HYPERBOLIC SPACE

Disk model

\[B^n = \text{open unit ball in } \mathbb{R}^n, \quad dx^2 = \text{Euclidean metric} \]
\[ds^2 = dx^2 \left(\frac{2}{1-r^2} \right)^2 \rightarrow H^n \]

Note: ① Since \(ds^2 \) is \(dx^2 \) scaled, hyp. angles = Euc. angles
② Distances large as \(r \rightarrow 1 \)
③ Inclusions \(D^1 \subset D^2 \subset \cdots \) induce isometries \(H^1 \subset H^2 \subset \cdots \)

\(\partial B^n \) is sphere at infinity, denoted \(\partial H^n \).

Upper half-space model

\[U^n = \{ (x_1, \ldots, x^n) \in \mathbb{R}^n : x_n > 0 \} \]
\[ds^2 = \frac{1}{x_n^2} dx^2 \]

Check: Inversion in sphere of rad \(R^2 \) centered at \(-e_n \) is an isometry \(B^n \rightarrow U^n \).
Here, \(\partial H^n \) is \(x_n=0 \) plane plus pt at \(\infty \).

Hyperboloid model

\[\mathbb{R}^{n,1}, \text{ Lorentz metric, } x_1^2 + \cdots + x_n^2 - x_{n+1}^2 \]
Sphere of radius \(R^2 \) is hyperboloid
Upper sheet with induced metric is \(H^n \).
By defn, \(\text{Isom}_+ H^n = SO(n,1) \)
Isometry with \(B^n \) via stereographic proj from \(-e_n \)
Isometries of \mathbb{H}^n

Examples

1. Orthogonal maps of \mathbb{R}^n restricted to \mathbb{B}^n
 \rightarrow all possible rotations about e_n in \mathbb{U}^n.
2. Translation of \mathbb{U}^n by $v = (V_1, \ldots, V_{n-1}, 0)$
3. Dilation of \mathbb{U}^n about 0.
4. Rotation about e_n axis.

Easy from defn of ds^2 that these are isometries.

Thm. The above isometries generate $\text{Isom}(\mathbb{H}^n)$.

Ps. Use: if two isometries of a Riem. manifold agree at a point, they are equal.

Consequences: Any isometry of \mathbb{H}^n

1. extends continuously to $\partial \mathbb{H}^n$
2. preserves $\{\text{spheres}\} \cup \{\text{planes}\}$
3. preserves angles between arcs in \mathbb{H}^n and $\partial \mathbb{H}^n$.
4. In \mathbb{U}^n model, each isometry of form $\lambda A x + b$ $\lambda > 0$, A orthogonal & fixes e_n.

GEODESICS

Prop. In \mathbb{U}^n $\exists!$ geodesic from e_n to $x e_n$.

Ps. Given any path, its projection to e_n-axis is shorter.
Geodesics in \mathbb{R}^n are unique.

Length is $\int_{x}^{\lambda} \frac{1}{y} \ dy = \ln \lambda$.
Consequences:

1. \mathbb{H}^n is a unique geodesic space. (use change of coords + Prop)
2. The geodesics in \mathbb{H}^n are exactly the straight lines and circles \perp to $\partial \mathbb{H}^n$.
3. Given a geodesic L and $x \notin L$ there are infinitely many L' with $x \in L'$, $L \cap L' = \emptyset$.
4. Between any pts of $\partial \mathbb{H}^n$ there is 1 geodesic (geodesic rays asymptotic \iff endpts same).
5. Geodesics are infinitely long in both directions.

exercise: space of geodesics in \mathbb{H}^n is homeo to Mabius strip.

Classification of Isometries

Via fixed pts:

1. Elliptic - fixes pt of \mathbb{H}^n
2. Parabolic - fixes 1 pt of $\partial \mathbb{H}^n$, no pt of \mathbb{H}^n
3. Hyperbolic - fixes 2 pts of $\partial \mathbb{H}^n$, no pt of \mathbb{H}^n

Thm. Each elt of $\operatorname{Isom}(\mathbb{H}^n)$ is one of these.

