
Introduction to Riemannian manifolds

All manifolds will be connected, Hausdorff and second countable.

Terminology. Let M be a smooth manifold. Denote the tangent space at x ∈M

by TxM . If f : M → N is a smooth map between smooth manifolds, denote the

associated map on TxM by (Df)x: TxM → Tf(x)N . If I is an open interval in R

and α: I → M is a smooth path, then for t ∈ I , α′(t) denotes (Dα)t(1) ∈ Tα(t)M .

Definition. A Riemannian metric on a smooth manifold M is a choice at each

point x ∈M of a positive definite inner product 〈 , 〉 on TxM , the inner products

varying smoothly with x. Then M is known as a Riemannian manifold. We will

not give a formal definition of the phrase ‘varying smoothly with x’.

Definition. A local isometry between two Riemannian manifolds M and N is a

local diffeomorphism h: M → N , such that, for all points x ∈M and all vectors v

and w in TxM ,

〈v, w〉 = 〈(Dh)x(v), (Dh)x(w)〉.

A (Riemannian) isometry is a local isometry that is also a diffeomorphism.

Let M be a Riemannian manifold and let x be a point in M . The Riemannian

metric allows one to define for a vector v ∈ TxM the length ||v|| = 〈v, v〉1/2 and

also the angle between two non-zero vectors v and w in TxM :

cos(Angle(v, w)) =
〈v, w〉

||v|| ||w||
.

The lengths || || determine the inner product: if v, w ∈ TxM , then

〈v, w〉 = (||v + w||2 − ||v||2 − ||w||2)/2.

So, a diffeomorphism which preserves the lengths of vectors is necessarily a Rie-

mannian isometry.

Smooth paths α: [0, T ]→M inherit a length, given by

Length(α) =

∫ T

0

||α′(t)|| dt.

This is independent of its parametrisation - in other words, if β: [0, T1]→ [0, T ] is a

diffeomorphism, then Length(α◦β) = Length(α). This is just a consequence of the
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fact that we can change the variable in the integration. A piecewise smooth path

α: [0, T ]→ M is a path that is smooth at all but finitely many points. Piecewise

smooth paths also inherit a length. We construct a metric d on M : if x and y are

points in M , then

d(x, y) = inf{Length(α) : α is a piecewise smooth path from x to y}.

Proposition 1.1. This does give a metric on M . The topology induced by this

metric coincides with the original topology on M .

Notation. If x is a point in a metric space M and ǫ > 0, denote {y ∈ M :

d(x, y) < ǫ} by Bǫ(x).

Crucial in the study of Riemannian manifolds is the notion of a geodesic.

Here’s a non-standard definition, which is equivalent to the usual one.

Definition. A geodesic (with speed s ∈ R≥0) is a smooth map α: I →M (where

I is an interval in R) such that ||α′(t)|| = s for all t ∈ I and which is ‘locally

length minimising’. This means that for all t ∈ I , there is an ǫ > 0, such that for

all t1 and t2 in (t− ǫ, t + ǫ) ∩ I ,

d(α(t1), α(t2)) = s|t1 − t2|.
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Figure 1.

Exercise. 1. The geodesics in R
n are straight lines.

2. The geodesics in S2 are great circles.

Remarks. 1. This demonstrates that geodesics need not be globally length-

minimising. In other words, it need not be true that

d(α(t1), α(t2)) = s|t1 − t2|
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for all t1, t2 ∈ I . For example, great circles in S2. This example also demonstrates

that there need not be a unique shortest path between two points.

2. The maximal interval I ⊂ R on which a geodesic is defined need not be

the whole of R. For example, consider geodesics in the open unit disc in R
2.

3. There need not be a shortest path between two points. For example,

consider the points (−1, 0) and (1, 0) in R
2 − {(0, 0)}. But if there is a shortest

path between two points, then we may find one which has constant speed. This

is necessarily globally length minimising and hence a geodesic.

4. A local isometry between Riemannian manifolds (for example, the inclusion

of an open subset) preserves geodesics.

Example 2:

2-sphere R  - {(0,0)}2




Open unit disc

Example 3:Example 1:

Figure 2.

A fundamental result from differential geometry is the following.

Theorem 1.2. [Existence and uniqueness of geodesics] For all points x ∈ M

and for all v ∈ TxM , there is a unique maximal interval I ⊂ R containing a

neighbourhood of 0, and a unique geodesic α: I → M , such that α(0) = x and

α′(0) = v.

Idea of proof. Pick a chart φ: U → Rn around x. For each path α: [−T, T ]→ U ,

consider φ ◦ α: [−T, T ] → Rn. One shows that α is a geodesic if and only if the

n co-ordinates of φ ◦ α satisfy certain second order differential equations. These

differential equations have a solution for small enough T , which is unique given

the initial conditions α(0) = x and α′(0) = v.

Definition. The exponential map at a point x ∈M is the map expx from a subset

of TxM to a subset of M which takes a vector v ∈ TxM to α(1), where α: I → M
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is the geodesic from Theorem 1.2 with α(0) = x and α′(0) = v, providing 1 ∈ I .

Proposition 1.3. For each point x ∈ M , expx is a smooth map, whose domain

is an open neighbourhood of 0. For small enough ǫ > 0, expx maps Bǫ(0) ⊂ TxM

diffeomorphically onto Bǫ(x) ⊂M .

Idea of proof. As in Theorem 1.2, one relates geodesics to certain second order

differential equations, and then one uses the fact that their solutions are smooth

and depend smoothly on the initial conditions. For the second part, one first

determines the derivative of expx and discovers that it has maximal rank. Hence,

the inverse function theorem gives that expx sends Bǫ(0) ⊂ TxM diffeomorphically

onto its image in M , which is clearly Bǫ(x) ⊂M .

Proposition 1.4. If h: M → N is a local isometry between Riemannian man-

ifolds, and x ∈ M , then the following diagram commutes (where the maps are

defined):
TxM

(Dh)x

−→ Th(x)N




y

expx





y

exph(x)

M
h
−→ N

Proof. Pick v ∈ TxM . Let α be the unique geodesic in M with α(0) = x and

α′(0) = v. Since h is a local isometry, it preserves geodesics and so h ◦ α is

a geodesic in N . But (h ◦ α)(0) = h(x) and (h ◦ α)′(0) = (Dh)x(v). There-

fore, the uniqueness part of Theorem 1.2 gives that h(expx(v)) = (h ◦ α)(1) =

exph(x)((Dh)x(v)).

Theorem 1.5. Let M and N be Riemannian manifolds, with M connected. Let

h: M → N and k: M → N be local isometries onto their images. Suppose that for

some x ∈M , h(x) = k(x) and (Dh)x = (Dk)x. Then h = k.

Proof. Consider the set

U = {y ∈M : h(y) = k(y) and (Dh)y = (Dk)y: TyM → Th(y)N}.

We first show that U is open. Pick y ∈ U . By Proposition 1.4, the following

diagram commutes:

Th(y)M
(Dh)y

←− TyM
(Dk)y

−→ Tk(y)M




y

exph(y)





y

expy





y

expk(y)

N
h
←− M

k
−→ N
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But h(y) = k(y) and (Dk)y = (Dh)y. Therefore h = k on the image of expy,

which is a neighbourhood of y by Proposition 1.3. If h = k on an open set, then

(Dh) = (Dk) there. Therefore, U is open.

Now, we show that U is closed. Let {yi : i ∈ N} be a sequence of points in U ,

tending to some point y in M . Then h(y) = limi→∞ h(yi) = limi→∞ k(yi) = k(y).

Similarly, (Dh)y = (Dk)y. So, y ∈ U . Therefore, U is closed. Since U is open,

closed and non-empty, and M is connected, U = M . Therefore h = k.

Remark. A Riemannian manifold M has a (possibly infinite) volume. For each

x ∈ M , the paralleliped in TxM spanned by n orthonormal vectors is defined

to have volume 1. By integrating over M , this determines its volume. Compact

Riemannian manifolds always have finite volume.
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Hyperbolic Manifolds

Hilary Term 2000

Marc Lackenby

Geometry and topology is, more often than not, the study of manifolds. These

manifolds come in a variety of different flavours: smooth manifolds, topological

manifolds, and so on, and many will have extra structure, like complex manifolds

or symplectic manifolds. All of these concepts can be brought together into one

overall definition.

A pseudogroup on a (topological) manifold X is a set G of homeomorphisms

between open subsets of X satisfying the following conditions:

1. The domains of the elements of G must cover X .

2. The restriction of any element of G to any open set in its domain is also in G.

3. The composition of two elements of G, when defined, is also in G.

4. The inverse of an element of G is in G.

5. The property of being in G is ‘local’, that is, if g: U → V is a homeomorphism

between open sets of X , and U has a cover by open sets Uα such that g|Uα
is

in G for each Uα, then g is in G.

For example, the set of all diffeomorphisms between open sets of R
n forms a

pseudogroup.

A G-manifold is a Hausdorff topological space M with a countable G-atlas. A

G-atlas is a collection of G-compatible co-ordinate charts whose domains cover M .

A co-ordinate chart is a pair (Ui, φi), where Ui is an open set in M and φi: Ui → X

is a homeomorphism onto its image. That these are G-compatible means that

whenever (Ui, φi) and (Uj , φj) intersect, the transition map φi◦φ−1
j : φj(Ui∩Uj) →

φi(Ui ∩ Uj) is in the pseudogroup G.

Unless otherwise stated, all manifolds we will consider will be connected,

Hausdorff and second countable.
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Figure 1.

Examples.

X Pseudogroup G G-manifold

Rn All homeomorphisms between open Topological manifold

subsets of R
n

R
n All Cr-diffeomorphisms between open Differentiable manifold

subsets of R
n (1 ≤ r ≤ ∞) (of class Cr)

Cn All biholomorphic maps between open Complex manifold

subsets of Cn

Other examples. Real analytic manifolds, foliated manifolds, contact manifolds,

symplectic manifolds, piecewise linear manifolds.

The above definition of a G-manifold was actually a little ambiguous. When is

it possible for two different G-atlases to define the same G-structure? Two G-atlases

on a topological space M define the same G-structure if they are compatible, which

means that their union is also a G-atlas. Compatibility is an equivalence relation

(exercise) and hence any G-atlas is contained in a well-defined equivalence class of

G-atlases.

Exercise. Let G be the set of translations of R restricted to open subsets of R.

Show that G satisfies the first four conditions in the definition of a pseudogroup,

but fails the fifth condition. Show that compatibility between G-atlases on S1 is

not an equivalence relation.
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Let M be a G-manifold and let h: N → M be a local homeomorphism (that is,

each point of N has an open neighbourhood U such that h|U is an open mapping

that is a homeomorphism onto its image). Then we may pull back the G-structure

on M to a G-structure on N .

A homeomorphism h: N → M between G-manifolds is a G-isomorphism if the

pull back G-structure on N is the same as the G-structure it possesses already.

Let G0 be a collection of homeomorphisms between open subsets of a manifold

X . The pseudogroup G generated by G0 is the intersection of all pseudogroups on

X containing G0. It is the smallest pseudogroup containing G0.

In certain cases, it is possible to identify the pseudogroup that is generated

much more explicitly.

Special case. Let G be a group acting on a manifold X . Let G be the pseudogroup

generated by G. Then g ∈ G if and only if the domain of g can be covered by open

sets Uα such that g|Uα
= gα|Uα

for some gα ∈ G (exercise). A G-manifold is also

called a (G, X)-manifold.

Terminology.

X G (G, X)-manifold

R
n Euclidean isometries Euclidean manifold

Sn Spherical isometries Spherical manifold

R
n Affine transformations Affine manifold

R
n Euclidean similarities Similarity manifold

In each of these cases, the group G is quite small (much smaller than the

full diffeomorphism pseudogroup) and so the resulting (G, X)-structures are quite

rigid.

Examples. 1. By taking a single chart, any open subset of R
n is a (G, X)-

manifold for all (G, X).

2. The torus admits a Euclidean structure, with the following charts.
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Figure 2.

Another way of constructing this example is as follows. Let M be a manifold

and let M̃ be its universal cover, with G the group of covering transformations.

Then M inherits a (G, M̃)-structure.

The action of a group G on a manifold X is rigid if, whenever two elements

of G agree on an open set of X , they are the same element of G. Then the

pseudogroup generated by such a G is the set of homeomorphisms h: U → h(U)

between open subsets of X such that the restriction of h to any component of U

is the restriction of an element of G. The examples above of groups G acting on

a manifold X are all rigid. Also, if X is a Riemannian manifold and G is a group

of isometries of X , then G acts rigidly. (This is a consequence of Theorem 1.5 of

the Introduction to Riemannian Manifolds.)

