

Note c, d, e come from a, b: specifically, the fiberings in c come from different fiberings in a, d comes from gluing a model solid torus to b and e is the double of b.