By Brouwer \Rightarrow at least one fixed pt.

Suppose f fixes $x, y, z \in \partial \mathbb{H}^n$

$\Rightarrow f$ fixes xy and since $f(z) = z$, f fixes xy ptwise.

$\Rightarrow f$ elliptic.

\[x \rightarrow \infty \]

\[y \rightarrow \infty \]

\[x \sim y \]

\[x \sim z \]
Can give explicit descriptions of 3 types. Using change of coords, can assume a fixed pt in \(\mathbb{H}^n \) is \(\infty \) and a fixed pt in \(\mathbb{H}^n = \infty \) in Un model.

elliptic: rotation

parabolic: \(Ax + b \)
\[A = \text{orthogonal, preserves } \mathbb{H}^n \]
\[b = (b_1, \ldots, b_n, 0) \]

hyperbolic: \(\lambda Ax \)
\[\lambda \text{ as above} \]
\[x \in \mathbb{R}_{>0} \]

Via translation length \(\tau(f) = \inf \{ d(x, f(x)) : x \in \mathbb{H}^n \} \)

Prop. Let \(f \in \text{Isom}(\mathbb{H}^n) \)

1. \(f \) elliptic \(\iff \tau(f) = 0 \), realized
2. \(f \) parabolic \(\iff \tau(f) \) not realized
3. \(f \) hyperbolic \(\iff \tau(f) > 0 \), realized.

Proof. All \(\Rightarrow \) follow from above descriptions.

First \(\iff \) by defn

Second \(\iff \) find \(x_n \) s.t. \(d(x_n, f(x_n)) \to \tau(f) \)

note \(x_n \) leave every compact set

\(\to \) convergent seq \(\to \) limit \(x \in \mathbb{H}^n \).

Third \(\iff \) if \(d(x, f(x)) = \tau(f) \) then \(f \) preserves geodesic through \(x, f(x), f^2(x), \ldots \)

\(\to 2 \) fixed pts in \(\mathbb{H}^n \).
Thm. \[\text{Isom}^+(\mathbb{H}^2) \cong \text{PSL}_2\mathbb{R} \]
\[\text{Isom}^+(\mathbb{H}^3) \cong \text{PSL}_2\mathbb{C} \]

Pf. \[\mathbb{H}^3 \text{ case first.} \]

By above, there is:
\[\text{Isom}^+(\mathbb{H}^3) \rightarrow \text{Homeo}(\partial \mathbb{H}^3) = \text{Homeo}(\hat{\mathbb{C}}) \] and this is injective.

By Möbius transformations
\[\text{PSL}_2\mathbb{C} \rightarrow \text{Homeo}(\hat{\mathbb{C}}) \] injective.

Suffices to show images are same.
First, \(\text{PSL}_2\mathbb{C} \) gen. by
\[\begin{pmatrix} \lambda & 0 \\ 0 & 1/\lambda \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \]

exercise: realize each by \(\text{Isom}^+(\mathbb{H}^3) \).

For other dir, show each elt of \(\text{Isom}^+(\mathbb{H}^3) \) fixes a pt in \(\partial \mathbb{H}^3 \). Change of coords: this pt is \(\infty \).

By above, an isometry fixing \(\infty \) is of form \(z \mapsto \lambda Az + b \),
or \(z \mapsto wz + b \), \(w, b \in \mathbb{C} \)

but this is Möbius.

\[\mathbb{H}^2 \text{ case.} \] \(\text{PSL}_2\mathbb{R} \) = subgp of \(\text{PSL}_2\mathbb{C} \) preserving \(\mathbb{R} \) with orientation.
\[\implies \text{Isom}^+(\mathbb{H}^2) \subseteq \text{PSL}_2\mathbb{R} \]

For other inclusion, show every isometry of \(\mathbb{H}^2 \) extends to \(\mathbb{H}^3 \) (check on generators). \(\square \)
Loose Ends

Intrinsic defn of ∂H^n

$\partial H^n = \{ \text{based geodesic rays in } H^n \} / \sim$

\sim if $\lim_{t \to \infty} d_{H^n}(\gamma(t), \gamma'(t)) = 0$.

topology: for open half-space $S \subset H^n$

$V_S = \{ [\gamma] : \gamma \text{ positively asymptotic into } S \}$

\rightarrow basis

(check this is same topology as before!)