Euclidean structures are very well understood, as demonstrated by the fol-

lowing result.

Theorem. [Bieberbach] Every closed Euclidean n-manifold is finitely covered by

a torus Tn.

For example, the only closed surfaces that support Euclidean structures are

the torus and the Klein bottle. Spherical structures are even more restrictive.

Theorem. A closed spherical n-manifold is finitely covered by Sn. In particular,

it has finite fundamental group.

There is a fascinating conjectured converse to this in dimension three.
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Conjecture. Every closed 3-manifold with finite fundamental group admits a

spherical structure.

This implies the famous Poincaré conjecture.

Poincaré Conjecture. A closed 3-manifold with trivial fundamental group is

homeomorphic to S3.

In this course we will define and study another model space X . We will

define, for each n ≥ 1, a Riemannian n-manifold H
n, known as hyperbolic space.

Its isometry group is denoted by Isom(Hn). An (Isom(Hn), H
n)-manifold is known

as a hyperbolic manifold. A hyperbolic manifold inherits a Riemannian metric.

It is a theorem from Riemannian geometry that H
n (respectively, Sn, Eu-

clidean space) is the unique complete simply-connected Riemannian n-manifold

with all sectional curvatures being −1 (respectively, one, zero). Hyperbolic man-

ifolds are precisely those Riemannian manifolds in which all sectional curvatures

are −1.

Hyperbolic space has a richer isometry group than Euclidean or spherical

space, and hence it will be easier to find hyperbolic structures. But still, hyper-

bolic manifolds are sufficiently rigid to have interesting properties. Here are some

sample results about hyperbolic manifolds.

A smooth 3-manifold is irreducible if any smoothly embedded 2-sphere bounds

a 3-ball. A smooth 3-manifold M is atoroidal if any Z ⊕ Z subgroups of π1(M)

is conjugate to i∗(π1(X)), where i: X → M is the inclusion of a toral boundary

component of M . A compact orientable 3-manifold M is Haken if it is irreducible

and it contains a compact orientable embedded surface S (other than a 2-sphere)

with ∂S = S ∩ ∂M , such that the map π1(S) → π1(M) induced by inclusion is

an injection. Haken 3-manifolds form a large class. In particular, any compact

orientable irreducible 3-manifold M with non-empty boundary or with infinite

H1(M) is Haken.

Theorem. [Thurston] Let M be a closed atoroidal Haken 3-manifold. Then M

admits a hyperbolic structure.

This is a special case of the so-called geometrisation conjecture.
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Geometrisation Conjecture. [Thurston] Any closed irreducible atoroidal 3-

manifold admits either a hyperbolic structure or a spherical structure.

The closed irreducible toroidal 3-manifolds with Z ⊕ Z subgroups in their

fundamental group are known to admit a certain type of ‘geometric structure’, but

the spaces X on which they are modelled have slightly less natural geometries.

The above theorems and conjectures suggest that it may be rather too easy

to put a hyperbolic structure structure on a manifold. But in fact this is not the

case.

Theorem. [Mostow Rigidity] Let M and N be closed hyperbolic n-manifolds,

with n > 2. If π1(M) and π1(N ) are isomorphic, then M and N are isomorphic

hyperbolic manifolds.

This is very strong indeed. It says that each of the following implications can

be reversed for closed hyperbolic n-manifolds for n > 2:

Isomorphic ⇒ Isometric ⇒ Diffeomorphic

⇒ Homeomorphic ⇒ Homotopy equivalent ⇒ Isomorphic π1

There are lots of geometric invariants of hyperbolic manifolds. For example,

they have a well-defined volume. Thus Mostow Rigidity implies that these depend

only on the fundamental group of the manifold. In particular, they are topological

invariants.

In the case of hyperbolic manifolds, it is those that are complete which are

particularly interesting. Mostow’s rigidity theorem remains true when the word

‘closed’ is replaced by ‘complete and finite volume’.

Thurston’s theorem on the hyperbolisation of closed atoroidal Haken mani-

folds extends the bounded case as follows.

Theorem. [Thurston] Let M be a compact orientable irreducible atoroidal 3-

manifold, such that ∂M is a non-empty collection of tori. Then either M − ∂M

has a complete finite volume hyperbolic structure, or M is homeomorphic to one

of the following exceptional cases:

1. S1 × [0, 1]× [0, 1]
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2. S1 × S1 × [0, 1]

3. the space obtained by gluing the faces of a cube as follows: arrange the six

faces into three opposing pairs; glue one pair, by translating one face onto the

other; glue another pair, by translating one face onto the other and then rotating

through π about the axis between the two faces. (This is the total space of the

unique orientable I-bundle over the Klein bottle.)

Figure 3.

Example. Let K be a knot in S3, that is, a smoothly embedded simple closed

curve. Let N (K) be an open tubular neighbourhood of K. Then M = S3 −

N (K) is a 3-manifold with boundary a torus, which is compact, orientable and

irreducible. Irreducibility is a consequence of the Schoenflies theorem. Note that

M − ∂M is homeomorphic to S3 − K. The knots K for which M fails to be

atoroidal fall into one of two classes:

1. torus knots, which are those that lie on the boundary of a standardly embed-

ded solid torus in S3, and are not the unknot, and

2. satellite knots, which are those that have an embedded π1-injective torus

in their complement that is not boundary-parallel. Such a torus bounds a

‘knotted’ solid torus in S3 containing the knot.

So, providing K is neither the unknot, a torus knot nor satellite knot, S3−K

admits a complete, finite volume hyperbolic structure.
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1. Three models for hyperbolic space

Hyperbolic space was discovered by a number of people, including Bolyai,

Gauss and Lobachevsky. It has many of the properties of Euclidean space, includ-

ing:

1. Between any two points in H
n, there is a unique geodesic.

2. For any two points x, y ∈ H
n, there is an isometry taking x to y.

However, there is a major difference between H
2 and R

2:

3. If α is a geodesic in H
2 and x is a point not on α, then there are infinitely

many geodesics through x which do not meet α.

Remark. We will often confuse a geodesic α: [0, T ] → M with its image in M .

Thus ‘unique geodesic’ really means ‘unique up to re-parametrisation’.

There are three main ‘models’ for hyperbolic space, each of which is a Rie-

mannian manifold, any two of which are isometric. Each will be denoted by H
n.

The Poincaré disc model

For each n ∈ N, let Dn be the open unit ball {x ∈ R
n: dEucl(x, 0) < 1}, where

dEucl(x, 0) is the Euclidean distance between x and the origin 0 in R
n. Assign a

Riemannian metric to Dn by defining the inner product of two vectors v and w

in TxDn to be

〈v, w〉Dn = 〈v, w〉Eucl

(

2

1 − [dEucl(x, 0)]2

)2

,

where 〈 , 〉Eucl is the standard Euclidean inner product. This is the Poincaré disc

model for H
n.

Remarks. 1. Since 〈v, w〉Dn is a multiple of 〈v, w〉Eucl, the angle between two

non-zero vectors in TxH
n is just their Euclidean angle.

2. The factor 2/(1 − [dEucl(x, 0)]2) → ∞ as dEucl(x, 0) → 1, so hyperbolic

distances get very big as dEucl(x, 0) → 1.

3. The inclusions D1 ⊂ D2 ⊂ D3 ⊂ ... induce inclusions H
1 ⊂ H

2 ⊂ H
3 which

respect the Riemannian metrics.
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The unit sphere {x ∈ R
n : dEucl(x, 0) = 1} is known as the sphere at infinity

Sn−1
∞ . It is not part of hyperbolic space. But it is nonetheless useful when studying

H
n.

The upper half-space model

This is another way of describing hyperbolic space. Let Un = {(x1, . . . , xn) ∈

Rn : xn > 0}. Give it a Riemannian metric by defining the inner product of v and

w in T(x1,...,xn)U
n to be

〈v, w〉Un =
〈v, w〉Eucl

x2
n

.

Proposition 1.1. There is a Riemannian isometry between Dn and Un.

Proof. Let ±en = (0, 0, . . . ,±1) ∈ R
n. Consider the map

R
n − {−en}

I
→ R

n − {−en}

x 7→ 2
x + en

[dEucl(x + en, 0)]2
− en.

-en -en

n
nD U

I

Figure 4.

Let pn: R
n → R be projection onto the nth co-ordinate. Let x = (x1, . . . , xn) ∈

R
n − {−en}. Then

I(x) ∈ Un ⇔ pn(I(x)) > 0

⇔ pn

(

2
x + en

[dEucl(x + en, 0)]2
− en

)

> 0 ⇔ pn

(

2
x + en

[dEucl(x + en, 0)]2

)

> 1

⇔
2(xn + 1)

x2
1 + . . . + x2

n−1 + (xn + 1)2
> 1
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⇔ x2
1 + . . . + x2

n < 1 ⇔ x ∈ Dn.

So I restricts to a diffeomorphism Dn → Un.

We now check that it is a Riemannian isometry. Note that (DI)x acts on

TxDn by scaling by a factor of 2/[dEucl(x+en, 0)]2, then reflecting in the direction

of the line joining x to −en. So,

||(DI)x(v)||Un =
||(DI)x(v)||Eucl

pn(I(x))

=

(

2||v||Eucl

[dEucl(x + en, 0)]2

) (

2(xn + 1)

[dEucl(x + en, 0)]2
− 1

)−1

=
2||v||Eucl

2xn + 2 − (x2
1 + . . . x2

n−1 + (xn + 1)2)

=
2||v||Eucl

1 − [dEucl(x, 0)]2

= ||v||Dn.

So, I is a Riemannian isometry.

Note. The map I takes Sn−1
∞ −{−en} to {(x1, . . . , xn) ∈ Rn : xn = 0}. Therefore,

we view the ‘sphere at infinity’ for Un to be the plane ∂Un = {(x1, . . . , xn) ∈ Rn :

xn = 0}, together with a single ‘point at infinity’, written ∞. In the case n = 3,

this is the well-known observation that the Riemann sphere is just the complex

plane with a single point added.

Note. The isometry I : Dn → Un is a composition of Euclidean translations and

scales, and the map x 7→ x/[dEucl(x, 0)]2, which is known as a Euclidean inversion.

Lemma 1.2. I preserves the set {Euclidean planes of dimension k} ∪ {Euclidean

spheres of dimension k}.

Proof. Since Euclidean scales and translations preserve this set, it suffices to show

that Euclidean inversion does also. First consider the special case k = n − 1.

Then, spheres and planes have the form

{x ∈ R
n : k1〈x, x〉Eucl + k2〈x, a〉Eucl + k3 = 0},

where k1, k2 and k3 are real numbers, not all zero, and a is a vector in R
n, and

where these are chosen so that more than one x satisfies the equation. If we invert,
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this set is sent to the set

{x ∈ R
n : k1

〈x, x〉Eucl

〈x, x〉2Eucl

+ k2
〈x, a〉Eucl

〈x, x〉Eucl

+ k3 = 0}

={x ∈ R
n : k1 + k2〈x, a〉Eucl + k3〈x, x〉Eucl = 0},

which, again is the equation of a sphere or plane in R
n.

Now, consider the general case, where 1 ≤ k ≤ n − 1. Then a k-dimensional

plane or sphere is the intersection of a collection of (n − 1)-dimensional planes or

spheres. This is mapped to the intersection of a collection of (n − 1)-dimensional

planes or spheres, which is an l-dimensional plane or sphere. Since I is a diffeo-

morphism, it preserves the dimension of submanifolds, and so l = k.

The Klein model

Let Kn = {x ∈ Rn : dEucl(x, 0) < 1}. Define

φ: Dn → Kn

x 7→ x

(

2dEucl(x, 0)

[dEucl(x, 0)]2 + 1

)

.

Assign Kn the metric that makes φ an isometry. This is the Klein model for

Hn. Unlike the other two models, angles in Kn do not agree with Euclidean

angles. However, we will see that geodesics in Kn are Euclidean geodesics, after

re-parametrisation.

2. Some isometries of H
n
.

Note that isometries Dn → Dn are in one-one correspondence with isometries

Un → Un, by conjugating by I : Dn → Un. Using this, we’ll feel free to jump

between the two different models we have for hyperbolic space.

