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Lecture 1

One goal of topology is to classify manifolds up to homeomorphism. In dimen-
sion n ≥ 4, this problem is undecidable; no algorithm, given two manifolds as
an input, can decide whether or not they are homeomorphic.∗ We will classify
manifolds in dimensions 0, 1 and 2 in the next few pages. The general topic is
to classify 3–manifolds.

Definition 1.1. An n–manifold Mn is a Hausdorff topological space with a
countable basis and such that every point p ∈ M has an open neighbourhood
U which is homeomorphic to either Rn or Rn+ = {x ∈ Rn : xn ≥ 0}.

Remark. Rn+ is called the upper half space, and Rn− = {x ∈ Rn : xn ≤ 0} is
called the lower half space.

Definition 1.2. ∂M is the set of points p in M such that no neighbourhood of
p is homeomorphic to Rn.

Proposition 1.1. ∂M is an (n− 1)–manifold, and ∂∂M = ∅.

Definition 1.3. int(M) = M − ∂M .

Definition 1.4. We use I = [0, 1] ⊆ R, Bn = {x ∈ Rn : |x| ≤ 1}, and D2 = B2.

Definition 1.5. We give several equivalent definitions of the sphere:

(i) A submanifold definition: Sn = ∂Bn+1 = {x ∈ Rn+1 : |x| = 1}.

(ii) A one-point compactification definition: Sn is the one-point compactifica-
tion of Rn, that is Sn = Rn ∪ {∞} topologized such that for any compact
K ⊆ Rn, the set (Rn − K) ∪ {∞} is a neighbourhood of ∞. Note here
that Bn is the one-point compactification of Rn+.

(iii) A gluing definition: Sn = Bn0 t Bn1/ ∼ where (x, 0) ∼ (x, 1) if and only if
x ∈ ∂Bn. For example, S1 can be obtained by joining two copies of B1 by
their boundaries, and similarly for S2 and B2.

∗This result is due to A.A. Markov (1958).
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Definition 1.6. We now give several equivalent definitions of projective spaces:

(i) A covering space definition: Pn = Sn/ ∼ where x ∼ −x, taking Sn as in
definition (i) above.

(ii) A gluing definiton: Pn = Bn/ ∼ where x ∼ −x if and only if x ∈ ∂Bn.

(iii) A moduli space definition:

Pn = {L ⊆ Rn+1 : L is a line through the origin} = (Rn+1 − {0})/ ∼

where x ∼ λx for λ ∈ R− {0}.†

Definition 1.7. We have three equivalent definitions of tori :

(i) A Cartesian product definition: Tn = (S1)n, taking the Cartesian product.

(ii) A covering space definition: Tn = Rn/Zn = Rn/ ∼ with x ∼ y if and only
if x− y ∈ Zn.

(iii) A gluing definition: Tn = In/ ∼ where (x, 0, y) ∼ (x, 1, y) if and only if
x ∈ Ik and y ∈ In−k−1 for any k ∈ {0, ..., n− 1}.

Figure 1: Construction of the first three n–tori Tn. Identify opposite faces of
In without twisting.

Note. T1 ∼= S1.

Exercise 1.1. For each set of three definitions above, prove that all three are
equivalent.

In dimension zero, any compact manifold is a finite collection of points, so the
classification is given by the number of points. All compact connected one-
dimensional manifolds are homeomorphic to either S1 or I.
†We will sometimes use R∗ for R− {0}.
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Definition 1.8. Suppose Mi (for i = 0, 1) are orientable n–manifolds. Choose
Bni ⊆ Mi and suppose ϕ : ∂Bn0 → ∂Bn1 is an orientation reversing homeomor-
phism. Define:

M0 #M1 := ((M0 − int(Bn0 )) t (M1 − int(Bn1 )))/ ∼
where x ∼ ϕ(x) whenever x ∈ ∂Bn0 .

Figure 2: The connect sum. Remove the interiors of the disks Bi and glue along
their boundaries.

Exercise 1.2. Show that #3P2 ∼= T # P2.

Theorem 1.2. Every compact connected two-dimensional manifold is homeo-
morphic to some Sg,n,c, where:

Sg,n,c := (#gT2) # (#nD2) # (#cP2)

Figure 3: S3,3,3 is the connect sum of the sphere with three tori, three Möbius
strips and three 2–disks, glued along the boundary components (in red)

Example 1.1. Some spaces Sg,n,c are homeomorphic, for example S3,3,3
∼=

S4,3,1.
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Lecture 2

Example 2.2. We give some connect sums of three manifolds:

S3 # S3 ∼= S3

T3 # S3 ∼= T3

In general, Sn is a unit for the connect sum. P3 # P3 is more interesting, as we
will discuss later. On the other hand, T3 #T3 invites splitting into two copies of
T3 for a more interesting and fundamental geometry. In general, we shall find
a decomposition theorem for 3–manifolds with respect to #.

Definition 2.9. M3 is prime if whenever M = N # L then either N or L is
homeomorphic to S3.

Remark. If M = N # L and N ∼= S3 then L ∼= M , and vice versa.

Definition 2.10. M is irreducible if every smoothly embedded S2 in M bounds
a 3–ball.

Note. We have no examples yet of prime or irreducible 3–manifolds.

Definition 2.11. Suppose X,Y ⊆ Z. We say X is ambient isotopic (dif-
feotopic) to Y if there exists a continuous (smooth) map F : Z × I → Z such
that, defining Ft(z) := F (t, z):

(i) For all t ∈ I, Ft is a homeomorphism (diffeomorphism).

(ii) F0 = IdZ .

(iii) F1|X : X → Y is a homeomorphism (diffeomorphism).

Figure 4: Here, X is ambient isotopic to Y in Z.

Theorem 2.3 (Alexander). Every smoothly embedded S2 ⊂ S3 is ambient iso-
topic to the equator.

Compare this to:

Theorem 2.4 (Jordan-Schoenflies). Every smoothly embedded S1 ⊂ S2 is am-
bient isotopic to the equator.

We will prove Alexander’s theorem later, but for now give the following corollary.

4



Figure 5: It is not always obvious which ball a sphere bounds

Corollary 2.5. S3 is prime.

Proof. Suppose S3 = M #S N . By Alexander’s theorem, S is ambient isotopic
to a round embedding of S2 in S3 (say the equator). Thus M − int(B3) ∼=
N − int(B3) ∼= B3, and hence M ∼= N ∼= S3 ∼= B3 ∪∂ B3.

It is important that the embedding is smooth, as the following result shows.

Theorem 2.6. There exists a topological S2 ⊂ S3 which does not bound B3 on
either side.

Note. This is a generalization of the Alexander horned sphere.

Remark. The statement of Alexander’s theorem with S2 ⊂ S3 replaced by
S3 ⊂ S4 is an open problem, although it has been proved that a smoothly
embedded S3 ⊂ S4 bounds a topological ball. Brown has proved the more
general statement that a smoothly embedded Sn−1 ⊂ Sn bounds a topological
ball.

Remark. It is worth making explicit the various categories involved:

(i) Topological (TOP).

(ii) Piecewise linear (PL).

(iii) Smooth (DIFF).

These categories are all equivalent in dimension at most 3, so we move between
them freely.

Exercise 2.3.

(i) Prove that any irreducible manifold is prime.

(ii) Prove that M is orientable and S ⊂M is a non-separating 2–sphere, then
M = N # (S2 × S1).
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(iii) Suppose M is orientable. Then M is prime and reducible if and only if
M ∼= S2 × S1. Prove the forward direction.

(iv) State and prove analogous statements to (ii) and (iii) for non-orientable
manifolds.

We give one more corollary to Alexander’s theorem:

Corollary 2.7. If M ⊆ S3 is compact and has |∂M | ≤ 1 (at most one boundary
component) then M is irreducible.

Example 2.3. We give further examples of irreducible manifolds. Suppose
K ⊂ S3 is a knot, that is a smooth embedding of S1. Let N(K) ⊆ S3 be a
closed regular neighbourhood (i.e. a tubular neighbourhood) of the knot. Let
n(K) = int(N(K)). Then the knot exterior XK := S3−n(K) is irreducible, by
the previous corollary.

Figure 6: A tubular neighbourhood of the figure 8 knot

Lecture 3

We now prove Alexander’s theorem. More precisely, we will prove that any
(smoothly) embedded S2 ⊂ R3 bounds a 3-ball, from which the theorem can be
deduced as a corollary.

Exercise 3.4. Show how Alexander’s theorem follows from this statement.

We need the following lemma:

Lemma 3.8. Suppose that a manifold Mn and Bn−1
1 ⊆ ∂Mn are given, as is a

diffeomorphism ϕ : Bn−1
0 → Bn−1

1 , where Bn−1
0 ⊆ ∂Bn. Then Mn ∪ϕ Bn ∼= Mn,

as per Figure 7.

As a consequence, if B and B′ are n–balls, then B ∪∂ B′ is a ball (Figure 8(a)),
as is B −B′ if B′ ⊂ B and ∂B′ ∩ ∂B ∼= Dn−1 (Figure 8(b)).
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Figure 7: Glueing Mn to Bn along submanifolds of their boundaries is homeo-
morphic to Mn.

Figure 8: (a) B,B′ balls ⇒ B ∪∂ B′ a ball, and (b) B′ ⊂ B and ∂B′ ∩ ∂B ∼=
Dn−1 ⇒ B −B′ a ball.

Theorem 3.9. Any smoothly embedded S2 ⊂ R3 bounds a 3–ball.

Proof. Suppose S2 ∼= S ⊂ R3 is smooth. We can isotope S so that z : S → R
(the height function, giving the z co-ordinate) is a Morse function. Thus all
critical points are of the standard three types; cups (minima), caps (maxima),
and saddles, and all critical points occur at distinct heights (as illustrated in
Figure 9). Choose ai ∈ R such that (−∞, a1), (a1, a2), ..., (an−1,∞) each contain

Figure 9: (a) A cap. (b) A saddle. (c) A cup.

exactly one critical value, as in Figure 10. Let:
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Figure 10: The red circles are regular values separating the critical points
(green). Here we have (n,w) = (6, 9).

L[a, b] := {(x, y, z) : z ∈ [a, b]}
L(a) := {(x, y, z) : z = a}
Li := L(ai)

Define n(S) to be the number of critical points. Define the width by:

w(S) =
n−1∑
i=1

|S ∩ Li|

This is the number of red circles in Figure 10. We will induct on (n(S), w(S))
lexicographically. Note that the components of Li ∩ S are all simple closed
curves, because each ai is a regular value. So by the Jordan-Schoenflies theorem,
they all bound disks. Say that β, a component of Li ∩ S, is innermost if Dβ ,
the disk bounded by β, has the property that Dβ ∩ S = β. Notice that β also
bounds a pair of disks in S. Label ai with an A (resp. B) if there is some

Figure 11: The intersection of the plane Li with the sphere. Shaded components
are innermost.

innermost curve β ⊆ Li ∩ S such that one disk of S − β contains exactly one
critical point, a maximum (resp. minimum). Note that ai could receive both
labels. Note also that a1 is labelled by B and an−1 is labelled by A. We have
cases:

Case 1: Some ai is labelled both A and B.
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Case 2: Some ai is unlabelled.

Case 3: There exists i such that ai is labelled B and ai+1 is labelled A.

Exercise 3.5. Check that we must always be in at least one of these cases.

We prove these in turn:

Case 1a: Some innermost β ∈ Li ∩ S bounds a disk in S above and bounds a disk
in S below, each with one critical point; this forms the base case of the
induction, where n(S) = 2 and w(S) = 1. We claim that in this case
S bounds a ball. To see this, cut off the two critical points with planes

Figure 12: The base case.

slightly above the minimum and below the maximum, removing two 3–
balls from S, and giving a compact cylinder. We claim that for every a ∈ R
such that the set L(a) intersects this compact cylinder, there exists ε > 0
such that S∩L[a, a+ε] bounds a 3–ball in L[a, a+ε]. This can be proved
by the implicit function theorem and the isotopy extension theorem. See
Hatcher’s Notes on basic 3–manifold topology for more details. Note that

Figure 13: The slab bounded by L[a, a+ ε].

the intersection L(a) ∩ S is a curve, so bounds a disk. Note that finitely
many of the L[a, a + ε] cover the compact cylinder. Glue these slabs
together, and re-attach the cap and cup. By Lemma 3.8, this gives a 3–
ball.