This also gives topology on $H^n \cup \partial H^n$

By defn, $\text{Isom}(H^n)$ acts continuously on the union.

Horospheres

$B = \text{Euclidean ball in ball model of } H^n$

tangent to boundary sphere at x.

$\partial B \setminus x = \text{horosphere}$

$\text{int } B = \text{horoball}$.

note: horosphere has Euclidean metric
Areas in H^2

Circles. \[f(t) = r e^{i t} \] circle in disk model, hyp. radius $s = \ln\left(\frac{1+r}{1-r}\right) \]
\[
C = \int_0^{2\pi} \frac{2}{1-r^2} r \, dt = \frac{4\pi r}{1-r^2} = \frac{4\pi \tanh \frac{s}{2}}{1-(\tanh \frac{s}{2})^2} = \frac{4\pi \tanh \frac{s}{2}}{(\text{sech} \frac{s}{2})^2} = 2\pi \sinh s
\]
\[
\sim e^s
\]
\[A = \int_0^s 2\pi \sinh t \, dt = 2\pi (\cosh s - 1) = 2\pi (2\sinh \frac{s}{2}) = 4\pi \sinh \frac{s}{2} \]

Ideal triangles. All are isometric to:

\[
A = \int_{-1}^{1} \int_{\sqrt{1-x^2}}^{\infty} \frac{1}{y^2} \, dy \, dx
\]
\[
= \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \, dx = \pi
\]

Polygons. Thm. $A(P) = (n-2)\pi$ - sum of int. angles

Step 1. $2/3$ ideal Δ. \[A(\theta) = \text{area of Δ with angles } 0,0,\pi-\theta. \]

Claim: $A(\theta) = \theta$.

Proof:

A continuous picture \Rightarrow A linear picture above $\Rightarrow A(\pi) = \pi$.

Step 2. Arbitrary Δ. Hint:

Step 3. Cut \mathcal{P} into Δs.
Ideal Tetrahedra

$T =$ ideal tetrahedron in H^3

$S =$ horosphere based at ideal vertex v, disjoint from opp side.

$Lk(v) = S \cap T =$ link of v in T

$= \text{Euclidean } \Delta, \text{ angles are dihedral angles of } T, \text{ a.p. similarity class}$

$\text{indep. of } S.$

Facts

1. o.p. congruence class of (T,v) determined by $Lk(v)$
 - pf: similarities of C extend to isometries of H^3

2. If the dihedral angles corr. to v are α, β, γ then $\alpha + \beta + \gamma = \pi$
 - pf: Euclid

3. The dihedral angles of opp. edges are equal
 - pf: 6 vars, 4 eqns

4. $Lk(v)$ same for all vertices of T
 - pf: (3)

5. The o.p. similarity congruence class of T determ. by $Lk(v)$
 - pf: (1) + (4)

6. $\forall \alpha, \beta, \gamma \ s.t. \ \alpha + \beta + \gamma = \pi \ \exists \ T \text{ with } Lk(v) = \Delta$
 - pf: construct it.
 - Notation $T_{\alpha, \beta, \gamma}$

7. Congruence class of T determ. by cross ratio of vertices.
 - pf: up to isometry, 3 vertices are $0, 1, \infty$

Thm. \[\text{Vol}(T_{\alpha, \beta, \gamma}) = J_1(\alpha) + J_1(\beta) + J_1(\gamma) \]

\[J_1(\theta) = -\int_0^\theta \log|2\sin t| \, dt \]

see Ratcliffe Thm 10.4.10

"Lobachevsky fn"

Consequences

1. \[\text{Vol}(T_{\pi/3, \pi/3, \pi/3}) \] maximal (easy calculus)

2. \[\text{it equals } 3 \cdot J_1(\pi/3) \approx 2.01565 \ldots < 1.01 \ldots \]