Examples. 1. Any linear orthogonal map h: R
n → R

n fixing the origin restricts

to an isometry Dn → Dn. By considering I ◦ h ◦ I−1 and noting that I(0) = en,

we can find an isometry of Un fixing en, and which realizes any orthogonal map

Ten
Un → Ten

Un.
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2. Consider the map

R
n h
→ R

n

x 7→ λAx + b,

where λ ∈ R>0, A is an orthogonal map preserving the en-axis and b ∈ R
n−1×{0}.

This restricts to a map Un → Un which is a hyperbolic isometry: if x ∈ Un and

v ∈ TxUn, then

||(Dh)x(v)||hyp = ||λv||hyp =
||λv||Eucl

pn(λx)
=

||v||Eucl

pn(x)
= ||v||hyp.

Theorem 2.1. For any two points x and y in H
n and any orthogonal map

A: TxH
n → TyH

n, there is an isometry h: H
n → H

n such that h(x) = y and

(Dh)x = A. Moreover, h is a composition of isometries as in Examples 1, 2 and 3.

Proof. Consider x and y in Un. By using Example 2, we may find isometries f

and g such that f(x) = g(y) = en. Now, (Dg)y ◦ A ◦ (Df−1)en
is an orthogonal

map Ten
Un → Ten

Un and so is realised by an isometry h fixing en, as in Example

1. Therefore, g−1 ◦ h ◦ f is the required isometry.

Definition. Isom(Hn) is the group of isometries of H
n. Isom+(Hn) is the sub-

group of orientation-preserving isometries.

Corollary 2.2. The isometries of Examples 1 and 2 generate Isom(Hn).

Proof. Suppose h ∈ Isom(Hn). Pick x ∈ H
n. By Theorem 2.1, there is an isometry

g: H
n → H

n such that g(x) = h(x) and (Dg)x = (Dh)x, with g a composition of

isometries as in Examples 1, 2 and 3. By Theorem 1.5 of the Introduction of

Riemannian manifolds, h = g.

Corollary 2.3. Any hyperbolic isometry Dn → Dn (respectively, Un → Un)

1. extends to a homeomorphism Sn−1
∞ → Sn−1

∞ (respectively, ∂Un ∪ {∞} →

∂Un ∪ {∞}),

2. preserves

{Euclidean planes of dimension k} ∪ {Euclidean spheres of dimension k},

3. preserves the angles between Sn−1
∞ and arcs intersecting Sn−1

∞ (respectively,

∂Un).

Proof. These are all true for Examples 1 and 2.
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3. Geodesics

Let 0 be the origin in Dn.

Lemma 3.1. For any point x ∈ Dn − {0}, the unit speed path α running along

the Euclidean straight line L through 0 and x is a shortest path from 0 to x in

the hyperbolic metric. Hence, it is a geodesic in Dn.

Proof. Let α1: [0, T ] → Dn be another path from 0 to x in Dn. Our aim is to

show that Lengthhyp(α1) ≥ Lengthhyp(α). We may assume that α−1
1 (0) = 0. Let

α2 be the path running along L such that

dEucl(α2(t), 0) = dEucl(α1(t), 0)

for all t ∈ [0, T ]. Then,

||α′
2(t)||Eucl ≤ ||α′

1(t)||Eucl.

Since || ||Eucl and || ||hyp differ by a factor which depends only on the Euclidean

distance from 0, we have that

||α′
2(t)||hyp ≤ ||α′

1(t)||hyp.

So,

Lengthhyp(α2) =

∫ T

0

||α′
2(t)||hyp dt ≤

∫ T

0

||α′
1(t)||hyp dt = Lengthhyp(α1),

But then α−1 ◦ α2 is a function f : [0, T ] → [0, Lengthhyp(α)], such that |f ′(t)| =

||α′
2(t)||hyp. Then

Lengthhyp(α2) =

∫ T

0

||α′
2(t)||hyp dt =

∫ T

0

|f ′(t)| dt ≥

∫ T

0

f ′(t) dt = f(T ) − f(0) = Lengthhyp(α).

Hence, α is a shortest path from 0 to x.

Corollary 3.2. The unit speed geodesic α in Lemma 3.1 is the unique geodesic

between 0 and x (up to re-parametrisation).
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Proof. Suppose that α1 is another geodesic between 0 and x. By Lemma 3.1, α1

is a Euclidean straight line. Since it goes through x, α′
1(0) is a multiple of α′(0),

and so α1 is a re-parametrisation of α.

Corollary 3.3. Between any two distinct points in H
n, there is a unique geodesic.

Proof. Let x and y be distinct points in Dn. By Theorem 2.1, there is an isometry

h: Dn → Dn which takes x to 0. This induces a bijection between geodesics

through x and geodesics through 0. By Corollary 3.2, there is a unique geodesic

between 0 and h(y). So, there is a unique geodesic between x and y.

Theorem 3.4. Geodesics in Dn (respectively, Un) are precisely the Euclidean

straight lines and circles which hit Sn−1
∞ (respectively, ∂Un) at right angles.

Proof. Let α be a path in Dn. Let x be a point on α. By Theorem 2.1, there is

an isometry h: Dn → Dn such that h(x) = 0. Then

α is a geodesic

⇔ h(α) is a geodesic

⇔ h(α) is a Euclidean straight line through 0

⇔ h(α) is a Euclidean straight line or circle

through 0 which hits Sn−1
∞ at right angles

⇔ α is a Euclidean straight line or circle hitting Sn−1
∞ at right angles.

Note that in the above, we used the fact that Euclidean circles through 0 do not

hit Sn−1
∞ at right angles.

U D2 2

Figure 5.

Corollary 3.5. If α is a geodesic in H2 and x is a point not on α, then there are

infinitely many distinct geodesics through x which miss α.
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Corollary 3.6. Between any two distinct points x and y in Sn−1
∞ , there is a

unique geodesic.

Proof. Work with Un. After an isometry, we may assume that x = ∞. So

y ∈ ∂Un. By Theorem 3.4, geodesics through y are Euclidean straight lines and

circles meeting y at right-angles. Therefore, the vertical straight line through y is

the unique geodesic joining x to y.

Corollary 3.7. All geodesics in H
n are infinitely long in both directions.

Proof. Let α be a geodesic in Un. Perform an isometry of Un so that it passes

through en and runs to the point at ∞. Re-parametrise α so that the nth co-

ordinate of α(y) is y. Its Euclidean speed is then constant, but its hyperbolic

speed is not. Its length between en and ∞ is
∫ ∞

1

||α′(y)||hyp dy =

∫ ∞

1

1/y dy = [ln(y)]∞1 = ∞.

Proposition 3.8. Geodesics in the Klein model are Euclidean geodesics (up to

re-parametrisation).

Proof. We claim that the function φ: Dn → Kn is described as follows. Embed Dn

in Dn+1. At a point x of Dn, let γ be the geodesic perpendicular to Dn through x.

Let (x1, . . . , xn,±xn+1) be the endpoints of γ on Sn
∞. Then φ(x) = (x1, . . . , xn).

This is a simple calculation in Euclidean geometry.

A codimension one hyperplane in Dn is described by an (n − 1)-sphere in-

tersecting Sn−1
∞ orthogonally. It is the intersection of Dn with an n-sphere S.
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The vertical projection of S ∩ Sn
∞ to Dn is a Euclidean plane. Therefore φ maps

codimension one hyperplanes in Dn to Euclidean planes. It therefore maps a hy-

perbolic geodesic, which is the intersection of hyperplanes, to a Euclidean geodesic.

4. Classification of hyperbolic isometries

Recall the examples of hyperbolic isometries given in §2. The aim now is to

show that every hyperbolic isometry is essentially one of these three types.

Definition. Let h: Hn → Hn be an isometry. Then h is

(i) elliptic if it fixes a point in Hn;

(ii) parabolic if it has no fixed point in Hn and a unique fixed point in Sn−1
∞ ;

(iii) loxodromic if it has no fixed point in Hn and precisely two fixed points in

Sn−1
∞ .

Remarks. 1. Example 1 is elliptic. Example 2 is parabolic or elliptic if λ = 1,

and is loxodromic if λ 6= 1.

2. If h and k are conjugate in Isom(Hn), then h is elliptic (respectively,

parabolic, loxodromic) if and only if k is elliptic (respectively, parabolic, loxo-

dromic).

3. Some authors use the term ‘hyperbolic’ instead of loxodromic. This is

confusing, since one can then talk about non-hyperbolic isometries of hyperbolic

space.

Theorem 4.1. Every isometry h: Hn → Hn is either elliptic, parabolic or loxo-

dromic.

We need to show two things: that every hyperbolic isometry has a fixed point

somewhere either in hyperbolic space or in the sphere at infinity and that if it has

no fixed in hyperbolic space, then it has at most two fixed points on the sphere at

infinity.

Proposition 4.2. Any isometry Un → Un fixing ∞ is of the form x 7→ λAx + b,

where λ ∈ R>0, b ∈ Rn−1 × {0} and A is an orthogonal map fixing en.

16



Proof. Let h: Un → Un be an isometry fixing ∞. It sends 0 to some point b. Let g

be the translation x 7→ x+ b. Then g−1h fixes 0 and ∞. It therefore preserves the

unique geodesic α between them. It acts as an isometry on α (which is isometric

to R). It maps some point x on α to λx. Let f be the map x 7→ λx. Then f−1g−1h

fixes x and acts on TxUn via some orthogonal map A fixing the en direction. This

orthogonal map A is an isometry of Un. By Theorem 1.5, f−1g−1h equals A.

Therefore, h is the map x 7→ λAx + b.

Corollary 4.3. A non-elliptic isometry h which fixes at least two points on Sn−1
∞

is conjugate to an isometry as in Example 2, with λ 6= 1. In particular, h is

loxodromic.

Proof. By conjugating the isometry, we may assume that the fixed points are at

0 and ∞. By Proposition 4.2, this isometry is of the form x 7→ λAx + b, where

b must be zero. If λ = 1, then it fixes all points on the en axis and hence h is

elliptic. Therefore, λ 6= 1 and so the isometry is loxodromic.

Proof of Theorem 4.1. Let h be a non-elliptic isometry. Corollary 4.3 implies it

has most two fixed points on Sn−1
∞ . We must show that it has at least one fixed

point on Sn−1
∞ . This is a special case of the Brouwer fixed point theorem which

asserts that any continuous map from the closed unit ball in R
n to itself has a

fixed point. Instead of quoting this, we’ll prove it in this case.

Consider the displacement function

H
n f
→ R≥0

x 7→ dhyp(h(x), x).

This is a continuous function. Either

1. the infimum of f is attained and is zero, or

2. the infimum of f is not attained, or

3. the infimum of f is attained and is non-zero.

Case 1. The point x ∈ H
n where the infimum is attained is a fixed point for

h, and therefore h is elliptic.

Case 2. Then there is a sequence of points x1, x2, . . . in H
n such that f(xi) →

inf(f). This sequence has a convergent subsequence in H
n ∪ Sn−1

∞ , since this is
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compact. Pass to this subsequence. The limit point x cannot lie in H
n, since then

f(x) = inf(f) and the infimum is attained. Therefore, x ∈ Sn−1
∞ . We will show

that x is a fixed point for h.

x

h(x )
x

h(x )
x

2

2

1

1

Figure 7.

Let I be the interval [0, dhyp(xi, h(xi))], and let αi: I → H
n be the unit speed

geodesic between xi and h(xi). The sequence dhyp(xi, h(xi)) is bounded above by

some number M , say. Let 0 be the origin in Dn.

Since the points xi are tending to a point on Sn−1
∞ , the distance dhyp(xi, 0) →

∞, by Corollary 3.7. By the triangle inequality,

dhyp(αi(t), 0) ≥ dhyp(xi, 0)− dhyp(xi, α(t)) ≥ dhyp(xi, 0)− M.

Therefore,

inf
t∈I

dhyp(αi(t), 0) → ∞

as i → ∞. So,

inf
t∈I

dEucl(αi(t), 0) → 1

as i → ∞. Now,

1 = ||α′
i(t)||hyp = ||α′

i(t)||Eucl

(

2

1− [dEucl(αi(t), 0)]2

)

.

So,

sup
t∈I

||α′
i(t)||Eucl → 0

as i → ∞. Thus,

dEucl(xi, h(xi)) ≤

∫

I

||α′
i(t)||Eucl dt → 0

18



as i → ∞. So, x is a fixed point of h.

Case 3. Let x ∈ H
n be a point where inf(f) is attained. We claim that the

geodesic α through x and h(x) is invariant under h. The endpoints of α on Sn−1
∞

are therefore preserved. They are not permuted, since otherwise h would have a

fixed point in α. Hence, h fixes these points on Sn−1
∞ . This will prove the theorem.