This proof continues in the lectures from week two.
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MA4J2 Exercise sheet 1.

Please let me know if any of the problems are unclear or have typos.

Exercise 1.1. Suppose that Mn is a manifold. Prove directly from the definition that
∂M is either empty or is an n− 1–manifold. Prove that ∂∂M is empty.

Exercise 1.2. Show that the definitions of Sn given in class (as a submanifold of Rn+1,
as the one-point compactification of Rn, and as the double of an n–ball) are equivalent.

Exercise 1.3. Give a map T n → Rn+1 that is an embedding: a diffeomorphism onto its
image. Show that any compact n–manifold embedded in Rn has non-empty boundary;
deduce that T n does not embed in in Rn.

Exercise 1.4. [Hard] Verify the classification, up to homeomorphism, of compact
connected 1–manifolds. For a detailed outline of the argument, see David Gale’s article
“The classification of 1-manifolds: a take-home exam”, in the American Mathematical
Monthly.

Exercise 1.5. Show that, up to homeomorphism, connect sum is commutative, associa-
tive, and that the n–sphere is an identity element: Mn#Sn ∼= Mn.

2011/01/12 1



MA4J2 Three Manifolds

Lectured by Dr Saul Schleimer
Typeset by Anna Lena Winstel
Assisted by Matthew Pressland

and David Kitson

Lecture 4

(Proof continued from last lecture).

Case 1b There are innermost α, β ⊂ Li∩S so that α bounds D above, β bounds E
below. Let D′, E′ be the disks bounded by α, β, inside of Li. So, by the
base case D ∪D′ (E ∪ E′) bounds a 3–ball. Use this 3–ball to define an
ambient isotopy that flattens D (E), pushing the critical point just below
(above) the plane Li.

Exercise 4.1. Show that this reduces w(S).

Case 2 The regular value ai is not labelled. For this case, we first have to introduce

Definition 4.1. Suppose F 2 ⊂M2 is properly embedded (i.e. a subman-
ifold, i.e. embedded and F ∩ ∂M = ∂F ). We say (D2, ∂D) ⊂ (M,F ) is a
surgery disk for F if D ∩ F = ∂D.

Let n(∂D) be an open annular neighbourhood of ∂D, in F . Let D+, D−
be parallel copies of D in M . Define F surgered along D by FD :=
(F − n(∂D)) ∪D+ ∪D−, as in Figure 1.

Figure 1: Surgery. FD := (F − n(∂D)) ∪D+ ∪D−.

We now return to case 2. Suppose β ⊂ S ∩Li is innermost. So, β bounds
D above, E below, D ∪β E = S and D,E each contain at least 3 critical
points. Say β bounds a disk B ⊂ Li. So:

SB = S+ ∪ S−, S+
∼= D ∪B+, S− ∼= E ∪B−.
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Thus n(S+), n(S−) < n(S) since n(S+)+n(S−) = n(S)+2. By induction,
S+, S− each bound a 3–ball X+, X− thus so did S, applying Lemma 1.3
in Hatcher’s notes. In the first case X+ ∩ X− = B and so we take the
union. In the second case X+ ⊂ X−, we take the difference. See Figure 2.

Figure 2: The case when (a) x+ ∩X− = ∅ or (b) X+ ⊆ X−.

Case 3 The regular value ai is labelled onlyB and the regular value ai+1 is labelled
only A. Between Li and Li+1 we have S∩L[ai, ai+1] is a union of cylinders,
caps, cups, pairs of pants, upside down pairs of pants and pants with
inverted legs, as illustrated in Figure 3.

Figure 3: S ∩L[ai, ai+1] is a union of (a) cylinders, (b) caps, (c) cups, (d) pairs
of pants, (e) upside down pairs of pants, (f) pants with inverted legs and (g) an
upside down version of (f) (not shown).
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Note that there is at most one critical point in S ∩ L[ai, ai+1], so it is a
saddle (check this using the labelling). Using the labelling deduce that
either α or β is a cuff of the pants.

Figure 4: Two examples of how may isotope E to be in Li and then upwards,
canceling two critical points.

We have that β is innermost in Li and β bounds (in S) a disk below, E,
with a single critical point (minimum). Hence, by the base case, we may
isotope E to be in Li and then upwards to cancel two critical points, as
in Figure 4. Thus, we have isotoped S to a sphere S′ such that n(S′) =
n(S)− 2. This completes the induction step and so, the proof.

Lecture 5

Definition 5.2. Say a 2–sphere S ⊂ M3 is essential if no component of M −
n(S) is a 3–ball.

Incompressible surfaces

Definition 5.3. Suppose F 2 ⊂M3 is properly embedded. Suppose (D, ∂D2) ⊂
(M,F ) is a surgery disk. Say that D is a trivial surgery disk if ∂D ⊂ F is equal
to 1 ∈ π1(F ) where π1(F ) is the fundamental group of F . We say that D is a
compressing disk if ∂D ⊂ F is not equal to 1 ∈ π1(F ).

An alternative definition is: D is a trivial surgery disk if ∂D bounds a disk
in F . See Figure 5.
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Figure 5: Here, D is a trivial surgery disc for F .

Exercise 5.2. Check that a simple closed curve α ⊂ F bounds a disk E ⊂ F
if and only if [α] = 1 ∈ π1(F ).

Definition 5.4. Suppose F ⊂ M is either proper embedded or F ⊂ ∂M is
a subsurface. Then we say that F is compressible if and only if there exists a
compressing disk for F . Otherwise we call F incompressible.

Example 5.1. Let T ⊂ S3 be the standard embedding, i.e. ∂N(U) where U is
the unknot. Then T is compressible since there are two compressing disks. We
call them the meridian disk and the longitude disk respectively, as illustrated
in Figure 6.

Figure 6: The meridian disk is in green while the longitude disk is red. The
boundary of the meridian disk is a circle in T but its interior is in S3.

Example 5.2. If M = D × S1 is a solid torus then ∂M ⊂M is compressible.

Exercise 5.3. Show that T = T2 × { 12} ⊂ T2 × I = M is incompressible.

Figure 7: T = T2 × { 12} ⊂ T2 × I = M is incompressible.
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Exercise 5.4. Suppose that M is an irreducible three-manifold and F,G ⊂
∂M are disjoint, incompressible subsurfaces. Suppose that ϕ : F −→ G is a
homeomorphism. Show that M/ϕ is irreducible.

Note. One can check M = D2 × S1 is irreducible but D(M), the double of M ,
is not. Here D(M) = M0 tM1/ ∼, where (x, 0) ∼ (x, 1) if and only if x ∈ ∂M
where Mi = M × {i}.

Exercise 5.5.

1. If F ⊂ S3 is closed, F 6= S2, then F is compressible.

2. (Alexander) Any T2 ⊂ S3 bounds a solid torus (D2 × S1) on at least one
side.

Definition 5.5. Let Vg be the handlebody of genus g, i.e.

Vg = D2 × S1 ∪D2 D2 × S1 ∪D2 . . . ∪D2 D2 × S1︸ ︷︷ ︸
g times

By convention, V0 = B3. See Figure8.

Figure 8: The handlebody V3. Note that Vg is “solid”, and not a surface.

Example 5.3. Find S2 ↪→ S3 which does not bound a handlebody on either
side. Here S2 denotes a surface of genus 2.

Remark. ∂Vg = #gT2 = Sg because ∂(D2 × S1) = S1 × S1 = T2.

Products and Bundles

A map ρ : Z −→ X is a Y –bundle (or a fibre bundle) if for all x ∈ X there exists
a neighbourhood x ∈ U ⊂ X and a homeomorphism hU : Y × U −→ ρ−1(U)
such that the composition ρ ◦ hU is the projection onto the second coordinate.
Here, Z is called the total space, X the base space, Y the fibre and hU is called
a local trivialization.
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Example 5.4. Let Z = D2 × S1 and denote ρi be the projection onto the i–th
coordinate. Then ρ1 : Z −→ D2 is a S1–bundle map and ρ2 : Z −→ S1 is a
D2–bundle map.

Lecture 6

Bundles and Neighbourhoods

See Lackenby §6.

Definition 6.6. We say Z
ρ−→ X, Z ′

ρ′−→ X are equivalent Y –bundles if there
is a homeomorphism h : Z ′ −→ Z making the following diagram commute

Z ′
h- Z

X

ρ′

?
IdX- X

ρ

?

Corollary 6.1 (See Corollary 6.3 in Lackenby’s notes). If X is contractible

then any Y –bundle Z
ρ−→ X is equivalent to the product bundle Y ×X ρ2−→ X.

Exercise 6.6. Prove this directly for X = B1,B2.

Exercise 6.7. Find a S1–bundle over S2 that is not equivalent to the product
bundle. It follows that the fundamental group π1(X,x) = {1} is not sufficient
hypothesis for Corollary 6.1.

Lemma 6.2 (See Lemma 6.4 in Lackenby’s notes). For all n ∈ N there are
exactly two Bn–bundles over S1 up to equivalence. These are

• the trivial bundle Bn × S1

• the twisted bundle Bn×̃S1 = Bn×I/(x, 0) ∼ (r(x), 1), where r(x1, . . . , xn) =
(x1, . . . ,−xn) is a reflection.

Version of the Tubular Neighbourhood Theorem

Definition 6.7. Suppose ρ : Z −→ X is a bundle. Then a map s : X −→ Z is
a section of ρ if ρ ◦ s = IdX .

Theorem 6.1. Suppose Fn−k ⊂ Mn is properly embedded. Then there is a
closed neighbourhood N = N(F ) ⊂M of F and a Bk–bundle map such that

1. the inclusion i : F −→ N(F ) is the zero section, i.e. i(x) = 0 ∈ Bk =
ρ−1(x),

2. N is a codimension 0 submanifold of M (with corners) and
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3. any N ′(F ) satisfying the properties (1) and (2) is ambient isotopic to
N(F ) fixing F pointwise.

Figure 9: Two inequivalent bundles over S1: (a) B1 × S1 and (b) B1×̃S1.

Notation: We denote by n(F ) the interior of N(F ). Furthermore, M cut along
F , is the manifold (perhaps with corners) M − n(F ). When F is codimension

1 manifold there is a regluing map M − n(F )
reglue−→ M .

Figure 10: Cut open along N(F ) and glue back along N ′(F ).

Exercise 6.8. All I–bundles over S2 are trivial.

Figure 11: The trivial I–bundle over S2.
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MA4J2 Exercise sheet 2.

Please let me know if any of the problems are unclear or have typos.

Exercise 2.1. Extend the definition of connect sum to non-orientable surfaces and prove
that #3P ∼= T#P.

Exercise 2.2. [Alexander Trick] Suppose that φ : S2 → S2 is a homeomorphism and
Id: S2 → S2 is the identity. Find an explicit homeomorphism between M = B3 ∪φ B3

and S3 = B3 ∪Id B3. (It follows, in dimension three, that M is diffeomorphic to the three-
sphere. The Alexander trick works in all dimensions but the promotion to smoothness
does not. See Milnor’s paper “On manifolds homeomorphic to the 7–sphere”.)

Exercise 2.3.

• Show that if M3 is irreducible then M is prime.

• Show that if M is orientable and S ⊂M is a non-separating two-sphere embedded
in M then M = S2 × S1#N .

• Suppose that M3 is orientable. Then: M3 is prime and reducible iff M ∼= S2 × S1.
Prove the forward direction.

Exercise 2.4. [Medium] Prove the backwards direction of part (iii) of Exercise 2.3.
[Idea: rewrite the proof of Alexander’s theorem.]

Exercise 2.5. [Medium] Prove the Jordan-Schoenflies theorem: every smoothly em-
bedded S1 in R2 bounds a disk. [Idea: rewrite the proof of Alexander’s theorem for
dimension two.]

Exercise 2.6. Suppose that K1 ⊂ S3 is a knot. Let XK = S3 − n(K) be the knot
complement. Show that ∂XK is compressible iff K is the unknot (isotopic to a round
circle).