Suppose that α is not invariant under h. The geodesics α and h(α) meet at

h(x). The angle between them is neither 0 or π (since that would imply that α

was preserved by h).

x

z

h(x) h (x)
h(z)

2

Figure 8.

Let z be any point on α between x and h(x). Then

f(z) = dhyp(z, h(z)) < dhyp(z, h(x)) + dhyp(h(x), h(z))

= dhyp(z, h(x)) + dhyp(x, z) = dhyp(x, h(x)) = f(x).

Note that the inequality is strict because the angle between α and h(α) is not π.

This contradicts the assumption that inf(f) is attained at x.

We now know that every hyperbolic isometry is elliptic, parabolic or loxo-

dromic. We also know from Corollary 4.3 that any loxodromic isometry is conju-

gate to one as in Example 2. What about elliptic and parabolic isometries?

Proposition 4.4. An elliptic isometry is conjugate in Isom(Hn) to an isometry

as in Example 1.

Proof. Let h be an elliptic isometry and let x be a fixed point for h in Dn. Pick

an isometry k which takes x to 0. Then khk−1 fixes 0. It therefore acts on T0D
n
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via an orthogonal map A. Let A: Dn → Dn be the isometry as in Example 1. By

Theorem 1.5 of the Introduction to Riemannian manifolds, khk−1 = A.

Proposition 4.5. A parabolic isometry h is conjugate in Isom(Hn) to an isometry

as in Example 2, with λ = 1.

Proof. By conjugating the isometry, we may assume that it fixes ∞ in the upper-

half space model. By Proposition 4.2, it therefore acts as x 7→ λAx + b as in

Example 2. We will show that λ = 1. Now, khk−1 is parabolic and so has no

fixed point in ∂Un. So,

x = λAx + b

has no solution. Therefore, det(λA − I) = 0, which means that λ−1 is a root of

the characteristic polynomial for A. Hence, λ−1 is an eigenvalue of the orthogonal

map A. So, λ = 1, since it is positive.

Each isometry H
n → H

n extends to a homeomorphism H
n ∪ Sn−1

∞ → H
n ∪

Sn−1
∞ . Therefore, this defines an extension homomorphism

Isom(Hn) → Homeo(Sn−1
∞ ),

where Homeo(Sn−1
∞ ) is the group of homeomorphisms of Sn−1

∞ .

Proposition 4.6. This homomorphism is injective.

Proof. Suppose that an isometry h fixes Sn−1
∞ . If h is elliptic, then, by Proposition

4.4, it is conjugate to an isometry as in Example 1. This must be the identity on

Hn, and therefore, h is the identity on Hn.

Suppose now that h is non-elliptic. By Corollary 4.3, h fixes exactly two

points on Sn−1
∞ , which is a contradiction.

What this means is that a hyperbolic isometry is determined by its action on

the sphere at infinity.
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5. PSL(2, R) and PSL(2, C)

Definition. SL(2, C) is the group of 2 × 2 matrices with entries in C and with

determinant one. The group PSL(2, C) is the quotient of SL(2, C) by the normal

subgroup {id,−id}. The groups SL(2, R) and PSL(2, R) are defined similarly.

There is a well-known relationship between PSL(2, C) and Möbius maps. As-

sociated with each element

±

(

a b
c d

)

∈ PSL(2, C),

there is a Möbius map

C ∪ {∞} → C ∪ {∞}

z 7→
az + b

cz + d
.

This establishes an isomorphism between PSL(2, C) and the group of Möbius maps

(where the group operation in the latter is composition of maps).

Theorem 5.1. Isom+(H3) is isomorphic to PSL(2, C).

Identify ∂U3 with C, and S2
∞ with C ∪ {∞}. Consider the homomorphism

Isom+(H3) → Homeo(S2
∞) ∼= Homeo(C ∪∞),

which is injective by Proposition 4.6. Also, the map

PSL(2, C) → Homeo(C ∪ {∞})

sending each matrix to its Möbius map is injective. Our aim is to show that the

images of these two homomorphisms coincide.

Lemma 5.2. The map C ∪ {∞} → C∪ {∞} sending z 7→ 1/z is the extension of

an orientation-preserving hyperbolic isometry.

Proof. The isometry of D3 will be the rotation ρ of angle π around the x-axis.

This has the following effect on C ∪ {∞}

C ∪ {∞}
I−1

−→ S2
∞

ρ
−→ S2

∞

I
−→ C ∪ {∞}

sending a complex number z to a complex number z′. We must check that z′ = 1/z.

Clearly, arg(z′) = −arg(z).
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We just have to check that |z′| = 1/|z|. Recall the definition of the map

R
3 − {−e3}

I
→ R

3 − {−e3}

x 7→ 2
x + e3

[dEucl(x + e3, 0)]2
− e3.

Suppose that x = (x1, x2, x3) ∈ S2
∞. So x2

1+x2
2+x2

3 = 1. Also, I(x) = (z1, z2, 0) =

z ∈ C. Therefore

|z|2 + 1 = [dEucl(z,−e3))]
2 = 4[dEucl(x,−e3)]

−2

= 4/[x2
1 + x2

2 + (x3 + 1)2] = 4/[2x3 + 2] = 2/[x3 + 1],

and so

|z|2 =
1 − x3

1 + x3
.

Therefore, changing x3 to −x3 (which is the effect of ρ) changes |z|2 to |z|−2.

Hence, |z′| = |z|−1.

Lemma 5.3. Given any three distinct points x1, x2 and x3 in C ∪ {∞}, there is

a Möbius map h such that h(x1) = 0, h(x2) = 1, h(x3) = ∞.

Proof. Consider the case where x1, x2 and x3 are all in C. Use the map

z 7→

(

x2 − x3

x2 − x1

)(

z − x1

z − x3

)

.

Lemma 5.4. Every element of Isom+(H3) fixes some point on S2
∞.
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Proof. This is true by definition if h is parabolic or loxodromic. If h is elliptic,

then by Proposition 4.4, it is conjugate to an isometry as in Example 1. But any

element of SO(3) is a rotation which has at least two fixed points on S2
∞.

Proof of Theorem 5.1. We first show that every Möbius map is the extension of

an orientation-preserving hyperbolic isometry. Any Möbius map can be expressed

as a composition of the following maps

z 7→ a1z

z 7→ z + a2

z 7→ 1/z

The first and second of these are extensions of Example 2. Both of these are

orientation-preserving. The third is an extension of an orientation-preserving el-

liptic isometry by Lemma 5.2.

We now show that every orientation-preserving hyperbolic isometry h extends

to a Möbius map. By Lemma 5.4, h has a fixed point on S2
∞. By Lemma 5.3, there

is a Möbius map k sending this fixed point to ∞. So, khk−1 is an orientation-

preserving isometry fixing ∞. So, it is of the form z 7→ λAz + b, as in Proposition

4.2. Since khk−1 is orientation-preserving, A is a rotation about en. So, khk−1

acts as z 7→ az + b (a ∈ C − {0}, b ∈ C) which is a Möbius map.

Theorem 5.5. Isom+(H2) is isomorphic to PSL(2, R).

Proof. Note that PSL(2, R) is the subgroup of PSL(2, C) which leaves R∪{∞} ⊂

C ∪ {∞} invariant and preserves its orientation. Therefore, PSL(2, R) contains

Isom+(H2). To establish the opposite inclusion, we check that any orientation-

preserving isometry of H2 extends to an orientation-preserving of H3. However, the

orientation-preserving isometries of H2 are generated by the orientation-preserving

isometries in Examples 1 and 2, and these extend to H3.
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6. Constructing hyperbolic manifolds

Recall that a hyperbolic manifold is a (G, X)-manifold, where X is H
n and

G = Isom(Hn). Since G is a group of Riemannian isometries, G acts rigidly.

Hence, the pseudogroup generated by G is composed of diffeomorphisms between

open subsets of H
n such that the restriction to any component is the restriction

of an isometry of H
n. This is so important that we include it as a proposition.

Proposition 6.1. Let M be a hyperbolic manifold. Then M is a topological

manifold with a cover by open sets Ui, together with open maps φi: Ui → H
n

(known as charts) which are homeomorphisms onto their images, such that if

Ui ∩ Uj 6= ∅, then for each component X of Ui ∩ Uj ,

φj ◦ φ−1
i : φi(X) → φj(X)

is the restriction of a hyperbolic isometry.

U U
i

i
n n

j

j

M

H H

f f

Figure 10.

Since G is a group of Riemannian isometries, a hyperbolic manifold inherits

a Riemannian metric. The following characterises hyperbolic manifolds among all

Riemannian manifolds.

Proposition 6.2. Hyperbolic n-manifolds are precisely those Riemannian man-

ifolds, each point of which has a neighbourhood isometric to an open subset of

H
n.
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Proof. In one direction this is straightforward. A hyperbolic manifold M has a

chart into H
n which, by the way that the Riemannian metric on M is constructed,

is an isometry to open subset of H
n.

In the other direction, suppose that M is a Riemannian manifold, such that

each point of M has a neighbourhood isometric to an open subset of H
n. We take

each such isometry to be a chart for M . We need to check that the transition maps

lie in the pseudogroup generated by Isom(Hn). Suppose that φi: Ui → H
n and

φj : Uj → H
n are charts that overlap. Let X be some component of φj(Ui ∩ Uj).

Then φi ◦ φ−1
j |X is a isometry between open subsets of H

n. Let x be some point

of X . Then, by Theorem 2.1, there is some isometry h of H
n such that h(x) =

φi ◦ φ−1
j (x) and (Dh)x = (Dφi ◦ Dφ−1

j )x. By Theorem 1.5 of the Introduction to

Riemannian Manifolds, φi ◦ φ−1
j |X is the restriction of h.

Hyperbolic manifolds are obtained by gluing bits of hyperbolic space together

via hyperbolic isometries. It is best to use ‘nice’ bits of hyperbolic space, for

example, polyhedra.

Definition. A k-dimensional hyperplane in H
n is the image of Dk ⊂ Dn after an

isometry Dn → Dn. A half-space is the closure in Dn of one component of the

complement of a codimension one hyperplane.

Definition. A polyhedron in H
n is a compact subset of H

n that is the intersection

of a finite collection of half-spaces. The dimension of a polyhedron is the smallest

dimension of a hyperplane containing it. We will usually restrict attention to

non-degenerate polyhedra in H
n which are those with dimension n. A face of a

polyhedron P is the intersection P ∩ π, where π is a codimension one hyperplane

in H
n such that P is disjoint from one component of H

n − π. Note that a face is

a degenerate polyhedron. A facet is a face with codimension one. The vertices of

P are the dimension zero faces. An ideal polyhedron is the intersection of a finite

number of half-spaces in H
n whose closure in H

n∩Sn−1
∞

intersects Sn−1
∞

in a finite

number of points, and which has no vertices in H
n.
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Figure 11.

Suppose now that M is obtained by gluing a collection of n-dimensional (pos-

sibly ideal) hyperbolic polyhedra P1, . . . , Pm by identifying their facets in pairs

via isometries between the facets. Let P be the disjoint union P1 ∪ . . .∪ Pm, and

let q: P → M be the quotient map. Note that q|P−∂P is a homeomorphism and

so q(P − ∂P ) inherits a hyperbolic structure. Sometimes M will be a hyperbolic

manifold. But sometimes M may fail even to be a manifold. The following is a

criterion which ensures that the hyperbolic structure on q(P − ∂P ) extends over

all of M .

Theorem 6.3. Suppose that each point x ∈ M has a neighbourhood Ux and

an open mapping φx: Ux → Bǫ(x)(0) ⊂ Dn which is a homeomorphism onto its

image, which sends x to 0 and which restricts to an isometry on each component

of Ux ∩ q(P − ∂P ). Then M inherits a hyperbolic structure.

Proof. By reducing ǫ(x) if necessary, we can ensure that the closure of each

component of Ux∩q(P −∂P ) contains x. Then φx will be the charts for M . These

maps determine, for each xi ∈ q−1(x), an isometry hxi
: Bǫ(x)(xi) → Bǫ(x)(0) ⊂ Dn

such that hxi
|P−∂P = φx ◦ q. We must check that if X is a component of Ux ∩

Uy, then φyφ−1
x : φx(X) → φy(X) is the restriction of a hyperbolic isometry. By

assumption, this is true for each component of φx(X∩q(P−∂P )). We must ensure

that these isometries agree over all of φx(X). Any two points of φx(X∩q(P −∂P ))

are joined by a path in φx(X) which avoids (the image under φx ◦ q of) the faces

with dimension less than n − 1. Hence, we need only check that if z lies in

φx(q(∂P ) ∩X) but not in a face of dimension less than n− 1, then then φyφ−1
x is

an isometry in a neighbourhood of z. Let z1 and z2 be q−1φ−1
x (z). The component

of q−1(Ux) (respectively, q−1(Uy)) containing zi contains a single point xi of q−1(x)
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(respectively, yi of q−1(y)). Let Fi be the facet containing zi and let k: F1 → F2

be the identification isometry between the facets. Note that xi and yi also lie in

Fi. There are two possible ways of extending k to an isometry of H
n. Pick the

one so that the following commutes:

H
n k

−→ H
n

hx1

ց
hx2

ւ

Dn

Hence, running down the left-hand side of the following diagram is the same as

running down the right-hand side (where the maps are defined):

Dn

h−1

x1

ւ
h−1

x2

ց

Hn k
−→ Hn

hy1

ց
hy2

ւ

Dn

This ensures that φyφ−1
x is a well-defined isometry in a neighbourhood of z.

h

h h

hx x


y y

1

1

-1 -1

x1 y1

2

x2

2

y2

0

0

P

P

k

Dn

Dn

Figure 12.

There is one further thing to check: that M actually is a topological manifold.

We must check that M is Hausdorff (which is clear) and that M has a countable
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basis of open sets. This is straightforward: we can refine {Ux : x ∈ M} to a

countable cover. Then, each Ux is homeomorphic to an open subset of R
n, which

has a countable basis of open sets.

A similar theorem (with the same proof) also works for spherical and Eu-

clidean structures.

This theorem reduces the problem of finding a hyperbolic structure to a prob-

lem one dimension lower. Define the link of a point x in a polyhedron P to be

{v ∈ TxH
n : ||v|| = 1 and expx(λv) ∈ P for some λ > 0}.

This is a polyhedron in the unit sphere in TxH
n. Isometries between facets of

hyperbolic polyhedra induce isometries between facets of the links of identified

points. The existence of a hyperbolic structure on the quotient space M is equiv-

alent to each point of M having a link that is isometric to the (n − 1)-sphere.

Here is a sample application of this theorem. Recall that every closed ori-

entable 2-manifold is homeomorphic to one (and only one) of the surfaces F0, F1,

. . ., where F0 = S2 and Fk is obtained from Fk−1 by removing the interior of an

embedded 2-disc and then attaching a handle as follows:

F Fk k+1

Figure 13.

Theorem 6.4. Fk admits a hyperbolic structure for all k ≥ 2.

We shall see later that neither the 2-sphere nor the torus admits a hyperbolic

structure.

Proof. For k ≥ 1, Fk is obtained from a polygon with 4k sides by identifying their

sides as follows:

5



Figure 14.

0P(r)

Figure 15.

Realise this as a polyhedron in H2, as follows. Draw 4k geodesics emanating

from the origin 0 in D2, with the angle between adjacent geodesics being 2π/4k.

Place a vertex on each geodesic, each a hyperbolic distance r from 0. Let P (r) be

the polyhedron having these 4k points as vertices. Let β(r) be the interior angle

at each vertex.

Claim. For some r, β(r) = 2π/4k.

Proof of theorem from claim. Glue the sides of P (r) together to form Fk. Let

6



q: P (r) → Fk be the quotient map. We check that the requirements of Theorem

6.3 are satisfied, and hence that this determines a hyperbolic structure on Fk. If x

lies in q(P (r)− ∂P (r)) then it automatically has a neighbourhood Ux as required.

If x lies in q(∂P (r)) but is not in the image of a vertex of P (r), then q−1(x)

is two points. For each point y of q−1(x), Bǫ(x)(y) ∩ P (r) is isometric to half an

ǫ(x)-ball in Dn, providing ǫ(x) is sufficiently small. We may map these two half

balls to a whole ǫ(x)-ball in Dn as required.

There is a single point x lying in the image under q of the vertices. Since

β(r) = 2π/4k, we may map ǫ(x)-neighbourhoods of the 4k vertices homeomorphi-

cally to an ǫ(x)-ball in Dn, in such a way that the homeomorphism restricts to an

isometry on q(P (r) − ∂P (r)).

Proof of claim. Note that β is a continuous function of r. We examine the

behaviour of β(r) as r → 0 and r → ∞.

Perform a Euclidean scale h based at 0 which takes each vertex to a point on

S1
∞

. This map preserves angles, but is not a hyperbolic isometry. As r → 0, the

sides of h(P (r)) approximate Euclidean straight lines. Hence, β(r) tends to the

interior angle of a regular Euclidean 4k-gon, which is π(1− 1/2k).

As r → ∞, the sides of h(P (r)) approximate hyperbolic geodesics. Hence,

β(r) tends to the angle between two geodesics emanating from the same point in

S1
∞

. Since both geodesics are at right angles to S1
∞

, the angle between them is

zero. Hence, β(r) → 0 as r → ∞.

Since k > 1, we have 0 < 2π/4k < π(1 − 1/2k). So, there is a value of r for

which β(r) = 2π/4k.
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7. The figure-eight knot complement

The following is a diagram of the figure-eight knot L. We will construct a

hyperbolic structure on S3 − L.

Figure 16.

Consider the following diagram of two regular tetrahedra in R
3. There is a

unique way to glue the faces in pairs (via Euclidean isometries) so that the edges

(and their orientations) match. Let M be the space formed by this gluing.




Figure 17.

This gives M a cell complex. However, M is not a manifold. The vertices of

the tetrahedra are all identified to a single vertex v. A small neighbourhood of v

is a cone on a torus.

However, every other point has a neighbourhood homeomorphic to an open

ball in R3. So M − v is a 3-manifold.
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1

2

3

4

5

6

7

8

1

5

3

8

2

7

4

6

The boundary of an e neighbourhood of v

Figure 18.

Theorem 7.1. M − v is homeomorphic to S3 − L, where L is the figure-eight

knot.

Proof. First consider the following cell complex K1 embedded in S3. The 1-cells

are labelled 1 to 6 and are assigned an orientation.

1

2

3

4 5

6

Figure 19.

Now attach to these four 2-cells, to form a cell complex K2.

9



This dotted curve shows how this


2-cell is attached; the other 2-cells


are attached in a similar fashion.

A

B

C D

Figure 20.

Claim 1. S3 −K2 is homeomorphic to two 3-balls.

Before we prove this claim, the following will be useful.

Claim 2. There is a homeomorphism h between S3 − K1 and the complement of

the following cell complex K1
1 .

Figure 21.

The homeomorphism is supported in a neighbourhood of 1-cells 1 and 2. We

focus on cell 1 (the other case being similar).

10



Figure 22.

In the first step above, we thicken cell 1 to a small closed 3-ball. In the second

step, we slide the endpoints of the 1-cells attached to this ball. In the final step,

we shrink the ball again to a single cell. This proves Claim 2.

The homeomorphism h takes the 2-cells of K2 to the following 2-cells, which

each lies in the plane of the diagram.

Figure 23.

Hence, S3 − K2 is homeomorphic to the complement of the above complex,

which is two open 3-balls. This proves Claim 1.

Viewing these open 3-balls as the interiors of two 3-cells, we see that K2
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extends to a cell complex K3 for S3. The boundaries of the two 3-cells are attached

onto K2 according to the following diagram. Each 3-cell is a ball B glued onto

K2 via a map ∂B → K2. The following specifies this map for each 3-cell.

A A

C CD D

B B


4

42 25

51 1

6

62 23

31 1

2 2

1 1

Top 3-cell Bottom 3-cell




Figure 24.

The 0-cells and the 1-cells 3, 4, 5 and 6 combine to form the figure-eight knot

L. If we collapse these cells to a point v, and then remove v, the result is the same

as simply removing L from S3. We therefore need to show that the cell complex

we obtain by collapsing L to a point is M . It has a single 0-cell v, two 1-cells

(coming from 1-cells 1 and 2), four 2-cells (coming from A, B, C and D), and two

3-cells. The attaching maps of the 2-cells and the 3-cells can be deduced from

Figure 24, and are readily seen to give the required cell complex for M . Hence,

M − v is homeomorphic to S3 − L.

Definition. An ideal n-simplex is the ideal polyhedron determined by n+1 points

on Sn−1
∞

. An ideal 3-simplex is also known as an ideal tetrahedron.

Remark. If an ideal polyhedron is determined by some points V on Sn−1
∞

, then

we will often abuse terminology by calling V its vertices.

Definition. An ideal n-simplex is regular if, for any permutation of its vertices,

there is a hyperbolic isometry which realises this permutation.

Construct a regular ideal tetrahedron as follows. Let V be the points in S2
∞

which are the vertices of a regular Euclidean tetrahedron centred at the origin

of D3. Let ∆ be the hyperbolic ideal tetrahedron determined by V . Then ∆ is

regular because any permutation of the points of V is realised by an orthogonal

map of R3 which is hyperbolic isometry.
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Figure 25.

Now glue two copies of ∆ via isometries as specified by Figure 17. We will

check that the conditions of Theorem 6.3 are satisfied and hence that this gives

a hyperbolic structure on S3 − L. As in Theorem 6.4, the only thing we have to

check is that, for each point x lying in a 1-cell, the interior angles around x add

up to 2π.

Note. The angle between two intersecting codimension one hyperplanes H1 and

H2 in H
n is the same for all points of H1 ∩ H2. This is because we may perform

an isometry of Dn after which H1 and H2 both pass through 0. Then H1 and H2

become Euclidean hyperplanes, for which the assertion is clear.

Lemma 7.2. Let F1, F2 and F3 be three facets of an ideal tetrahedron in H
3. Let

β12, β23 and β31 be the interior angles between these facets. Then β12+β23+β31 =

π.

Figure 26.
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Proof. Work with U3. We may assume that the hyperplanes containing F1, F2

and F3 are vertical Euclidean planes. Hence, β12, β23 and β31 are the interior

angles of a Euclidean triangle.

Corollary 7.3. If the ideal tetrahedron is regular, then β12 = β23 = β31 = π/3.

For any point x of M − v lying in a 1-cell, the 2-cells of M run past x six

times. The six interior angles around x sum to 2π. Hence, we may construct the

chart around x required by Theorem 6.3. Hence, S3 − L inherits a hyperbolic

structure.

Remark. We have imposed a hyperbolic structure on the topological manifold

S3 − L. We have not shown that this is compatible with the smooth structure

that S3 − L inherits from S3 (although this is in fact true).

8. Gluing ideal tetrahedra

The construction of the hyperbolic structure on the figure-eight knot in the

last section seems rather difficult to generalise. However, it is possible to construct

many hyperbolic manifolds in this way, using ideal triangulations.

Definition. An ideal triangulation of a 3-manifold M is a way of constructing

M − ∂M from a collection of (topological) ideal tetrahedra by gluing their faces

in pairs.

The following theorem (which we include without proof) demonstrates that

there is no topological restriction to the existence of an ideal triangulation.

Theorem 8.1. Any compact 3-manifold with non-empty boundary has an ideal

triangulation.

The aim of this section is to investigate when an ideal triangulation of a

manifold can be used to impose a hyperbolic structure.

If the faces of an ideal tetrahedron in H3 are labelled 1 to 4, and βij is the

14



angle between the faces i and j, then Lemma 7.2 gives the following equalities:

β23 + β34 + β42 = π

β34 + β41 + β13 = π

β41 + β12 + β24 = π

β12 + β23 + β31 = π

Adding the first two equations and subtracting the second two gives that β12 = β34.

Similarly, β13 = β24 and β14 = β23. Thus opposite edges have the same interior

angle. An ideal tetrahedron in H
3 therefore determines three interior angles α,

β and γ adding up to π. All three angles appear at each vertex, and they cycle

round the vertex the same way. Hence, if one considers such tetrahedra up to

orientation-preserving isometry, the triple (α, β, γ) is well-defined up to cyclic

permutation.

Lemma 8.2. Ideal tetrahedra in H
3 (up to orientation preserving isometry) are

in one-one correspondence with triples of positive numbers adding to π (up to

cyclic permutation).

Proof. We have already seen how an ideal tetrahedron determines a triple. Any

such triple can be realized by some ideal tetrahedron: find a Euclidean triangle in

∂U3 with these interior angles and then consider the ideal tetrahedron with vertices

being ∞ and the three corners of the triangle. Also, if two ideal triangles have the

same interior angles, we can find an orientation-preserving isometry taking one to

the other. Perform isometries taking one vertex of each tetrahedron to ∞. Then

perform parabolic and loxodromic isometries that match up the remaining three

vertices of each tetrahedron.