Exercise 2.7. Suppose that M is an irreducible three-manifold and F,G ⊂ ∂M are
disjoint, incompressible subsurfaces. Suppose that φ : F → G is a homeomorphism. Show
that M/φ is irreducible.
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Lecture 7

Suppose that ρ : G2 → F 2 is a double cover. Roughly, this corresponds to an
index two subgroup of π1(F ), and hence to a homomorphism π1(F ) → Z/2Z.
Then for all x ∈ F , |ρ−1(x)| = 2, so there is a canonical involution τ : G → G,
where τ(y) is defined to be the unique element of ρ−1(ρ(y)) − {y}. For an
example, see Figure 1.

Figure 1: Here the involution τ is rotation by π about an axis.

Define T = (G × I)/ ∼, where (y, 0) ∼ (τ(y), 0). Then P : T → F given
by (y, t) 7→ ρ(y) is an I–bundle over F . Now suppose that ρ : G → F is the
orientation double cover; so G = F×{0, 1} if F is orientable, and G is orientable

if F is not; for example T2 ×2→ K2 (Figure 2).

Figure 2: The torus is a double cover for the Klein bottle.

1



Then P : T → F as above is called the orientation I–bundle (Figure 3).

Figure 3: The orientation I–bundle over K2 − int
(
D2
)
.

We have the following:

Theorem 7.1. Suppose that (F 2, ∂M) ⊂ (M3, ∂M) is properly embedded. Then
N(F ) is bundle equivalent to an I–bundle over F . If additionally M is ori-
entable, then N(F ) is bundle equivalent to the orientation I–bundle over F .

Example 7.1. Figure 4 shows the I–bundle for T2.

Figure 4: The orientation I–bundles are the only I–bundles one can draw in
three-space.

Definition 7.1. We say that F ⊂M is two-sided if F separates N(F ). Other-
wise F is one-sided.

Example 7.2. The core curve α in the Möbius band M2 is one-sided. D2×{p} ⊂
D2×S1 is two-sided for any p ∈ S1. We can also find a Möbius band in D2×S1

that is one-sided. M2 ×
{

1
2

}
is two-sided in M2 × I; see Figure 5.

Exercise 7.1. If F ⊂M is properly embedded, give a relationship between the
orientability of M and F , and the number of sides of F .

Definition 7.2. If ρ : T → F is an I–bundle, then X ⊂ T is vertical if X is a
union of fibres.

Definition 7.3. The vertical boundary of an I–bundle ρ : T → F is ∂vT :=
ρ−1(∂F ).
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Figure 5: (a) α is one-sided in M2. (b) α is two-sided in A2 (c) M2 is one-sided
in D2 × S1 (d) D2 is two-sided in D2 × S1.

Definition 7.4. The horizontal boundary of an I–bundle ρ : T → V is ∂hT =
∂T − int(∂vT ).

Exercise 7.2. ∂vT , ∂hT and the zero section are all incompressible in T , except
for ∂vT when T = I × D2.

Exercise 7.3. If ∂F 6= ∅, F is compact and connected, and ρ : T → F is the
orientation I–bundle, then T is a handlebody.

Before moving on, we summarize examples of 3–manifolds discussed so far.

Example 7.3. We have seen:

(i) S3, P3 and T3, which are closed.

(ii) Vg, the handlebodies.

(iii) I–bundles and S1–bundles over surfaces.

8 Lecture 8: Triangulations

Definition 9.1. Define the k–simplex by:

∆k =
{

(x0, . . . , xk) ∈ Rk+1 :
∑
xi = 1 and xi ≥ 0 for all i

}
Definition 9.2. The facet δI ⊂ ∆k is the subsimplex of the form:

δI = {(x0, ..., xk) ∈ ∆k : xi = 0 for all i ∈ I}

Definition 9.3. If δ ⊂ ∆ and δ′ ⊂ ∆′ are faces (codimension 1 facets), then a
face pairing is an isometry ϕ : δ → δ′.
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Definition 9.4. We call a collection T of simplices and face pairings a trian-
gulation.

Remark. We require that for every face pairing ϕ ∈ T that if ϕ : δ → δ′ then
δ 6= δ′.

Definition 9.5. The number of simplices is written |T |. The underlying space
is written ||T ||, and is defined by:

||T || :=
(⊔

∆i

)
/{ϕj}

Definition 9.6. The quotient map is given by π :
⊔

∆i → ||T || and we define
πi : ∆i → ||T || by restriction: πi = π|∆i.

Example 9.1. If T is the pair of simplices in Figure 6 with face pairings given
by the arrows, then ||T || ∼= T2.

Figure 6: ||T || ∼= T2.

Similarly, if we draw T as in Figure 7 then ||T || = M2.

Figure 7: ||T || ∼= M2.

Exercise 9.1. Find necessary and sufficient combinatorial conditions on T so
that ||T || is a (PL) manifold of dimension 1, 2 or 3.

Hauptvermutung (Moise). Every topological 3–manifold admits a triangula-
tion, unique up to subdivision. In particular, for any M3, there exists a trian-
gulation T such that ||T || ∼= M .

Remark. This is one important step in showing, in dimension three, that the
categories TOP, PL and DIFF are all equivalent.
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Definition 9.7. Suppose (M3, T ) is a triangulated manifold. An orientation
of M is a choice of orientation for all ∆ ∈ T , such that all face pairings reverse
the induced orientation on faces.

Example 9.2. The annulus is orientable, but the Möbius band is not. See
Figure 8.

Figure 8: The annulus is orientable as all face pairings reverse the induced
orientation on faces.

Proposition 9.1 (Proposition 6.5 in Lackenby). An n–manifold (Mn, T ) is
orientable if and only if for every simple closed curve α ∈ M we have N(α) ∼=
Bn−1 × S1.

Remark. We can also determine orientability in DIFF using sign(det(Dh))
where h ranges over the overlap maps, as in Figure 9. We can also define
orientation in TOP using homology.

Figure 9: Orientation in DIFF arises from overlap maps of charts.

Definition 9.8. Define ∆(k) to be the union of k–dimensional facets of ∆. If
(M,T ) is a triangulated 3–manifold, define M (k), the k–skeleton of M to be the

manifold with triangulation T =
⋃|T |

i=1 πi(∆
(k)). Figure 10 shows the k-skeleta

of ∆.

Example 9.3. Figure 11 shows two examples of identifications.
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Figure 10: The k–skeleta of ∆.

Figure 11: Two different views of the same triangulation for B3.

Exercise 9.2. Verify that the triangulation in Figure 12 is a three-manifold,
and recognise it.

Figure 12: Which three-manifold is this?

Definition 9.9. An isotopy F : M × I →M is normal with respect to a trian-
gulation T of M if for all t ∈ I, the homeomorphism Ft preserves M (k) for all
k, and F0 = IdM . See Figure 13 for an example.

Figure 13: A normal isotopy.

Remark. Thus M (0) is fixed pointwise, and all other facets are fixed setwise.

Definition 9.10. Say an arc (α, ∂α) ⊂ (∆2, ∂∆) is normal if the points of ∂α
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are in distinct edges of ∆, and α ∩∆(0) = ∅. See Figure 14 for some examples
and a non-example.

Figure 14: (a) Normal arcs. (b) This is not a normal arc.

Definition 9.11. A disk (D, ∂D) ⊂ (∆3, ∂∆) is a normal disk if ∂D is trans-
verse to ∆(1), ∂D meets each edge of ∆(1) at most once, and D∩∆(0) = ∅. See
Figures 15(a) and (b) for examples and 15(c) and (d) for non-examples.

Figure 15: (a) There are four normal triangles. (b) There are three normal
quadrilaterals. (c) This is not even a disk, let alone normal. (d) This is also not
a normal disc.

Exercise 9.3. Prove that:

(i) There are only three normal arcs up to normal isotopy.

(ii) There are only seven normal disks up to normal isotopy.

Recall that πi : ∆i → M is defined by πi = π|∆i, where π is the quotient
map.

Definition 9.12. Suppose S ⊂ M is a surface. Say S is normal if π−1i (S) is a
disjoint collection of normal disks for all i.

Example 9.4. The three normal disks in the tetrahedron shown in Figure 16
give a normal surface under the identification indicated by the arrows.

Exercise 9.4. Show that, with triangulations as in Figure 17, (a) and (b) are
three manifolds, and recognise them.

Theorem 9.2 (Haken-Kneser Finiteness). Suppose (M,T ) is a connected, com-
pact triangulated 3–manifold. Suppose S ⊂ (M,T ) is an embedded normal sur-
face. Then if |S| ≥ 20|T | + 1 there are components R,R′ ⊂ S so that R,R′

cobound a product component of M − S.

7



Figure 16: Recognise the normal surface F by computing |∂F |, χ(F ) and the
orientability.

Figure 17: Show that (a) and (b) are three manifolds and recognise them.

Remark. Figures 18 and 19 show examples of parallel surfaces.

Figure 18: Here both R1 & R′1 and R2 & R′2 bound copies of D2 × I.

Figure 19: R and R′ bound a product.

Proof of Theorem 9.2. Recall that S ∩∆ for ∆ ∈ T is a finite collection of nor-
mal disks. Consider the subcollection of disks of a fixed type, that is a normal
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isotopy class. Call the outermost disks ugly, the second outermost disks bad,
and all other disks good, as illustrated in Figure 20.

Figure 20: (a) Ugly disks. (b) Bad disks. (c) Good disks.

Thus there is a component F ⊂ S, such that F is a union of good disks. To see
this, note that there are at most 20|T | ugly and bad disks in total. There are
at most five types of disk in each S ∩∆, and at most four of each can be ugly
or bad; see Figures 21(a) and (b).

Figure 21: (a) There are at most five types of disk in each S ∩∆ because (b)
two normal quadrilaterals of different types must intersect.

Now let N be the closure of the union, over all ∆i, of all components of ∆i − S
that are adjacent to F , as in Figure 22.

Figure 22: N is the closure of the union over all ∆i of all components of ∆i−S
that are adjacent to F .

Exercise 9.5. Prove that N is an I–bundle and either N is ambient isotopic
to N(F ) or F is two-sided and parallel to ∂hN .
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MA4J2 Exercise sheet 3.

Please let me know if any of the problems are unclear or have typos.

Exercise 3.1. Suppose that α ⊂ F 2 is a simple closed curve. Show that α = 1 ∈ π1(F )
if and only if α bounds a disk in F .

Exercise 3.2. [Medium] Suppose that F 2 ⊂ S3 is smoothly embedded, connected and
without boundary. Prove that if F is not a sphere then F compresses. [Idea: rewrite the
proof of Alexander’s theorem.]

Exercise 3.3. [Jordan-Brouwer separation] Suppose that F 2 ⊂ S3 is smoothly embedded,
connected and without boundary. Show that F separates S3. Deduce that F is two-sided.
Deduce that F is orientable.

Exercise 3.4. Prove that every smoothly embedded two-torus T 2 ⊂ S3 bounds a solid
torus (D2 × S1) on at least one side. Find an embedded S2 in S3 that does not bound a
handlebody on either side.

Exercise 3.5. Suppose that ρ : M ′ → M3 is a covering map. Show that if M ′ is
irreducible then M is as well.

Exercise 3.6. Suppose that ρ : M ′ → M3 is a covering map. Suppose that F ⊂ M is
an properly embedded surface. Show that if F ′ = ρ−1(F ) is incompressible then F is as
well.

Exercise 3.7. [Hard] Show that all I–bundles over S2 are equivalent. Find infinitely
many inequivalent S1–bundles over S2.
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MA4J2 Three Manifolds

Lectured by Dr Saul Schleimer
Typeset by Anna Lena Winstel
Assisted by Matthew Pressland

and David Kitson

Lecture 10

We recall properties of π1:

Definition 10.1. Suppose A and B are groups. Then if A = 〈ai | rk〉 and
B = 〈bj | sl〉, their free product A ∗B is given by

A ∗B = 〈ai, bj | rk, sl〉 .