There is an alternative way of describing these ideal tetrahedra. Given a triple

(α, β, γ), consider a Euclidean triangle having these interior angles, and having

vertices at 0, 1 and some point z in C, where Im(z) > 0. There is some ambiguity

here since α, β or γ may be placed at the origin. Therefore, the following complex

numbers all represent the same triple:

z,
1

1 − z
, 1 −

1

z
.

Suppose now that M has an ideal triangulation, and that each ideal tetra-

hedron has been assigned interior angles α, β and γ. Each ideal tetrahedron
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then inherits a hyperbolic structure. The topological identification of facets of the

tetrahedra is, according to the following lemma, realized by a unique isometry.

Lemma 8.3. Let ∆ and ∆′ be ideal triangles in H
2 with edges (e1, e2, e3) and

(e′1, e
′

2, e
′

3). Then there is a unique isometry of H
2 taking ∆ to ∆′ and the edges

ei to edges e′i.

Proof. Send the vertex joining e1 and e2 to ∞ in the upper half space model.

Also send the vertex joining e′1 and e′2 to ∞. Then there is a unique hyperbolic

isometry taking the remaining pairs of vertices to each other.

The hyperbolic structures on the tetrahedra then patch together to form a

hyperbolic structure on the complement of the edges of M . When does this extend

to a hyperbolic structure on M? The answer can be given in precise algebraic

terms. At the ith edge of M , let wi1, . . . , wik be the complex parameters of the

tetrahedra around that edge. The choice of whether wij equals z, 1/(1 − z) or

1 − 1/z is made so that the interior angle of the Euclidean triangle at the origin

is the same as the interior angle at the edge i.

Theorem 8.4. Let M be as above, with the extra condition that ∂M is a collec-

tion of tori. Then M − ∂M inherits a hyperbolic structure if and only if for each

edge i
k

∏

j=1

wij = 1.

Proof. M − ∂M is obtained from a collection of disjoint ideal tetrahedra in H3

by identifying pairs of faces. Let e1, . . . , ek be the edges of these tetrahedra that

are all identified to form the ith edge e of M . We let ek+1 = e1. The isometries

between faces yield isometries ei → ei+1. Hence we obtain an isometry

e1 → e2 → . . . → e1.

Case 1. e1 → e1 is a non-zero translation along e1.

Then each point on e has an infinite number of inverse-images in e1 ∪ . . .∪ ek.

So the quotient space is not a manifold.

Case 2. e1 → e1 is a reflection.

16



This reflection has a fixed point. A neighbourhood of this point in the quotient

space is a cone on RP 2. Hence, the quotient space is not a manifold.

Case 3. e1 → e1 is the identity.

In this case, the quotient space is indeed a manifold. We claim that this case

holds if and only if

|
k

∏

j=1

wij| = 1.

Place the tetrahedron containing e1 in U3 so that its vertices are ∞, 0, 1 and wi1,

and so that e1 runs from 0 to ∞. Place the tetrahedron containing e2 beside it, so

that their faces are glued via the correct isometry. The vertices of this tetrahedra

are ∞, 0, wi1 and wi1wi2. Continue this procedure for all k tetrahedra. In this

way, we have ensured that all the gluing maps ei → ei+1 are the identity for

1 ≤ i < k. The final gluing map ek → e1 sends the points ∞, 0,
∏k

j=1 wij to ∞, 0

and 1. It is therefore a loxodromy with invariant geodesic e1. Thus e1 → e1 is the

identity if and only if ek → e1 is the identity if and only if |
∏k

j=1 wij | = 1. This

proves the claim.

Suppose that this condition holds. We can then apply Theorem 6.3. A chart

into H3 exists at each point of each edge of M − ∂M if and only if the angles

around each edge sum to 2π. Thus, in summary, M − ∂M inherits a hyperbolic

structure if and only if

|
k

∏

j=1

wij | = 1 for each i and (1)

k
∑

j=1

arg(wij) = 2π for each i. (2)

We need to show that this is equivalent to

k
∏

j=1

wij = 1 for each i. (3)

Clearly, (1) and (2) imply (3). Also, (3) implies (1). Also, (3) implies that

∑

j

arg(wij) = 2πN (i),
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for positive integers N (i). We need to show that N (i) = 1 for each i. Summing

the above inequalities over all i, and noting that each of the six interior angles in

each tetrahedron appears exactly once gives that

2πT (M) = 2π

E(M)
∑

i=1

N (i),

where T (M) is the number of tetrahedra of M and E(M) is the number of edges

of M . Thus, T (M) ≥ E(M), with equality if and only if N (i) = 1 for each i.

The ideal triangulation of M induces a triangulation of ∂M with V (∂M) vertices,

E(∂M) edges and F (∂M) faces. Since ∂M is a collection of tori

0 = χ(∂M) = V (∂M)− E(∂M) + F (∂M)

= V (∂M)− 3F (∂M)/2 + F (∂M)

= V (∂M)− F (∂M)/2

= 2E(M)− 2T (M).

Hence, E(M) = T (M). So, N (i) = 1 for each i. Therefore, (3) implies (2).

We now apply Theorem 8.4 to the case where M is the exterior of the figure-

eight knot. We assign complex numbers z1 and z2 to the two tetrahedra. There

are two edges of M , giving the following equations:

1 = z2z1

(

1 −
1

z2

)

z1z2

(

1 −
1

z1

)

1 =

(

1

1 − z2

)(

1 −
1

z1

)(

1

1 − z2

) (

1

1 − z1

) (

1 −
1

z2

)(

1

1 − z1

)

.

These equations are equivalent, since their product is 1 = 1. To see this, note that

z

(

1

1 − z

)(

1 −
1

z

)

= −1.

These equations can be written more neatly as

z1(z1 − 1)z2(z2 − 1) = 1.

The hyperbolic structure imposed on M in §7 was the case where z1 = z2 =

eiπ/3. However, there is a one-complex-dimensional parametrisation of hyperbolic

structures that arise by perturbing z1 and z2 from this value in such a way that

the equation z1(z1 − 1)z2(z2 − 1) = 1 remains satisfied.
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9. Completeness

We will prove the following theorem over the next few sections.

Theorem 9.1. If M is a simply-connected complete hyperbolic n-manifold, then

M is isometric to H
n.

Note that the any cover M̃ of a Riemannian manifold M inherits a Rieman-

nian metric from M . Any covering transformations of M̃ are isometries. Note

also that M̃ is complete if M is complete.

Corollary 9.2. The universal cover of a complete hyperbolic n-manifold is iso-

metric to H
n.

Theorem 9.1 is a special case of the following theorem, which we will prove

over the next two sections.

Theorem 9.3. Let G be a group of isometries of a simply-connected Riemannian

manifold X . Let M be a complete simply-connected (G, X)-manifold. Then M is

(G, X)-isomorphic (and hence isometric) to X .

The hypothesis that M is complete comes in via the following well known

result from Riemannian geometry.

Theorem 9.4. [Hopf-Rinow] Let M be a connected Riemannian manifold. Then

the following are equivalent:

1. M is complete as a metric space;

2. any geodesic I → M can be extended to a geodesic R → M ;

3. for any m ∈ M , expm is defined on all of TmM ;

4. for some m ∈ M , expm is defined on all of TmM ;

5. any closed bounded subset of M is compact.

The proof requires machinery from differential geometry that we have not

developed. However, all we need is that (1) ⇒ (2) when M is hyperbolic. This we

now prove.

Proof. Suppose that M is a complete hyperbolic manifold. For each non-zero

vector v ∈ TxM , let α: I → M be the geodesic with α(0) = x and α′(0) = v,
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and where I ⊂ R is the maximal domain of definition of α. It is a consequence

of Proposition 1.3 in the Introduction to Riemannian Manifolds that I is an open

neighbourhood of 0. We will show that the completeness of M implies that I is

closed and hence the whole of R. Let ti be a sequence of points in I , converging

to some point t∞ ∈ R. This is a Cauchy sequence in R. The fact that ||α′(t)|| is

constant implies that α(ti) is Cauchy in M . Hence, it converges to a point y ∈ M .

Pick a chart φ: U → Dn around y, where φ(y) = 0 ∈ Dn. Then φ◦α is a Euclidean

straight line approaching 0. Hence, it can be smoothly extended.

The following is a useful way of checking completeness.

Proposition 9.5. Let M be a metric space. Suppose that there is some family

of compact subsets St of M (for t ∈ R>0) which cover M , such that St+a contains

all points within distance a of St. Then M is complete.

Proof. Any Cauchy sequence in M must be contained in St for some sufficiently

large t. Hence, it converges, since St is compact.

Corollary 9.6. H
n is complete.

Proof. Let St = Bt(0) ⊂ Dn. Then Bt(0) is a closed Euclidean ball. (Here, we

are implicitly applying Corollary 3.7 to geodesics through 0.) So, St is compact.

Example. In the case of the hyperbolic structure on the figure-eight knot comple-

ment defined in §7, let St ∩∆ for each of the two ideal tetrahedra ∆ be Bt(0)∩∆,

where 0 is the origin in D3. These St satisfy the condition of Proposition 9.5.

Hence, the hyperbolic structure is complete. Applying Corollary 9.2 to this case,

we obtain the following purely topological corollary.

Corollary 9.7. The universal cover of the figure-eight knot complement is home-

omorphic to R
3.

According to Thurston’s theorem, the complements of ‘most’ knots in S3

admit a complete finite volume hyperbolic structure. Therefore, their universal

covers are all homeomorphic to R
3.

Example. Here is an example of an incomplete hyperbolic structure. Let

B = {(x1, x2) ∈ U2 : 1 ≤ x1 ≤ 2}.
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Glue the two sides of B via the isometry z 7→ 2z. The resulting space M is

homeomorphic to S1 ×R, and inherits a hyperbolic structure. This is incomplete:

here is a Cauchy sequence which does not converge. Let zi = (1, 2i) ∈ U2. This is

identified with the point (2, 2i+1). So,

d(zi, zi+1) ≤ dhyp((2, 2i+1), (1, 2i+1)) < 1/2i+1.

So, this sequence is Cauchy in M . However, it does not converge to a point in M ,

since the x2 co-ordinates tend to ∞.

Theorem 9.3 is proved by defining a local (G, X)-isomorphism (and hence a

local isometry) from M to X . The existence of this local isometry together with

the following proposition will prove Theorem 9.3.

Proposition 9.8. Let h: M → N be a local isometry between Riemannian man-

ifolds, where M is complete. Then h is a Riemannian covering map.

Proof. Let x be any point in N , and let yi be the points of h−1(x). By Proposi-

tion 1.3 of the Introduction to Riemannian Manifolds, there is some r such that

expx maps Br(0) diffeomorphically onto Br(x). Let Ui = expyi
(Br(0)). This is

well-defined since expyi
is defined on all of Tyi

M by the Hopf-Rinow theorem.

Recall from Proposition 1.4 of the Introduction to Riemannian Manifolds that the

following diagram commutes:

Tyi
M

(Dh)yi−→ TxN




y

expyi





y

expx

M
h

−→ N

Claim. h|Ui
is a diffeomorphism onto its image.

The top and right arrows in the above diagram are diffeomorphisms when

restricted to Br(0). Hence the bottom arrow must be a diffeomorphism when

restricted to Ui.

Claim. Ui ∩ Uj = ∅ if i 6= j.

If Ui and Uj overlap at a point m, there are vectors vi and vj in Tyi
M and

Tyj
M with length at most r such that m = expyi

(vi) = expyj
(vj). Using the above

commutative diagram and the fact that expx is injective on Br(0), we deduce that
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(Dh)yi
(vi) = (Dh)yj

(vj). Hence, for all t > 0, h ◦ expyi
(tvi) = h ◦ expyj

(tvj). By

considering t near 1 and using the fact that h is injective near m, the geodesics

expyi
(tvi) and expyj

(tvj) have the same derivative at t = 1. Hence they agree for

all t. In particular, yi = expyi
(0) = expyj

(0) = yj . This proves the claim.

Claim.
⋃

i Ui = h−1(Br(x))

Clearly,
⋃

i Ui ⊂ h−1(Br(x)). To establish the opposite inclusion, consider a

point m ∈ M that is sent to a point in Br(x). Some geodesic of length l < r runs

from h(m) to x, with velocity vector v at h(m). There is a geodesic emanating

from m with derivative (Dh)−1
m (v). Since M is complete, the Hopf-Rinow theorem

gives that this geodesic is still defined after time l. By that stage it has reached

some yi. Hence, m lies in Ui.