Theorem 10.1 (van Kampen). If W = X ∪Z Y and Z is path connected (as in
Figure 1), then, choosing a base point p ∈ Z, π1(W,p) ∼= π1(X, p) ∗ π1(Y, p)/N ,
where N is the normal subgroup generated by:

{i∗(z)(j∗(z))−1 : z ∈ π1(Z, p)}

where i : Z ↪→ X and j : Z ↪→ Y are the inclusions.

Figure 1: If W = X ∪Z Y , then π1(W ) = (π1(X) ∗ π1(Y ))/N .

Corollary 10.1. If π1(Y, p) = {1} then π1(W,p) = π1(X, p)/N where N is the
normal subgroup generated by:

{i∗(z) : z ∈ π1(Z, p)}.

Corollary 10.2. If π1(Z, p) = {1} then π1(W,p) = π1(X, p) ∗ π1(Y, p).

Proposition 10.3. If (M,T ) is triangulated then π1(M) = π1
(
T (2)

)
.
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Exercise 10.1. Prove Proposition 10.3. See Figure 2 for a hint.

Figure 2: Hint: Attach 3-balls one by one.

Proposition 10.4. π1(T (2)) = π1(T (1))/N where N is the normal subgroup
generated by boundaries of two-simplices in T . Note that π1(T (1)) is a free
group, as T (1) is a connected graph.

We now give several example computations.

Example 10.1. Consider Figure 3, where the faces are glued according to the
arrows.

Figure 3: What is the fundamental group of this manifold?

Exercise 10.2. Check that this is a 3–manifold.

Step 1: Find a spanning tree for T (1). Here T (1) is the graph shown in Figure 4
and so the spanning tree is just the vertex.

Figure 4: T (1) in this case. The spanning tree is the single vertex circled in
green.

Step 2: Give labels to the non-tree edges of T (1), as in Figure 4.

Step 3: Read off relations from faces of T (2). There is one relation per face in
the quotient. Here we have

〈
a, b | a2 = b, b2a = 1

〉
.
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Step 4: (optional) Use Tietze transformations to simplify:〈
a, b | a2 = b, b2a = 1

〉 ∼= 〈
a | (a2)2a = 1

〉 ∼= Z/5Z.

Example 10.2. (A non-Abelian example.) The one-quarter turn space Q is
the quotient of the unit cube as shown in Figure 5:

Figure 5: Two visualisations of how to glue faces to get Q.

Step 1: The 1–skeleton is the graph in Figure 6(a) with four edges and two
vertices. We take the circled edge as the spanning tree.

Figure 6: (a) The 1–skeleton and spanning tree. (b) After labelling the non-
tree edges, read off relators from the faces. Edges of the spanning tree do not
contribute to the relators.

Step 2: Label the non-tree edges with a, b, c.

Step 3: The three squares give relations and we have the following presentation

π1(Q) = 〈a, b, c | a = cb, ba = c, abc = 1〉 .

Exercise 10.3. Recognize π1(Q). In particular, it is not Abelian.

3



Abelian groups

Definition 10.2. Suppose that Z is an Abelian group. Define N := {z ∈ Z : z
is finite order}. Then N < Z is called the torsion subgroup of Z.

Recall that A⊕B is the direct product of A and B.

Proposition 10.5. Suppose Z is a finitely generated Abelian group. Then there
exist unique k ∈ N and N a finite group so that Z ∼= Zk ⊕N .

Proof. This follows from the classification of finitely generated Abelian groups.

Definition 10.3. We call k the rank of Z, and use the notation rk(Z) = k.

Definition 10.4. Let G be any (finitely generated) group. The commutator
subgroup of G is [G,G], the subgroup of G generated by all elements of the form
xyx−1y−1 for x, y ∈ G.

[G,G] =
〈
xyx−1y−1 | x, y ∈ G

〉
/ G.

Definition 10.5. We define the Abelianization of G to be GAb = G/[G,G].

Definition 10.6. We define the first homology group of M3 to be H1(M,Z) :=
[π1(M)]Ab.

Example 10.3. Let M3 = N3 #P 3. Then it follows by van Kampen’s theorem
that π1(M) ∼= π1(N) ∗ π1(P ). Therefore H1(M) = H1(N)⊕H1(P ).

Exercise 10.4. Show that (A ∗B)Ab = Aab ⊕BAb.

Example 10.4. As in the last example we have that

π1(#gS
2 × S1) = Fg

∼= ∗gZ,

so H1(#gS
2 × S1) = Zg has rank g. We denote #gS

2 × S1 by Mg.

Proposition 10.6. If M is connected, orientable, compact and M ∼= N #Mg,
then g ≤ rk(H1(M)).

Note here that π1 is finitely generated since M is compact.

Proof. We know that H1(M) = H1(N)⊕H1(Mg), so:

rk(H1(M)) = rk(H1(N)) + g.

This is the first step in the existence proof for connect sum decompositions.
For the next step, we need the following proposition:

Proposition 10.7. Suppose M is connected, orientable and compact. Then
there exists a decomposition

M ∼= #k
i=1Ni # (#gS

2 × S1) # (#nB3)

where each Ni is irreducible and not S3, B3 or S2 × S1.
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Proof.

Step 1: Let n be the number of components of ∂M that are 2–spheres. Let
F be the frontier of a “tree-like” union of arcs and two-sphere boundary
components, as shown in Figure 7. Form M − n(F ) and cap off F± by
3–balls. From now on we assume that n = 0.

Figure 7: F is the frontier of a “tree-like” union of arcs and two-sphere boundary
components.

Step 2: Proposition 10.6 gives us an upper bound on the number of summands
of M homeomorphic to S2 × S1. Thus from now on we may assume that
g = 0. It follows that any 2–sphere embedded in M separates.

For Step 3, we require the following definitions.

Definition 10.7. We define S3
k := #k

i=1B3 and we call this a ball with holes or
a punctured sphere. See Figure 8.

Figure 8: Here, n = 4.

Exercise 10.5. Show that (#nB3) ∪S2 (#mB3) ∼= #n+m−2B3.

Definition 10.8. We call S ↪→ M a sphere system if S is an embedding of a
disjoint collection of 2–spheres; see Figure 9.

Definition 10.9. A system S ↪→M is reduced if no component of M −n(S) is
homeomorphic to a punctured sphere. The sphere system in Figure 9 is reduced.
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Figure 9: A reduced sphere system S in M .

Lectures 11 and 12

Step 3: If M is irreducible we are done. If M ∼= S3 we are done by Alexan-
der’s theorem. So suppose that M contains an essential 2–sphere. For
the reminder of the proof, we fix a finite triangulation T of M . So our
assumptions give us a reduced sphere system S ⊂M .

Normalization Lemma. For any reduced sphere system S ⊂ M there
is a normal, reduced sphere system S′ such that |S′| ≥ |S|.

If we assume this lemma, we get the following proposition:

Proposition 11.8. (Existence) Let M be defined as above. Then M ∼=
#n

i=1Ni such that all Ni are irreducible and Ni 6∼= S3,B3.

Proof. Let S1 denote an essential 2–sphere, so M = N1 #S1
N2. If N1 is

homeomorphic to #kB3 for k ≥ 1, then we have a contradiction. So, S =
{S1} is a reduced sphere system. Let S be a maximal sphere system (i.e.
of maximal size). This exists because any normal reduced system has at
most 20|T | components; this follows from the Haken-Kneser finiteness and
the normalization lemma. Since S is maximal , if we cut M along S and
cap off with 3–balls the resulting manifolds {Ni} are all irreducible.

To prove the normalization lemma, we must normalize the given system
S.

Proof of Normalization Lemma. Isotope S to be transverse to T (k) for
k = 0, 1, 2, i.e. S ∩ T (0) = ∅, |S ∩ T (1)| =: w(S) (the weight of S) is
finite, S ∩ T (1) is transverse and S ∩ ∂∆i is a finite collection of simple
closed curves; see Figure 10. We alternatingly apply surgery and the
baseball move.
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Figure 10: (a) The sphere system can look unpleasant in the triangulation. (b)
A possible picture of S ∩ T (2).

Surgery: Suppose (D, ∂D) ⊂ (M,S) is a surgery disk, i.e. D ∩ S = ∂D.
Suppose D ∩ S ⊂ F is a component of S. As before, define FD = F −
n(D) ∪D+ ∪D−. Define SD = (S − F ) ∪ FD. Notice that ∂D separates
F , so FD = F+ ∪ F−. See Figure 11.

Figure 11: Notice that ∂D separates F , so FD = F+ ∪ F−.

Let X,Y ⊂ M − n(S) be the components adjacent to F and suppose
D ∩X 6= ∅. So let X+ ∪X0 ∪X− = X − n(FD) where X0 meets D and
X± are adjacent to F±, respectively. See Figure 12.

Figure 12: X+ ∪ X0 ∪ X− = X − n(FD), where X0 meets D, and X± are
adjacent to F±.

7



Note that X0
∼= #3B3. Since we assumed S is a reduced sphere system,

we find Y is not a punctured sphere.

Exercise 11.6. Y ∪F X0 is not a punctured sphere.

Claim. At most one of X+, X− is a punctured sphere.

Proof. If both are punctured spheres then so is X = X+∪F+ X0∪F− X−,
a contradiction. This proves the claim.

Let S′ = S−F thus either S+ = S′∪F+ or S− = S′∪F− or SD = S′∪FD

is a reduced system.

Using surgery: For every tetrahedron ∆ ∈ T (3), the surface S meets
∂∆ is a collection of simple closed curves. See Figure 13 for a possible
intersection pattern.

Figure 13: A possible intersection of S with the boundary of a tetrahedron.

For every simple closed curve α ⊂ ∂∆ ∩ S we do the following. Pick a
disk D ⊂ ∂∆ bounded by α. Isotope D into ∆ (∂D stays in S), as in
Figure 14.

Figure 14: Isotope D into ∆.

Use D (in ∆) to surger all curves of S ∩D, innermost first. When this is
done, S ∩∆ is a collection of disks (for all ∆).

Claim. After surgery, for all ∆ and for all simple closed curves α ⊂
∂∆ ∩ S, α meets ∆(1).
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Proof. Suppose α has weight 0 and α ⊂ f ⊂ ∆(2) a face. We surgered
along both D±, so the component sphere containing α bounds a ball as
in Figure 15.

Figure 15: We surgered along both D±, so the component sphere containing α
bounds a ball.

But surgery deletes trivial spheres. This proves the claim.

Figure 16: The intersection of S with the two-skeleton; outside of ∆ it can be
complicated.

9



MA4J2 Exercise sheet 4.

Please let me know if any of the problems are unclear or have typos.

Exercise 4.1. Show that there are exactly two inequivalent Bk–bundles over S1. The
same holds for S1– and S2–bundles over S1.

Exercise 4.2. Prove that Mn is orientable if and only if for every simple closed curve
α ⊂M the regular neighborhood N(α) is a trivial bundle.

Exercise 4.3. Classify, up to bundle equivalence, two-fold covers of T2. Do the same for
S2, the closed orientable surface of genus two. Which of these can you give pictures for?

Exercise 4.4. Suppose that ρ : T → F 2 is an B1–bundle. Show that the vertical
boundary ∂vT , the horizontal boundary ∂hT , and the zero-section are all incompressible
in T . (Here we exclude the case of the product I–bundle over D2.) On the other hand:
show that if F has boundary and T is orientable, then T is a handlebody. Thus ∂T is
often compressible.

Exercise 4.5. Suppose that M is an irreducible three-manifold and F,G ⊂ ∂M are
disjoint, incompressible subsurfaces. Suppose that φ : F → G is a homeomorphism.
Suppose that H ⊂M is a properly embedded incompressible surface and disjoint from
F and G. Show that the image of H is M/φ is incompressible. Deduce that if that
ρ : T → S1 is an F 2–bundle then all fibers (point preimages) are incompressible.

Exercise 4.6. [Easy] Suppose that V = V2 is a handlebody of genus two. Prove or find
a counterexample: any surface properly embedded in V is compressible or is ambient
isotopic into a regular neighborhood of ∂V .

Exercise 4.7. [Medium] Suppose that T is a finite triangulation. Give necessary and
sufficient combinatorial conditions so that ||T || is homeomorphic to a topological manifold
Mn, for n ≤ 3.