This sequence of claims establishes that h is a covering map.

10. The developing map

The goal of this section is prove Theorem 9.3. In fact, we will prove the

following stronger result.

Theorem 10.1. Let G be a group acting rigidly on a manifold X . Let M be a

simply-connected (G, X)-manifold. Then any connected chart φ: U0 → X can be

extended to a local (G, X)-isomorphism D: M → X , known as a developing map.

Note that in the above, we did not assume that X was a Riemannian manifold,

complete or incomplete.

Proof. Start with a chart φ0: U0 → X , where U0 is connected. Pick a basepoint

x0 ∈ U0. We wish to define D(x) for all points x ∈ M . There is a path α: [0, 1] →

M from x0 to x. We will now define a corresponding path β: [0, 1] → X , such that

β = φ0 ◦ α wherever the maps are defined. In particular, β(0) = φ0(x0). We will

define D(x) as β(1).

For each point t ∈ [0, 1], pick a chart around α(t). The inverse image of these

charts forms an open cover of [0, 1]. By replacing each set with its connected

components, we obtain a new open cover of [0, 1]. Since [0, 1] is compact, there

is a finite subcover {(t−0 , t+0 ) . . . , (t−m, t+m)} of [0, 1]. The interval (t−i , t+i ) is open,
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half-open or closed in R as appropriate. Each (t−i , t+i ) is a connected component of

α−1(Ui) for some chart φi: Ui → X . We may assume that (t−0 , t+0 ) is the component

of α−1(U0) containing 0. We may also assume that, if i < j, then t−i ≤ t−j and

t+i ≤ t+j . This implies that t+i > t−i+1 for all i.

The interval (t−i , t+i ) ∩ (t−i+1, t
+
i+1) maps to a path in M , lying entirely in a

connected component Vi of Ui ∩ Ui+1. This has an associated transition map

φi+1 ◦ φ−1
i , which is the restriction of an element hi: X → X of G. For t ∈ [0, 1],

we pick (t−i , t+i ) containing t and define β(t) as

β(t) = h−1
0 ◦ . . . ◦ h−1

i−1 ◦ φi ◦ α(t).

U U
0

0

0

1

1

M

X X

f f

-1
h

0x x

a

b

D

D(x)

Figure 28.

We now show that this is independent of the choice of (t−i , t+i ) containing t.

If t ∈ (t−k , t+k ), with k > i, then t ∈ (t−j , t+j ) for all i ≤ j ≤ k. Then α(t) lies in

Vi, Vi+1, . . . , Vk−1. On these sets, the following maps are equal: φi = h−1
i ◦ φi+1,

. . ., φk−1 = h−1
k−1 ◦ φk. Hence,

h−1
0 ◦ . . . ◦ h−1

i−1 ◦ φi ◦ α(t) = h−1
0 ◦ . . . ◦ h−1

k−1 ◦ φk ◦ α(t).

We now show that β is independent of the choice of open cover of [0, 1].

Suppose that {(t̂−0 , t̂+0 ), . . . , (t̂−m̂, t̂+m̂)} is another cover of [0, 1], with each (t̂−i , t̂+i )

being a connected component of α−1(Ûi) for some chart φ̂i: Ûi → X . Let ĥi, V̂i

and β̂ be as above. We claim that the maps
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φ0

h−1
0 ◦ φ1

h−1
0 ◦ h−1

1 ◦ φ2

. . .

h−1
0 ◦ . . . ◦ h−1

m−1 ◦ φm

and

φ0

ĥ−1
0 ◦ φ̂1

ĥ−1
0 ◦ ĥ−1

1 ◦ φ̂2

. . .

ĥ−1
0 ◦ . . . ◦ ĥ−1

m−1 ◦ φ̂m

are equal on sets on which they are defined. If not, there is an infimal value of t

(tinf , say) such that t ∈ (t−i , t+i ) ∩ (t̂−k , t̂+k ) and

h−1
0 ◦ . . . h−1

i−1 ◦ φi 6= ĥ−1
0 ◦ . . . ĥ−1

k−1 ◦ φ̂k.

Then there is a t < tinf such that t ∈ (t−i−1, t
+
i−1) ∩ (t−i , t+i ) ∩ (t̂−k , t̂+k ) or (t−i , t+i ) ∩

(t̂−k−1, t̂
+
k−1) ∩ (t̂−k , t̂+k ). Suppose the former. Then,

h−1
0 ◦ . . . h−1

i−2 ◦ φi−1 = ĥ−1
0 ◦ . . . ĥ−1

k−1 ◦ φ̂k.

But

h−1
0 ◦ . . . h−1

i−2 ◦ φi−1 = h−1
0 ◦ . . . h−1

i−1 ◦ φi.

The crucial fact we are using here is that if two elements of G agree on an open

set, then they are equal, since G acts rigidly.

Now define D(x) as β(1). We need to show that this is independent of

the choice of α. If α̂ is another path from x0 to x, then there is a homotopy

H : [0, 1] × [0, 1] → M between α and α̂, keeping their endpoints fixed, since M

is simply-connected. Pick a cover C of charts for M , one being U0, the remain-

der being connected open sets disjoint from x0. Subdivide [0, 1] into intervals,
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[0/N, 1/N ], [1/N, 2/N ], etc. Since [0, 1]× [0, 1] is compact, we may pick N large

enough so that each square [y/N, (y+1)/N ]× [z/N, (z+1)/N ] lies within H−1(U)

for some U of C. So, H([y/N, (y+1)/N ]× [z/N, (z+1)/N ]) lies within a compact

subset K of U . Hence, there is a collection of paths α = α0, α1, . . . , αk = α̂,

such that αj and αj+1 differ only by a homotopy which alters the path within a

compact subset K of U , keeping their endpoints fixed. By removing K from all

the charts of C other than U , we may assume that that U is one of the charts Ui

in the definition of βj and βj+1, and that the sets U0, . . . , Um, V0, . . . , Vm−1 are

the same for both αj and αj+1. So, βj and βj+1 differ by a homotopy keeping

their endpoints fixed. This does not alter D(x). Thus, D is a well-defined map.

0 1a a

Figure 29.

We now show that D is a local (G, X)-isomorphism in a neighbourhood of

each point x ∈ M . By definition, D|U0
= φ0. So, we may assume that x 6= x0.

Pick a connected chart Um around x not containing x0, and let U be a connected

open neighbourhood of x whose closure lies in Um. Cover M by charts, one of

which is Um, the remainder being disjoint from U . Pick any path α from x0 to x.

Then, using the above cover,

D(x) = h−1
0 ◦ . . . ◦ h−1

m−1 ◦ φm ◦ α(1) = h−1
0 ◦ . . . ◦ h−1

m−1 ◦ φm(x),

where hi: X → X are the relevant transition maps and φm: Um → H
n is the chart.

Define D|U using extensions of α within U . Then, D|U = h−1
0 ◦ . . . ◦ h−1

m−1 ◦ φm.

Hence, D|U is a (G, X)-isomorphism onto its image.

Example. Let B = {(x1, x2) ∈ U2 : 1 ≤ x1 ≤ 2} and let M be the incomplete

hyperbolic manifold obtained by gluing the two sides of B via the isometry z 7→ 2z.
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Let p: M̃ → M be the universal cover. The sets

A0 = {(x1, x2) ∈ U2 : 1 < x1 < 2}

A1 = {(x1, x2) ∈ U2 : 1 ≤ x1 < 3/2}

∪ {(x1, x2) ∈ U2 : 3/2 < x1 ≤ 2}

form charts for M . These lift to charts for M̃ . Let φ0: U0 → A0 be the initial

chart. Then, the associated developing map has image {(x1, x2) ∈ U2 : 0 < x1}.

The following lemma implies that, given the initial chart φ0: U0 → X , the

developing map is unique.

Lemma 10.2. Let G be a group acting rigidly on a space X . Let f1 and f2

be local (G, X)-isomorphisms between (G, X)-manifolds M and N , where M is

connected. If f1 and f2 agree on some open set, then f1 = f2.

Proof. Consider the set

V = {x ∈ M : f1 and f2 agree in some open neighbourhood of x}.

Clearly, V is open. We will now show that it is closed and so the whole of M .

Consider a sequence of points xi ∈ V tending to x∞. There are connected charts

φM : UM → X and φN : UN → X around x∞ and f1(x∞) = f2(x∞). Then for i = 1

and 2, there are elements gi of G such that gi = φN ◦ fi ◦φ−1
M , where this equality

holds in a set U where the maps are defined. For i sufficiently large, xi belongs

to φ−1
M (U). In some neighbourhood of xi, f1 and f2 agree. So g1 and g2 agree

on some open set. Therefore, g1 = g2, since G is rigid. So, f1 = f2 on φ−1
M (U).

Therefore x∞ is in V .

Let M be a (G, X)-manifold, where G is rigid. Let p: M̃ → M be the universal

cover. Give M̃ its inherited (G, X)-structure. Then each covering transformation

τ : M̃ → M̃ is a (G, X)-isomorphism. Pick a basepoint x0 in M̃ and a connected

chart φ: U0 → X around it. Let D: M̃ → X be the associated developing map.

Note that φ ◦ τ : τ−1(U0) → X is a chart around τ−1(x0). We may use this chart

to define D in a neighbourhood of τ−1(x0). Then D|τ−1(U0) = g−1
τ ◦φ◦τ , for some

element gτ of G. So, the following commutes on τ−1(U0):

M̃
τ

−→ M̃




yD




yD

X
gτ−→ X
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By Lemma 10.2, this diagram commutes on all of M . If we compose two covering

transformations τ and σ, then (by pasting two commutative diagrams together)

gστ = gτgσ . So, we have a group homomorphism

η: π1(M) → G

known as the holonomy. It depends on the choice of chart φ: U0 → X and of

basepoint. Different choices lead to a holonomy which differs by conjugation by

an element of G.

In the case where X is a simply-connected Riemannian manifold, G is a group

of isometries and M is complete, then D: M̃ → X is a (G, X)-isomorphism. This

identifies M̃ with X . Hence, we have the following.

Proposition 10.3. Let X be a simply-connected Riemannian manifold and let G

be a group of isometries. Let M be a complete (G, X)-manifold. Then η(π1(M))

is a group of covering transformations of X , and M is the quotient X/η(π1(M)).

Now consider the case where X = Hn and G = Isom(Hn), and where M is

complete. Then, η sends each non-trivial element of π1(M) to an isometry of Hn

which fixes no point of Hn.

Corollary 10.4. The holonomy homomorphism η is injective and its image con-

tains no elliptic isometries other than the identity.

11. Topological properties of complete hyperbolic manifolds

Lemma 11.1. H
n has infinite volume.

Proof. The volume of Un is
∫

(x1,...,xn)∈Un

1

xn
n

dx1 . . . dxn = ∞

Proposition 11.2. A complete finite volume hyperbolic manifold M has infinite

fundamental group.

Proof. If not, the universal cover p: M̃ → M would be finite-to-one. Then M̃

would have finite volume. But M̃ is isometric to H
n.

Corollary 11.3. Sn does not admit a hyperbolic structure for n > 1.
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Recall Thurston’s geometrisation theorem:

Theorem. [Thurston] Let M be a compact orientable irreducible atoroidal 3-

manifold-with-boundary, such that ∂M is a non-empty collection of tori. Then

either M − ∂M has a complete finite volume hyperbolic structure, or M is home-

omorphic to one of the following exceptional cases:

1. S1 × [0, 1]× [0, 1]

2. S1 × S1 × [0, 1]

3. the space obtained by gluing the faces of a cube as follows: arrange the six

faces into three opposing pairs; glue one pair, by translating one face onto

the other; glue another pair, by translating one face onto the other and then

rotating through π about the axis between the two faces.

Figure 30.

We are now going to investigate to what extent these conditions are necessary.

Theorem 11.4. Any complete hyperbolic 3-manifold M is irreducible.

Proof. Let S2 be a smoothly embedded 2-sphere in M . Since S2 is simply-

connected, the universal cover p: H
3 → M restricts to a homeomorphism on each

component of p−1(S2). Pick one component S2
1 of p−1(S2). Then, by the Schoen-

flies theorem, the closure of one component of H
3−S2

1 is homeomorphic to a closed

3-ball B1 which is therefore compact. Therefore, there can only be finitely many

covering translates of S2
1 in B1. Pick one innermost in B1. This bounds a closed

ball B2. The covering translates of B2 are all disjoint. Therefore, p projects B2

homeomorphically to a closed ball in M . The boundary of this ball is the original

S2.