Suppose that (F, T ) is a triangulated surface. Call a simple closed curve α ⊂ F normal
if α is transverse to the skeleta of T and α ∩∆ is a finite collection of normal arcs, for
every triangle ∆2 ⊂ F . The weight of α is w(α) =

∣∣α ∩ T (1)
∣∣.

Exercise 4.8. Suppose that (F, T ) is the boundary of a three-simplex. Show that if α
is a normal curve and if α meets every edge of T (1) at most once then α has weight three
or four. Deduce that there are seven normal disks in a tetrahedron.

Exercise 4.9. In the proof of Haken-Kneser finiteness we defined N to be the closure of
the union, over all ∆ ∈ T (3), of all components of ∆− S meeting F . Prove that N is an
I–bundle and either N is ambient isotopic to N(F ) or F is two-sided and parallel to
∂hN .
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Lecture 13

Proof. We complete the proof of the existence of connect sum decomposition.

Procedure 2: Baseball move. We perform this move after surgery along all
curves of S ∩ ∂∆ for all ∆3 ∈ T . Suppose α is a simple closed curve of S ∩ ∂∆,
where ∆3 ∈ T . So α bounds disks D0 and D1 in ∂∆. Suppose that there is an
edge e ∈ ∆(1) with |α ∩ e| ≥ 2, as illustrated in Figure 1.

Exercise 13.1. Without loss of generality, there is a component d ⊂ D0 ∩ e
such that d ∩∆(0) = ∅, as in Figure 1.

Figure 1: α bounds two disks D0 and D1, and there is an edge e ∈ ∆(1) such
that |α ∩ e| = 2.

Now let D = D0. By an innermost arc argument we may assume that
d ∩ S = ∂d. Let D′ ⊂ S ∩∆ be the disk bounded by α, as in Figure 2.

Figure 2: D′ is the disk bounded by α.
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Since D ∪D′ ∼= S2, they cobound a three-ball, B, by Alexander’s theorem,
and so we may choose an embedded arc d′ ⊂ D′ so that d and d′ cobound a
disk E ⊂ B, as in Figure 3.

Figure 3: The arcs d and d′ cobound a disk E ⊂ B.

Let C be the 3–ball obtained from N(E) by cutting along S and retaining
the component containing E; see figure 4.

Figure 4: A picture of N(E) ∩ S.

Write ∂−C = C ∩ S and ∂+C = ∂C − ∂−C. The baseball curve is the
common boundary ∂∂+C = ∂∂−C, as in Figure 5.

Figure 5: The baseball curve is the common boundary ∂∂+C = ∂∂−C.

Since C is a 3–ball, there is an isotopy, called the baseball move, taking ∂−C
to ∂+C; see Figures 6(a) or (b). This gives an isotopy of S to S′. Notice that
w(S′) = w(S)− 2.
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Figure 6: Two visualisations of the baseball move.

So alternate between surgery along all curves and single baseball moves. As w(S)
is decreasing, this process terminates with S in normal position. If w(S) = 0
then S = ∅ and this is a contradiction as surgery never decreases the initial
number of essential spheres. So this completes the proof of existence.

Following Hatcher, for uniqueness we use lemma 13.1.

Definition 13.1. If M is a 3–manifold, define cM to be M with all S2 ⊂ ∂M
capped off by 3–balls, and discarding 3–sphere components.

Lemma 13.1. Suppose that S ⊂M is a sphere system (not necessarily reduced)
so that:

ÚM − n(S) =
kG

i=1

Ni

is a disjoint union of irreducible manifolds. Suppose that (D, ∂D) ⊂ (M,S) is
a surgery disk. Then:

ÛM − n(SD) =
kG

i=1

Ni.

Exercise 13.2. Prove this lemma. For a hint, see Figure 7.

Figure 7: Hint for Exercise 13.2.
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So we may now complete the proof of uniqueness of prime decomposition.

Proof of uniqueness. Suppose S and T are sphere systems so that:

M − n(S) =
kG

i=1

Pi

and

N − n(T ) =
lG

j=1

Qj

where the Pi and Qj are irreducible. Now, if S ∩ T = ∅ we have:

G
Pi =
ÛG
Pi − n(T )

= ÛM − n(S ∪ T )

=
ÛG
Qj − n(S) =

G
Qj

On the other hand, if S∩T 6= ∅ then surger S along an innermost disk of T and
apply Lemma 13.1. Finally, ifM ∼= N#

�
#lS

2 × S1
�

andM ∼= N#
�
#kS

2 × S1
�

then:
rank(H1(N)) + l = rank(H1(M)) = rank(H1(N)) + k

and so l = k.

Lecture 14

Exercise 14.3. Suppose that (M,T ) is orientable, compact, connected, irre-
ducible and triangulated. Suppose F ⊂ M is embedded, closed (∂F = ∅,
compact) and orientable. Show that if G is incompressible, it is isotopic to a
normal surface.

Definition 14.2. Say F properly embedded in M is boundary parallel if there
is an isotopy (relative to ∂F ) pusing F into ∂M . More precisely, there is an
isotopy H : F × I →M such that:

(i) Ht is an embedding of F into M for all t < 1.

(ii) H1 is an embedding of F into ∂M .

(iii) H0 = Id.

(iv) Ht|∂F = Id.

Equivalently M−n(F ) has a component X ∼= F×I with F×{0} = F+ ⊂ N(F )
and F × {1} ⊆ ∂M . See Figure 8.
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Figure 8: F is boundary parallel to M .

Example 14.1. (See Figure 9)

(i) The equatorial disk B2 ⊂ B3 is boundary parallel.

(ii) Take K ⊂ T = ∂(D2 × S1). Let N(K) be a closed neighbourhood in
D2 × S1. Let G = N(K) ∩ T . So G ⊂ T = ∂(D2 × S1). Let F =
∂N(K)−G, so F is boundary parallel; in fact parallel to G.

Figure 9: (a) Example (i). (b) Example (ii). (c) Cross section for Example (ii).

Note. F in example (ii) above is boundary parallel in essentially a unique way,
unlike B2 ⊂ B3, or the following. Take B1×S1 ⊆ D2×S1. Then this is boundary
parallel in two ways; see Figure 10.

Figure 10: (b) is a cross section of (a), and B1 × S1 can be isotoped either up
or down into T2 = ∂

�
D2 × S1
�
.

Example 14.2. M2 ⊆ D2 × S1 is not boundary parallel; see Figure 11.

5



Figure 11: M2 is not boundary parallel in D2 × S1.

Definition 14.3. A torus T ⊂ M is essential if it is incompressible and not
boundary parallel.

Definition 14.4. Suppose M is irreducible, orientable, compact and connected.
Then the manifold M is toroidal if there exists an essential torus T ⊂M . M is
atoroidal if there are no essential tori embedded in M .

Example 14.3. Suppose K ⊂ S3 is a knot. Define the knot exterior XK :=
S3 − n(K). If K = L # L′ is a non-trivial connect sum of knots, then XK is
toroidal.

Figure 12: (a) n(K). (b) An essential torus in XK .

As shown in the previous lecture, when dealing with essential 2–spheres, we
cut and cap off with 3–balls. However, there is no canonical way to cap off
T2 ⊂ ∂M . So we must live with the possibility of incompressible tori, but at
least we may eliminate essential tori.

Definition 14.5. Fix K, a knot in S3, called the companion knot. Fix L ⊂
D2 × S1, the pattern knot. Fix a homeomorphism ϕ : D2 × S1 → N(K). Then
ϕ(L) ⊂ S3 is a satellite knot with pattern L and companion K. See Figure 13.

Example 14.4. All non-trivial connect sums are satellite knots.

Remark. If K is not the unknot and L ⊂ D2 × S1 is disk busting (for all
compressing disks D ⊂ D2×S1, |L∩D| ≥ 1, and L is not isotopic to {0}×S1),
then Xϕ(L) is toroidal.
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Figure 13: (a) L is the pattern knot, (b) K is the companion knot and (c) ϕ(L)
is the satelite knot.

Theorem 14.2 (Thurston). Every knot K ⊂ S3 other than the unknot is either
a satellite knot, a torus knot or a hyperbolic knot, as respectively XK is toroidal,
XK is atoroidal but cylindrical, or XK is atoroidal and acylindrical.

Exercise 14.4. Show that XK is irreducible.

Example 14.5. S3 is atoroidal, but T3 is not; see Figure 14.

Figure 14: T3 contains T2 as an essential torus, and so is toroidal.

Lecture 15

Exercise 15.5. Suppose F ⊂ M is properly embedded and suppose that
i∗ : π1(F )→ π1(M) is injective. Show that F is incompressible (i.e., all surgery
disks are trivial).

The final part of the course will be devoted to proving a partial converse to
Exercise 15.5, via the loop theorem, the disk theorem and Dehn’s lemma. An
application of this converse will give us the following example:

Example 15.6. A knot K ⊂ S3 is isotopic to a round circle (that is K is
unknotted) if and only if π1(XK) ∼= Z.

Definition 15.6. A torus system is a finite union of disjoint, non-parallel,
essential tori.

7



Proposition 15.3 (Corollary 1.8 in Hatcher). Suppose that M is compact,
connected, orientable and irreducible. Then there is a torus system S ⊂ M
(where we allow S = ∅), so that all components of M − n(S) are atoroidal.

Proof. If M is atoroidal then take S = ∅. Otherwise, fix a triangulation T of
M and suppose that F ⊂M is an essential torus. So S = {F} is a torus system.
We now induct on |S|. By Exercise 14.3 we may normalize S. By Haken-Kneser
finiteness we find that |S| ≤ 20|T |, so if there exists a component N ⊆M−n(S)
which is toroidal then we find F ′ ⊂ N an essential torus. So F ′ is not parallel to
any component of S. Let S′ = S ∪ {F ′}. Then S′ is again a torus system.

Remark. The final step uses Exercise 4.5 in Exercise Sheet 4.

Example 15.7. Suppose ϕ : F → F is a homeomorphism of a surface F . Define
Mϕ = F × I/(x, 1) ∼ (ϕ(x), 0). Then Mϕ is a surface bundle over S1 via
ρ : Mϕ → S1, where ρ : (x, t) 7→ t ∈ R/Z; see Figure 15.

Figure 15: Mϕ is a T2–bundle over S1.

Exercise 15.6. Show that every fibre Tt = ρ−1(t) is incompressible (in fact
π1–injective) in Mϕ.

Note. If F = T ∼= T2, and T ⊂Mϕ is a fibre, then Mϕ − n(T ) ∼= T × I. So we
cannot avoid sometimes having a product component after cutting.

Remark. We have that T3 is the torus bundle MId in the above notation.

We now discuss lens spaces. Take S3 = {(z, w) ∈ C2 : |z|2 + |w|2 = 2}.
Let y be the loop {|w| = 2} and x be the loop {|z| = 2}, oriented as shown in
Figure 16.

Figure 16: The great circles {z = 0} and {w = 0} in S3 ⊂ C2 with this
orientation are together homeomorphic to the right Hopf link.

8



Then define:

V = {(z, w) ∈ S3 : |w| ≤ 1},
W = {(z, w) ∈ S3 : |z| ≤ 1},
T = V ∩W

= {(z, w) ∈ S3 : |z| = |w| = 1} ∼= T2.

Recall that D×S1 is a solid torus. We refer to any curve of the form ∂D×{z} ⊂
D × S1 as a meridian. Now, as indicated in Figure 17 we take µ and λ to be
generators of π1(T ). Thus µ and λ are meridians of the solid tori V and W ,
respectively. We give µ and λ the orientations shown in Figure 17.

Figure 17: The curves µ and λ are oriented so that µ, λ and the outward normal
for V form a right-handed frame.

Definition 15.7. Write Zp = Z/pZ = {α ∈ C : αp = 1} for p 6= 0, and fix
q ∈ Z with gcd{q, p} = 1. This acts on S3 via:

α · (z, w) = (αz, αpw).

Definition 15.8. Define L(p, q) = Zp\S3, the (p, q)–lens space.

Exercise 15.7. L(p, q) is an orientable 3–manifold.

Example 15.8. We have L(1, 0) = S3.

Exercise 15.8. Show that L(2, 1) ∼= P 3.

Proposition 15.4. Suppose V,W ∼= D2 × S1 and ϕ : ∂W → ∂V is a homeo-
morphism. Show that M = V ∪ϕ W is either a lens space or is S1 × S2.

Note. We have π1(L(p, q)) ∼= Zp. Thus if L(p′, q′) ∼= L(p, q) then p′ = p.

Exercise 15.9. Show that if q′ = ±q±1 modulo p, then L(p, q′) ∼= L(p, q).

Remark. The converse holds, but is much harder to prove (see Brody 1960).

Remark. Whitehead (1941) showed that L(p, q) w L(p, q′) (the spaces are
homotopy equivalent) if and only if qq′ = ±k2 modulo p for some k.

Example 15.9. We have L(7, 1) w L(7, 2), but these spaces are not homeo-
morphic.

9



MA4J2 Exercise sheet 5.

Please let me know if any of the problems are unclear or have typos.

Exercise 5.1. For each of the two triangulations shown in Figure 1 prove that the
underlying space is a three-manifold. Compute the fundamental groups and identify
each manifold (by giving a homeomorphism).

Figure 1: Each one-tetrahedron triangulation has exactly one face pairing between the
back two faces.

Exercise 5.2. For each of the two triangulations shown in Figure 2 prove that the
underlying space is a three-manifold. Compute the fundamental groups and identify
each manifold (by giving a homeomorphism).

Figure 2: The left triangulation has two face pairings gluing the back two and the front
two faces. The right triangulation has four face pairings.

Exercise 5.3. Classify, up to normal isotopy, all normal curves in (F 2, T ) where:

• (F, T ) is the usual triangulation of the torus, with two triangles. [Medium]

• (F, T ) is the usual triangulation of the Klein bottle with two triangles. [Medium-
hard]

• (F, T ) is the two-sphere, triangulated as the two-skeleton of a tetrahedron. [Hard]
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MA4J2 Exercise sheet 5.

Exercise 5.4. For the cubing shown in Figure 3 prove that the underlying space Q is a
three-manifold. Compute the fundamental group Γ = π1(Q) and show that Γ is finite

and not Abelian. [Harder: Compute the universal cover Q̃ → Q and the associated

action of Γ on Q̃.]

Figure 3: The quarter-turn space: opposite faces are idenified by a right handed quarter-
turn. What do you get if you use a one-half turn instead? What manifolds arise from
similarly nice face pairings of other Platonic solids?

Exercise 5.5. Suppose that F ⊂ (M,T ) is a closed incompressible embedded surface.
Suppose that M is irreducible. Show that F is isotopic to a normal surface. (That is,
there is a map H : F × I → M so that H0 = Id |F , Ht is an embedding for all t, and
H1(F ) is normal.) Can you extend your proof to the case where F has boundary and is
properly embedded?

Exercise 5.6. [Easy] Let Bn = #nB3 be the n–times punctured three-sphere. Here are
two statements left over from the proof of existence of prime factorizations.

• Suppose that P,Q are three-manifolds and φ : S → T is a homeomorphism of
two-sphere boundary components S ⊂ P , T ⊂ Q. Prove that P,Q are both
punctured three-spheres if and only if P ∪φ Q is a punctured three-sphere.

• If M has n boundary components that are two-spheres then M ∼= N#Bn where N
has no two-sphere boundary components.

2011/02/07 2
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Lecture 16

For lens spaces, we have the following definitions:

• The quotient space Zp\S3.

• The gluing V ∪ϕW , the union of solid tori, which is either a lens space or
S2 × S1.

• The following construction: let B = {(z, t) ∈ C × R : |z|2 + t2 ≤ 1}, a
3–ball. Let D± be the upper (respectively lower) hemisphere of ∂B, as in
Figure 1.

Figure 1: D± are the upper and lower hemispheres of ∂B.

Fix α = exp(2πi/p) and glue D− to D+ by ϕ : D− −→ D+, where
ϕ(z, t) = (αqz,−t). See Figure 2.

Figure 2: The lower hemisphere is glued to the upper by a 2π · q/p twist.

1



Notice that, as Figure 2 indicates, there is a nice triangulation of B by a
collection of p tetrahedra, all sharing the z–axis as an edge. Notice also
that a neighborhood of the midpoint of any edge is a half-ball

B3
+
∼= {(x, y, z) : z ≥ 0, x2 + y2 + z2 ≤ 1}

and p copies of these are glued, each to the next. So “geometrically”, an
edge has pπ dihedral angle which is (p− 2)π too much. So we consider a
lens with dihedral angle 2π/p at the equator, as in Figure 3.

Figure 3: A lens with dihedral angle 2π/p at the equator (here, p = 5).

Now we can glue and get the right amount of dihedral angle. More pre-
cisely, the lens should live in S3 and be cut out by great hemispheres, each
meeting the next at angle 2π/p. In Figure 4, you can see the lenses for
p = 10. Glue pairs of these together to get lenses for p = 5.

Figure 4: 10 copies of the lens tile S3.

Exercise 16.1. Check that the three definitions agree.

Recall that we defined the meridian and longitude µ, λ for the torus T =
V ∩W ⊂ S3. See Figure 5.

Definition 16.1. If K = sµ+ rλ then the slope of K is r/s.

Let K = sµ + rλ ∈ π1(T ), a simple closed curve. In Figure 6 for example,
K = 3µ+ 2λ has slope 2/3 in T .

Notation. For α, β ∈ π1(T ) we define α·β to be the signed intersection number.
So

µ · µ = 0 µ · λ = +1
λ · µ = −1 λ · λ = 0

and thus µ ·K = r and K · λ = s.

2



Figure 5: The torus T with meridian µ and longitude λ. Note that the orien-
tation of µ, that of λ, and the outward normal to V , in that order, obey the
right-hand rule.

Figure 6: The right handed trefoil knot K has slope 2/3. (a) K as seen in the
torus T , and (b) K as seen in R2/Z2 ∼= T .

Definition 16.2. Suppose r, s ∈ Z are coprime, with |r|, |s| > 1. We call
K = rλ+ sµ ⊂ T ⊂ S3 the (r, s)–torus knot. Then we define XK := S3−n(K),
the knot exterior. Moreover, we define VK := V −n(K), WK := W −n(K) and
A = TK = T − n(K).

In Figure 7, z is the core curve of A = VK ∩WK .

Figure 7: The cross-sections of VK and WK . The loop z is the core curve of
A = VK ∩WK , and the loops x and y are the generators of π1(Vk) and π1(Wk)
respectively.

Recall that the inclusions i : A ↪→ VK and j : A ↪→WK induce maps i∗ and
j∗ giving the following diagram:

π1(A) = 〈z〉

π1(Vk) = 〈x〉
i∗�

⊃

π1(Wk) = 〈y〉
j∗

⊂

-

3



Exercise 16.2. Show that i∗(z) = xr and j∗(z) = ys hence i∗ and j∗ are
injective, where x and y are the loops shown in Figure 7.

By Seifert-van Kampen, assuming that r, s 6= 0, we get the following push-
out where the lower maps are again inclusions:

π1(A) = 〈z〉

π1(Vk) = 〈x〉
i∗�

⊃

π1(Wk) = 〈y〉
j∗

⊂

-

Z ∗Z Z ∼= 〈x, y |xr = ys 〉 =: Γr,s

�

⊃⊂

-

Via group theory, one can show that Γr,s
∼= Γp,q if and only if {|p|, |q|} =

{|r|, |s|}.

Lecture 17

Aside. Note that

• SO(2) ∼= S1,

• SO(3) ∼= P3 and

• SL(2,R) ∼= int(D × S1) ∼= R2 × S1, the latter is not an isomorphism of
groups.

Remark. We now have the following remarkable fact. Let K ⊂ S3 be the trefoil
knot and define YK = S3−K be the knot complement, an open three-manifold.
Then YK is homeomorphic to SL(2,R)/SL(2,Z).

For the following we assume that K is not the unknot, i.e. |p|, |q| ≥ 2.

Theorem 17.1. Suppose K = Kp,q is the (p, q)–torus knot, then the annulus
A = T − n(K) is the unique essential annulus in XK , up to isotopy.

We will prove this later in the course.

Corollary 17.1. Define Xp,q = XK , where K = Kp,q. Then Xp,q
∼= Xr,s if

and only if {|p|, |q|} = {|r|, |s|}.

Non-uniqueness of torus decompositions

Now we closely follow Hatcher. Let Vi ∼= D×S1, i = 1, 2, 3, 4. Let Ai ⊂ ∂Vi
be an embedded annulus and suppose Ai winds qi times about Vi with qi ≥ 2;
for examples see Figure 8.
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Figure 8: Two examples of a winding annulus; in (a) q1 = 2 and in (b) q2 = 3.

Another way to define qi is the following: Let αi be a core curve of Ai and
define qi via qi = |αi · ∂Di|. Let A′i = ∂Vi −Ai and pick ϕ : A′i −→ Ai+1 where
we take the indices modulo 4. Let M = tVi/ϕi; see Figure 9(a). Let Bi denote
the image of Ai in M . Now we define Mi = Vi ∪ϕi

Vi+1. Let T1 = B1 ∪B3 and
T2 = B2 ∪B4. Thus M = M1 ∪T1 M3 = M2 ∪T2 M4.

Figure 9: (a) A schematic of M . Bi is the image of Ai in M . (b) and (c) are
schematics of two different torus decompositions.

Finally, we claim that B1 ∪B3 and B2 ∪B4 are incompressible tori in M . If
we now choose the qi to all be distinct and coprime then, for i = 1, 2, 3, 4, then
manifold Mi is a torus knot exterior. So we have, for these choices of qi, that
M1 is not homeomorphic to M2 or M4 and M3 is not homeomorphic to M2 or
M4. Thus the torus decompositions T1 and T2 are different; see Figures 9(b)
and (c).

Remark (17.2). This requires the following facts. If Xp,q = S3−n(Kp,q), then

• ∂Xp,q is incompressible,

• Xp,q is atoroidal and

• Theorem 17.1.

We will prove these facts later. To do so, and so to understand the non-
uniqueness of torus decompositions, we must first understand Seifert fibred
spaces.
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Fibred solid tori

Fibre D×I by intervals of the form {x}×I. We call {0}×I the central fibre. Let
ϕ : D × {1} −→ D × {0} be a 2πq/p rotation, ϕ(z, 1) = (αqz, 0) where as usual
p and q are coprime. Define Vp,q = D× I/ϕ, the (p, q)–fibred solid torus. Notice
that {0} × I now gives a circle as does the set of fibres {αk · (z × I) : αp = 1}.
Note that Vp,q is given a fibring, i.e. a decomposition into circles.

Definition 17.3. A Seifert fibring of a three-manifold M is a partition F of M
into circles (the fibres) such that every fibre λ ∈ F has arbitrary small regular
neighbourhoods N(λ) all homeomorphic to Vp,q for some fixed p, q. Here the
homeomorphisms are all fibre-preserving.

Remark. The integers p, q only depend on λ.

Definition 17.4. We call p the multiplicity of λ.

Note that the space Vp,q is Seifert fibred itself and the central fibre has
multiplicity p while all other fibres have multiplicity equal to 1.

Definition 17.5. If λ has multiplicity greater than 1, then we call λ a singular
fibre. All other fibres are called generic. See Figure 10.

Figure 10: Inside of V3,1 the central fibre α is singular (with multiplicity three)
while all others, for example β, are generic.

Lecture 18

Exercise 18.3. If M is compact then there are only finitely many singular
fibres, all contained in the interior of M .

Exercise 18.4. Show that Lp,q is a Seifert fibred space with at most two sin-
gular fibres. Compute their multiplicities.

Exercise 18.5. Let K = Kp,q be the (p, q)–torus knot. Show that XK is a
Seifert fibered space. Find the singular fibres and their multiplicities.
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Example 18.1. Let M = V1 ∪ V2 ∪ V3 ∪ V4 as in the last lecture. Then M is a
Seifert fibred space with 4 singular fibres.