We now investigate atoroidality. In fact any complete finite volume hyperbolic
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manifold is atoroidal, but the proof of this requires some understanding of the ends

of these manifolds. Instead, we focus on the closed case. Even here, we need some

extra geometric concepts.

Definition. Let M be a Riemannian manifold. For each x ∈ M , define the

injectivity radius at x to be

inj(x) = sup{ǫ : expx is injective on Bǫ(0) ⊂ TxM}.

Note that there is such an ǫ > 0, by Proposition 1.3 of the Introduction to Rie-

mannian Manifolds.

Proposition 11.5. Let M be a complete hyperbolic manifold. Let p: H
n → M

be the universal cover. For each x ∈ M , pick a point x̃ ∈ p−1(x). Let

i(x̃) = sup{ǫ : γ(Bǫ(x̃)) ∩ Bǫ(x̃) = ∅ for all γ ∈ η(π1(M))− id}.

Then i(x̃) = inj(x).

Proof.

Claim. i(x̃) ≥ inj(x).

Pick ǫ < inj(x) arbitrarily close to inj(x). Suppose that γ(Bǫ(x̃))∩Bǫ(x̃) 6= ∅,

for some γ ∈ η(π1(M))− id. Let z be a point in their intersection, which we may

assume to be on the geodesic joining x̃ to γ(x̃). Then z = expx̃(v1) = expγ(x̃)(v2)

for vectors v1 and v2 with length less than ǫ. Note that if (Tγ)x̃(v1) = v2, then γ

would preserve the geodesic between x̃ and γ(x̃) and would reverse its orientation.

This would imply that γ fixed some point in H
n, which is impossible. Hence,

(Tp)x̃(v1) 6= (Tp)γ(x̃)(v2). These are distinct vectors in TxM with length less

than ǫ which map to the same point p(z) in M . This contradicts the definition of

inj(x).

Claim. inj(x) ≥ i(x̃).

Pick ǫ < i(x̃) arbitrarily close to i(x̃). Then p|Bǫ(x̃) is an isometry onto its

image. Hence, we may take its inverse φ to be a chart for M around x. Since

expφ(x) is injective, expx is injective on Bǫ(0) ⊂ TxM .

Corollary 11.6. For a complete hyperbolic manifold M , inj is a continuous

function on M .
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Proof. Let x1 and x2 be points in M . Let x̃1 and x̃2 be points in p−1(x1) and

p−1(x2) such that d(x̃1, x̃2) = d(x1, x2). Then, a ball of radius ǫ around x̃1 contains

a ball of radius ǫ − d(x̃1, x̃2) around x̃2. So, by Proposition 11.5,

inj(x2) ≥ inj(x1) − d(x1, x2).

The same is true with the rôles of x1 and x2 reversed. Hence,

|inj(x1) − inj(x2)| ≤ d(x1, x2).

So, inj is continuous.

Corollary 11.7. If M is a closed hyperbolic manifold, there is a positive lower

bound on inj(x) for all x ∈ M .

Proposition 11.8. Let M be a closed hyperbolic manifold. Then the image of

each non-trivial element of π1(M) under η is a loxodromic isometry.

Proof. Let γ be non-trivial element of π1(M). By Corollary 10.4, η(γ) is non-

trivial and non-elliptic. It is therefore parabolic or loxodromic. If it is parabolic,

then by Proposition 4.5, it is conjugate to the isometry as in Example 2 of §2 with

λ = 1. Recall that this is a Euclidean isometry h: Un → Un which fixes the nth

co-ordinate. For (x1, . . . , xn) ∈ Un,

dhyp(h(x1, . . . , xn), (x1, . . . , xn)) < dEucl(h(x1, . . . , xn), (x1, . . . , xn))/xn → 0

as xn → ∞. So, inj(p(x1, . . . , xn)) → 0 as xn → ∞. This contradicts Corollary

11.7.

Lemma 11.9. Let f and g be commuting functions from a set to itself. Then g

maps the fixed point set of f to itself.

Proof. If f(x) = x, then g(x) = gf(x) = fg(x).

Theorem 11.10. Let M be a closed hyperbolic n-manifold. Then no subgroup

of π1(M) is isomorphic to Z ⊕ Z.

Proof. Let γ1 and γ2 be commuting elements of π1(M). Then, η(γ1) and η(γ2) are

loxodromic, by Proposition 11.8. Since they commute, η(γ1) maps the fixed point

set of η(γ2) to itself. It therefore preserves the geodesic α left invariant by η(γ2).

It cannot reverse the orientation of α, since then it would have a fixed point on α.
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Thus, η(γ1) has the same fixed point set as η(γ2). They both translate points on

α some fixed hyperbolic distance along α. There is a uniform lower bound on this

translation length for all non-identity elements of the group generated by η(γ1)

and η(γ2). Therefore, some power of η(γ1) equals some power of η(γ2). So, γ1 and

γ2 do not generate a subgroup isomorphic to Z ⊕ Z.

Remark. The above theorem is false if ‘closed’ is replaced with ‘complete and

finite volume’. For example, it can be shown that for any knot K in S3 other

than the unknot, the map i∗: π1(∂N (K)) → π1(S
3−K) is injective, where i is the

inclusion map of the boundary of the tubular neighbourhood N (K) into S3 −K.

However, for ‘most’ knots K, S3 − K admits a complete finite volume hyper-

bolic structure. In these cases, η(i∗π1(∂N (K))) is group of commuting parabolic

isometries.

Corollary 11.11. The n-manifold S1 × . . . × S1 (n > 1) does not admit a

hyperbolic structure.

Corollary 11.12. A closed hyperbolic 3-manifold is atoroidal.
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Part III Hyperbolic Manifolds

Lent 1999

Examples Sheet 1

1. Show that the three interior angles of a triangle in the hyperbolic plane

add up to less than π.

2. If α1 and α2 are disjoint geodesics in H3 which do not share a point

at infinity, show that there is a geodesic α3 which intersects both α1 and α2

orthogonally.

3. For an element A ∈ PSL(2, C), let tr(A) denote its trace (which is defined

up to sign). If A 6= ±id, show that the corresponding isometry of H3 is

(i) parabolic if tr(A) = ±2

(ii) elliptic if tr(A) ∈ (−2, 2) ⊂ R,

(iii) loxodromic if tr(A) ∈ C − [−2, 2].

In cases (ii) and (iii), show that tr(A) determines the conjugacy class of the isom-

etry. In these cases, show how the angle of rotation and the hyperbolic translation

length along the invariant geodesic can be calculated from tr(A).

4. Show that any two non-degenerate ideal triangles in H2 are isometric. Is

the same true for ideal quadrilaterals? What about ideal tetrahedra in H3?

5. Show that, for any knot K in S3, S3 −K admits an incomplete hyperbolic

structure.

6. Let P be a non-degenerate hyperbolic polyhedron. Show that ∂P is the

union of the facets of P and that P is the convex hull of its vertices.

7. Show that if P is non-degenerate polyhedron in H3 and V is the vertices of

P , then ∂P − V inherits an (incomplete) hyperbolic structure. Does this extend

to a hyperbolic structure on all of ∂P ? Show that if P ′ is a non-degenerate ideal

polyhedron in H3, then ∂P ′ inherits a complete hyperbolic structure.

8. Let P be a dodecahedron, namely the polyhedron with twelve pentagonal

faces, shown overleaf.
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Let M be the space obtained by gluing each facet of P to the one opposite it,

via a clockwise twist of 3π/5. This is the Seifert-Weber dodecahedral space. Im-

pose a hyperbolic structure on it. [This is necessarily complete and finite volume,

and hence unique up to isometry, by Mostow Rigidity.]

9. Construct a complete hyperbolic structure on S1 × Rn−1.

10. Show that the thrice-punctured 2-sphere S admits a complete hyperbolic

structure, obtained by gluing two ideal triangles along their edges via isometries.

[This is in fact the unique complete hyperbolic structure on S, up to isometry.]

Show, however, that for ‘most’ ways of gluing the ideal triangles via isometries,

the result is an incomplete hyperbolic structure on S.

11. [Hard] Generalise the technique for the construction of the hyperbolic

structure on the figure-eight knot complement given in the lectures: construct a

hyperbolic structure on the complements of the following links (which, if you do

it correctly, will be complete and have finite volume):
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Part III Hyperbolic Manifolds

Lent 1999

Examples Sheet 2

1. Let M̃ be the universal cover of a Riemannian manifold M . Verify that a

path α: I → M is a geodesic if and only if some lift of α is a geodesic.

2. Show that if α is a closed geodesic in a complete hyperbolic manifold,

then η([α]) is loxodromic. Deduce that there are no simple closed geodesics in

the hyperbolic structure on the thrice-punctured sphere given in Question 10 on

Example Sheet 1. (A geodesic is closed if it factors through R → S1 → M . A

non-closed geodesic α: R → M is simple if α is injective. A closed geodesic is

simple if the associated map S1 → M is injective.)

3. Show that each homotopically non-trivial closed curve α in a compact

hyperbolic n-manifold is freely homotopic to a unique closed geodesic β. In the

case n = 2, show that β is simple if α was simple. (A free homotopy between

two closed curves α0, α1:S
1 → M is a homotopy H:S1 × [0, 1] → M such that

H|S1×{t} = αt, for t = 0 and 1. The word ‘free’ is used to emphasise that no

basepoints are involved.)

4. Construct a simple non-closed geodesic on each compact orientable hyper-

bolic 2-manifold.

5. Define a Euclidean n-manifold to be a Riemannian manifold, each point of

which has an open neighbourhood isometric to an open subset of E
n, where E

n is

R
n with the standard Euclidean metric. Adapt the techniques of the lectures to

show that the universal cover of any complete Euclidean n-manifold is isometric to

E
n. A theorem of Bieberbach asserts that any group of isometric covering trans-

formations for E
n contains a finite index subgroup consisting only of translations.

Deduce that any compact Euclidean n-manifold is finitely covered by S1×. . .×S1.

[One can also define a spherical n-manifold to be a Riemannian manifold locally

modelled on Sn. Again, any complete spherical manifold has universal cover Sn.

However, the techniques of the lectures do not immediately give this fact: where

do they break down?]

6. If M is any open subset of H
n and M̃ is its universal cover, what are the
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possible images for D(M̃), where D is a developing map for M̃? [Hint: prove

and use the fact that a local isometry h:N → N ′ between connected Riemannian

manifolds is determined by h(x) and (Th)x for any x ∈ N .]

7. Recall the hyperbolic structure on the compact orientable surface Fk (k >

1) given in Theorem 3.2.2, obtained by gluing the facets of a hyperbolic 4k-gon P .

Show that, for a suitable choice of basepoint, a fundamental domain for Fk is P .

8. Show that neither S1 × S1 × (0, 1) nor S1 × (0, 1) × (0, 1) admits a com-

plete finite volume hyperbolic structure. Show however that they both admit

an uncountable number of non-isometric complete (infinite volume) hyperbolic

structures.

9. Show that if M is any complete hyperbolic 3-manifold, then Z ⊕ Z ⊕ Z is

not a subgroup of π1(M).

10. For sufficiently small ǫ > 0, determine inj−1((0, ǫ]) for the complete

hyperbolic structure on the figure-eight knot complement given in the lectures.

Your description should be both topological and geometric.

11. Let Γ be the set of elements

±

(

a b
c d

)

∈ PSL(2, R)

such that a and d are odd integers, and b and c are even integers. Verify that

Γ forms a subgroup of PSL(2, R). Show that it is a group of isometric covering

transformations and hence that H
2/Γ inherits a complete hyperbolic structure.

Show that this is isometric to the hyperbolic structure on the thrice-punctured

sphere S given in Question 10 on Example Sheet 1. [Hint: π1(S) is a free group

on two generators. Show that (a suitable choice of) η sends these generators to

±

(

1 2
0 1

)

and ±

(

1 0
2 1

)

.

Hence, η(π1(S)) is a subgroup of Γ. So, S covers H
2/Γ. Since S has finite volume,

this is a finite cover. Now show that this cover must be the identity.]

12. Construct, for each compact orientable surface F , a non-identity homeo-

morphism h:F → F such that h◦h is the identity. Let M be the result of F × [0, 1]

after gluing F × {0} to F × {1} via h. Show that there is a cover M → M which

2



has finite index greater than one. Deduce that M has zero Gromov norm and

hence does not admit a hyperbolic structure. Why is M not a counter-example

to the conjecture of Thurston given before the start of Section 1?
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