Definition 18.6. Suppose (M,F) is a Seifert fibred space. Let B = M/S1 be
the base orbifold ; that is, the quotient of M sending fibres to points.

Example 18.2. Suppose M = Vp,q. The quotient M/S1 is a disk D with a
cone point at the centre. The angle at the cone point is 2π/p; see Figure 11.

Figure 11: (a) The solid torus V = V3,1. (b) A meridian disk for V . (c) The
quotient V/S1 is a cone with angle 2π/3 at the cone point.

Exercise 18.6. In exercises 18.1 and 18.2, identify the base orbifolds.

Example 18.3. Notice that if ρ : T −→ F is an S1–bundle then T/S1 ∼= F .

Theorem 18.2 (1.9 in Hatcher). Let M be compact, irreducible and orientable.
There exists a torus system T ⊂ M such that all components of M − n(T ) are
either atoroidal or Seifert fibred spaces. Furthermore any minimal such system
is unique up to isotopy.

Remark. The example from last lecture, M , contains infinitely many non-
isotopic incompressible tori. Hence the uniqueness of Theorem 18.2 requires
that we not cut along tori in Seifert fibred spaces.
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MA4J2 Exercise sheet 6.

Please let me know if any of the problems are unclear or have typos.

Exercise 6.1. [Easy] Suppose that α ⊂ ∂∆ is a simple closed curve in the boundary of
a tetrahedron ∆. Suppose that α is transverse to ∆(1) and meets some edge e ⊂ ∆(1) in
at least two points. Show that there is a component d ⊂ e− n(α) disjoint from ∆(0).

Exercise 6.2. [Old] Suppose that F ⊂ (M,T ) is a closed incompressible embedded
surface. Suppose that M is irreducible. Show that F is isotopic to a normal surface.
[Note that this is a duplicate of Exercise 5.6 from last week.]

Exercise 6.3. [Easy] Using the definition via triangulations or otherwise, show that
lens spaces are orientable.

Exercise 6.4. [Easy] Show that P 3 ∼= L(2, 1). Thus P 3 is orientable.

Exercise 6.5. [Medium] Show that there are exactly two I–bundles over P 2, up to
equivalence. Show that the non-trivial bundle is homeomorphic to P 3 − interior(B3) (a
once-punctured projective space).

Exercise 6.6. We gave three definitions of a lens space in class: as the quotient of
the three-sphere, as the gluing of solid tori, and as the quotient of a lens (that is, of a
three-ball). Show that the three definitions are equivalent by providing the necessary
homeomorphisms. Mind your p’s and q’s!

Exercise 6.7. Suppose that F ⊂M is a properly embedded surface. Suppose that the
induced map on fundamental groups ι∗ : π1(F ) → π1(M) is injective. Show that F is
incompressible.

Exercise 6.8. [Medium] Show that the the three-sphere S3 and the three-ball B3 are
atoroidal. Show that the solid torus D × S1 is atoroidal. Show that T 3 is toroidal.

2011/02/13 1



MA4J2 Three Manifolds

Lectured by Dr Saul Schleimer
Typeset by Matthew Pressland

Assisted by Anna Lena Winstel and David Kitson

Lecture 19

Suppose F ⊂ M is properly embedded, and M is compact, irreducible and
orientable. Recall that (D, ∂D) ⊂ (M,F ) is a surgery disk for F if D∩F = ∂D.
D is trivial if ∂D bounds a disk in F . If D is not trivial, then it is a compressing
disk for F .

Definition 19.1. A disk D with ∂D = α ∪ β such that α and β are connected
and α ∩ β = ∂α = ∂β is a bigon; see Figure 1.

Figure 1: A bigon D.

Definition 19.2. Say D ⊂ M is a surgery bigon for F ⊂ M if D is a bigon,
D ∩ F = α and D ∩ ∂M = β. Say that D is trivial if there is a bigon D′ ⊂ F
so that ∂D′ = α′ ∪ β′, α = α′ and D′ ∩ ∂M = β′, as in Figure 2. If D is not
trivial, call it a boundary compressing bigon, or simply a boundary compression.

Figure 2: D is a trivial surgery bigon. Note that D′ is not properly embedded
in M but contained entirely in F .

1



Recall that a two-sided simple closed curve α ⊂ F 2 is essential if α does not
bound a disk on either side (Figure 3(a)). A sphere S ⊂ M3 is essential if it
does not bound a three-ball on either side (Figure 3(b)). If M is irreducible then
a disk (D, ∂D) ⊂ (M,∂M) is essential if ∂D is essential in ∂M (Figure 3(c)).

Figure 3: (a) All the green curves here are essential. (b) Here S is essential in
M . (c) These disks are essential in M .

Definition 19.3. Suppose that S ⊂ M is a properly embedded, connected,
two-sided surface that is not a disk or a sphere. We say S is essential if it is
incompressible and boundary incompressible.

Definition 19.4. If all surgery disks are trivial, we call F incompressible; sim-
ilarly, if all surgery bigons are trivial, call F boundary incompressible.

Exercise 19.1. Suppose S ⊂ M is an essential surface. Show that ∂S ⊂ ∂M
is essential.

Proposition 19.1. If S ⊂ D2 × S1 is essential then S is isotopic to D2 × {z}
for some z ∈ S1.

Proof. Let µz = ∂D2×{z}. We call µz the meridian curves. Abusing notation,
let D = D2×{1}. Then by Exercise 19.1, ∂S is essential so we may isotope com-
ponents of ∂S so that all are either equal to meridian curves, or are transverse
to all meridian curves, as in Figures 4(a) and (b).

Figure 4: (a) Here the component of ∂S is meridian curve. (b) Here ∂S is
transverse to all meridian curves.
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Thus, we may assume that ∂S is transverse to µ1, and via isotopy relative
to ∂M , we may assume that S is transverse to D. Then S ∩D is a collection of
arcs and loops, as in Figure 5.

Figure 5: S ∩D is a collection of arcs and loops.

We proceed as follows:

Step 1: First suppose α ⊂ D∩S is an innermost loop, so α bounds a disk D1 ⊂ D
such that D1 ∩ S = ∂D1. So D1 is a surgery disk for S and thus, as
S is incompressible, there is a disk E ⊂ S with ∂E = ∂D1 = α, as in
Figure 6(a). So D1 ∪ E is a 2–sphere. As D × S1 is irreducible, D1 ∪ E
bounds a 3–ball B, so there is an isotopy supported in n(B) moving E
past D1; see Figure 6(b). This gives an isotopy of S, reducing |S ∩ D|.
So without loss of generality, we may assume that D ∩ S consists only of
arcs.

Figure 6: (a) E∪D1 bounds a 3–ball B, so (b) we may isotope E through n(B)
past D1 to reduce |S ∩D|.

Step 2: Now suppose α ⊂ D ∩ S is an outermost arc. So α cuts off from D a
surgery bigon D1. Since S is boundary incompressible, α cuts off a bigon
E from S. Let γ = E ∩ ∂(D×S1) and β = D1 ∩ ∂(D×S1). See Figure 7.
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Figure 7: (a) α cuts a surgery bigon D1 from D and E from S. (b) A plan view
of (a).

Notice that D1 ∪ E is a disk, with D1 ∩ E = α. Thus D1 ∪ E lifts to
áD × S1 ∼= D × R, as in Figure 8.

Figure 8: D1 ∪ E lifts toáD × S1 ∼= D × R.

Let h : D × R→ R be projection to the second factor, and notice that:

h(∂+γ) = h(∂−γ)

as ∂±γ ∈ ∂D. So by Rolle’s theorem, (h|γ)′ has a zero, so γ is not
transverse to µz for some z ∈ S1, giving a contradiction. Thus without
loss of generality, we may assume S ∩D = ∅.

Step 3: Next, define B = (D×S1)−n(D). This is a 3–ball, and S ⊂ B. Pick any
component δ ⊂ ∂S. So δ divides ∂B into disks C and C ′. So push C, say,
into B, keeping ∂C inside of S. This gives a disk in the interior of B. See
Figure 9. If C ∩ S 6= ∂C, then we may isotope S, as in Step 1, to reduce
|S ∩ C|. So C gives a surgery disk for S. Thus S is a disk.

Figure 9: Push C into B (keeping ∂C inside of S) to get a disk in the interior
of B.
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Finally, Alexander’s theorem implies that S is isotopic to D × {z} for some
z ∈ S1, fixing δ pointwise.

Note. All surgery disks for S2 are trivial, and all surgery disks and bigons for
D2 are trivial, hence they are excluded from the statement of Proposition 19.1.

Definition 19.5. Suppose (α, ∂α) ⊂ (A2, ∂A2) is an arc in an annulus. It is
trivial if it cuts a bigon off of A, and essential otherwise. See Figure 10.

Figure 10: (a) A trivial arc. (b) An essential arc.

Lecture 20

Exercise 20.2. Suppose F ⊂ M is two-sided and incompressible. Suppose
D ⊂M is a surgery bigon for F and suppose FD is the result of surgery. Show
that FD ⊂M is incompressible.

Exercise 20.3. Deduce from the above that if ρ : T → F is an I–bundle then
∂hT is boundary incompressible.

Lemma 20.2 (1.10 in Hatcher). Suppose that S ⊂M is a connected, two-sided,
incompressible surface, and M is irreducible. Suppose S admits a boundary
compressing bigon D with ∂D = α ∪ β, α = D ∩ S, β = D ∩ ∂M and β
is contained in a torus component T ⊂ ∂M . Then S is a boundary parallel
annulus.

Proof. By Exercise 19.1, ∂S ∩ T is essential in T . Let A = T − n(∂S), so A is
a collection of annuli. So β ⊂ A is either trivial or essential, as in Figure 11(a).

Case 1: Suppose that β ⊂ A is trivial. So β cuts a bigon E off of A. Then D ∪E
is a disk. Isotope D ∪E, keeping ∂(D ∪E) in S, to get a surgery disk for
S; see Figure 11(b).
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Figure 11: (a) β1 is essential while β2 is trivial. (b) Trivial arcs define a surgery
bigon for S.

Since S is incompressible, D ∪ E cuts a disk D′ out of S, and hence D
was a trivial surgery bigon, as in Figure 12.

Figure 12: D ∪ E cuts a disk D′ from S and so D is trivial.

Case 2: Suppose β is essential in A. If ∂B is contained in a single component of
∂S, then S is one-sided, giving a contradiction. To see this, we can orient
β and ∂S so that both intersections have positive sign, as in Figure 13.

Figure 13: We can orient β and ∂S so that both intersections have positive sign.

Then following α we find that S is one-sided, as in Figure 14.
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Figure 14: Carrying the orientation along α gives a different orientation to
carrying along ∂S, a contradiction.

So we have that β connects distinct components of ∂S, as in Figure 15.

Figure 15: β connects distinct components of ∂S.

Boundary compress S along D to get SD. Note that SD is incompressible,
by Exercise 20.2, and that SD has a trivial boundary component, so SD
is a disk. To see this, say ∂SD bounds E in T . So isotope E into E′ in
M , keeping ∂E in SD, as in Figure 16.

Figure 16: Cutting along β gives two components of ∂Sβ , and the identification
gives a trivial curve in ∂SD.

Since SD is incompressible, ∂E′ must cut a disk out of SD, so SD is a
disk. Since M is irreducible, SD is boundary parallel; in fact it is parallel
to the original E.
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Figure 17: SD is boundary parallel.

So SD cuts a 3–ball B out of M . Letting V = B ∪ N(D), this is a solid
torus, giving a parallelism of S with the annulus A, as in Figure 18.

Figure 18: S is boundary parallel to the annulus A.

Definition 20.6. Suppose that (M,F) is Seifert fibred. Then we say that a
properly embedded surface S ⊂ M is vertical if S is a union of fibres, and it
is horizontal if S is transverse to the fibres. We make the same definitions for
S ⊂ T for an I–bundle ρ : T → F .

Exercise 20.4. All essential surfaces S ⊂ T , where ρ : T → F is an I–bundle,
are isotopic to either vertical or horizontal surfaces.

Lecture 21

Lemma 21.3 (1.11 in Hatcher). Suppose that (M,F) is compact, connected
and irreducible. Supppose S ⊂ M is essential. Then after a proper isotopy, S
is either vertical or horizontal.

Proof. Let Z := {αi}ki=1 be the set of singular fibres of F ; if M has no singular
fibres, and ∂M = ∅, then let {α1} be a single generic fibre. Let M0 = M−n(Z).
Let B = M/S1 and let B0 = M0/S

1. Note that ∂B0 6= ∅. In fact B0 is B with
neighbourhoods of cone points removed, as in Figure 19.
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Figure 19: B0 is B with neighbourhoods of cone points removed.

Example 21.1. If M = Vp,q then Z is just the central fibre. Then M0 = A2×S1

and B0 = A2; See Figure 20.

Figure 20: M0 = A2 × S1 and B0 = A2.

Choose a system of arcs in B0 cutting B0 into a disk, i.e. as in Figure 21.

Figure 21: We may choose a system of arcs cutting B0 into a disk.

LetA ⊂M0 be the vertical annuli above this system of arcs. SoM0−n(A) =: M1

is a solid torus, fibred by F|M1, with all fibres generic. Given an essential surface
S, all components of ∂S are essential in ∂M .

(i) We may isotope them to all be vertical or horizontal with respect to the
fibring F|∂M .

(ii) Isotope S (relative to ∂S) so that S meets Z transversely, and so meets
n(Z) in horizontal disks. Define S0 = S ∩M0, and make S0 intersect A
transversely. Consider the arcs and loops of S0 ∩A, as in Figure 22.
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Figure 22: (a) An essential loop. (b) Trivial loops. (c) Trivial arcs. (d) An
essential arc.

(iii) If there is a trivial loop, then there is an innermost such. Now, using
incompressibility of S and irreducibility of M , there is an isotopy of S
reducing |S ∩ A| as usual. So without loss of generality, there are no
trivial loops.

(iv) Suppose β ⊂ S ∩A is an outermost trivial arc and let D be the bigon cut
our of A by β. If ∂β ⊂ ∂M then D is a surgery bigon for S, but as in
Proposition 19.1, ∂S is either contained in or transverse to F|∂M , giving
a contradiction. To see this, since S is boundary incompressible, there is
a bigon E contained in S, as in Figure 23.

Figure 23: γ is parallel to the fibres.

So letting ∂E = β ∪γ′, we find that γ′ is not transverse to F|∂M . On the
other hand, if ∂β ⊂ ∂M0 − ∂M , then a baseball move across D reduces
|S∩(Z)| by two. Now without loss of generality, every component of S∩A
is either horizontal or vertical.
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Figure 24: A baseball move across α reduces |S ∩ Z| by 2.

(v) Define S1 = S0 ∩M = S0 − n(A). So ∂S1 ⊂ M1 is completely horizontal
or completely vertical. We may assume that S1 is incompressible in M1.
Thus S1 is either a collection of horizontal meridian disks, or a collection
of boundary parallel annuli. If S1 contains an annulus with slope that of
the meridian, then S1 is compressible. If S1 contains an annulus B ⊂ S1

with ∂B horizontal, then we see a surgery bigon with vertical boundary.
So do a baseball move and return to case (iv).

Figure 25: If S1 contains an annulus B with ∂B horizontal, we may do a baseball
move and reduce to case (iv).

So S1 is now a collection of horizontal meridian disks, or a collection of
boundary parallel vertical annuli. It follows that S0, and so S, is either
horizontal or vertical.

Remark. Vertical surfaces are easy to classify. They are orientable or not, and
the base is I or S1.

Base Orbifold I S1

A2 T 2 orientable
M2 K2 non-orientable
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MA4J2 Exercise sheet 7.

Please let me know if any of the problems are unclear or have typos.

Exercise 7.1. Suppose that M,N are three-manifolds, F,G ⊂ ∂M, ∂N are components
of their boundaries, and φ, φ′ : F → G are isotopic homeomorphisms. Define Y = M∪φN
and Y ′ = M ∪φ′ N . Show that Y is homeomorphic to Y ′.

Exercise 7.2. Using Exercise 5.3 or otherwise, classify essential curves in the Klein
bottle K2.

Exercise 7.3. Let V = D × S1 be a solid torus and let T be the orientation I–bundle
over K2. Suppose that φ : ∂V → ∂T is a homeomorphism. Then Mφ = V ∪φ T is called
a prism manifold. Show that prism manifolds are double covered by lens spaces (or
S2 × S1).

Exercise 7.4. [Hard] Show that S2 × S1 and also the quarter-turn space are prism
manifolds.

Exercise 7.5. Suppose that (M,F) is a oriented three-manifold equipped with a Seifert
fibering. Show that the singular fibers are isolated and lie in the interior of M . Thus, if
M is compact then there are only finitely many singular fibers.

Exercise 7.6. Find the Seifert fibering of the knot complement XK where K = K(p, q)
is a torus knot. Compute the number of singular fibers, their multiplicities, and the base
orbifold.

Exercise 7.7. Find a Seifert fibering of the lens space L(p, q). Compute the number of
singular fibers and multiplicities as well as the base orbifold of your fibering.

Exercise 7.8. Consider the two tetrahedra shown Figure 1. Does the given triangulation
determine a three-manifold? If it does not, give a reason. If it does, recognize the manifold.

Figure 1: The front faces on the left are glued to the back faces on the right; likewise
the back faces on the left are glued to the front faces on right. In this example, the face
pairings are determined by the edge identifications but this does not hold in general.
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Lecture 22

Notation. Suppose F is not orientable. Let F ∼× I denote the orientation I–
bundle over F . Likewise define F ∼× S1.

Exercise 22.1. Show that P 2 ∼× I is homeomorphic to P 3 − int(B3).

We now discuss orbifolds.

Definition 22.1. We say that B = (S,Z) is an 2–orbifold if S is a surface and
Z ⊂ int(S) is a finite set such that for every z ∈ Z we have an order pz ∈ Z+.
We call Z the singular set. A point z ∈ Z is a cone point if pz > 1.

Example 22.1. A surface is an orbifold with Z = ∅.

Example 22.2. The square pillow case, S2(2, 2, 2, 2), shown in Figure 1, is an
orbifold.

Figure 1: A picture of the square pillow case S2(2, 2, 2, 2).

Definition 22.2. If S is a surface with a triangulation T then we define the
Euler characteristic of S to be χ(S) = V −E +F where V denotes the number
of vertices, E the number of edges and F the number of triangles (faces).

Exercise 22.2. Show that χ stays unchanged under the Pachner moves. Fig-
ure 2 shows the Pachner moves. Since any two triangulations of a fixed closed
surface are related by Pachner moves, the Euler characteristic is independent of
the choice of T .
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Figure 2: The Pacher moves.

Example 22.3. You can see by the triangulation shown in Figure 3(a) that
χ(S2) = 4− 6 + 4 = 2. Similarly, Figure 3(b) shows that χ(T 2) = 1− 3 + 2 = 0.

Figure 3: (a) A triangulation of a 2–sphere. (b) A triangulation of the 2–
dimensional torus.

Definition 22.3. We define the Euler characteristic of an orbifold via

χorb(B) = χ(S) +
∑
z∈Z

(
1

pz
− 1

)
.

Example 22.4. χorb(S2(2, 2, 2, 2)) = 2 + 4(1/2− 1) = 0.

Exercise 22.3. List all 2–orbifolds B so that χorb(B) = 0.

Exercise 22.4. What can you say about B so that χorb(B) > 0?

Orbifold Covers

Example 22.5. The map from D ⊂ C→ D which sends z to zn is an orbifold
map of order n. In Figure 4, n = 3.

Figure 4: The map z 7→ z3 from D ⊂ C to itself is a three-fold cover.
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Definition 22.4. If C,B are 2–orbifolds then ϕ : C → B is a cover if

1. ϕ−1(ZB) = ZC ,

2. ϕ|(C − ZC) : C − ZC → B − ZB is a d–fold cover and

3. for every point z ∈ ZB , we have d/pz =
∑

y∈ϕ−1(z)

1/py.

Note that ϕ restricted to any regular neighbourhood of a point z ∈ ZC is
modelled on the example z 7−→ zn.

Example 22.6. The quotient of T 2 via the 180◦ rotation shown in Figure 5 is
a degree two orbifold cover.

Figure 5: The quotient map of the 2–dimensional torus via the 180◦ rotation.

Exercise 22.5. Show that if ϕ : C → B is a d–fold orbifold cover then χorb(C) =
d · χorb(B). As warm-up, show that if ϕ : T → S is a d–fold cover of surfaces
then χ(T ) = d · χ(S).

Exercise 22.6. List all 2–fold covers of S2(2, 2, 2, 2).

The following question is known as the Hurwitz problem and still open in
general: Given B,C such that χorb(C)/χorb(B) ∈ {2, 3, 4, . . .} does there exists
a d–fold cover?

Example 22.7. For n ≥ 2, S2(n) is a bad orbifold, meaning it is not covered
by a surface. Hence S2(n) is not covered by S2. You can also see this because
2/(2 + (1/n− 1)) /∈ N.

We now return to our original topic, horizontal surfaces. Suppose that S ⊂
(M,F) is horizontal. As in the proof of Lemma 21.4, we may form M ⊃M0 ⊃
M1 and S ⊃ S0 ⊃ S1. Let λ be any generic fibre and d = |S ∩ λ|, so S1

is a collection of d horizontal disks. Recall that Z is the set of all singular
fibres. Thus S∩ (N(Z)) is also a collection of disks. Then S is formed by gluing
horizontal disks along horizontal loops in ∂N(Z) and horizontal arcs in A. Thus
the quotient ρ : M →M/S1 = B restricts to S to give a d–fold cover ρ : S → B.
So

χ(S) = d · χorb(B) = d ·

(
χ(B) +

∑
z∈Z

(
1

pz
− 1

))
.

Proof. See Hatcher.
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Lecture 23

To answer the question of a student, we will expand the definition of a boundary
compression.

Definition 23.5. Suppose S ⊂ ∂M is a subsurface. Then we say S is boundary
compressible if there is a bigon D with ∂D = α ∪ β so that D ∩ S = α, D ∩
∂M − S = β and α does not cut a bigon out of S. Say that S is boundary
incompressible if no such bigon exists.

Now we continue our discussion of horizontal surfaces. Suppose that S ⊂
(M,F) is two-sided, horizontal and connected. Then we get the following corol-
lary of Proposition 21.3 (1.11 in Hatcher).

Corollary 23.1. The manifold M − n(S) is an I–bundle.

Proof sketch. Recall that S1 was a collection of horizontal disks in M1
∼= D×S1.

So n(S1) cuts M1 into cylinders foliated by intervals. The vertical sides of these
solid cylinders glue to give the desired I–bundle.

Let ρ : M − n(S) −→ F be the I–bundle map. Then there are two cases.

1. The manifold M − n(S) is connected. So M − n(S) ∼= S × I and thus
∂h(M − n(S)) = S t S and so F ∼= S and we find that M is an S–bundle
over S1. See Figure 6.

Figure 6: A picture of M − n(S) as an S–bundle over S1. The blue curve
represents a generic fibre.

So the I–fibres in N(S) and in M − n(S) glue to give the Seifert fibring,
F . I.e., there is a monodromy (a homeomorphism ϕ : S −→ S) such
that M ∼= S × I/(x, 1) ∼ (ϕ(x), 0) =: Mϕ and finally S/ϕ ∼= B. The
monodromy is periodic of period d = |S ∩ λ|, i.e. ϕd = IdS . See Figure 7.
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Figure 7: M = (M − n(S)) ∪N(S) ∼= Mϕ. Here ϕ has periodicity 4.

Example 23.8. Let ϕ be the hyperelliptic involution on the 2–torus
shown in Figure 5. This is periodic.

Example 23.9. Glue the cube as shown in Figure 8 and note that planes
parallel to the xy–plane glue to give tori.

Figure 8: A cube with face pairings. The front and back are glued by the identity
as are the left and right face. The bottom and top face are glued together by a
180◦ rotation.

Note that intervals parallel to the z–axis glue to give circles, 4 of length 1
and the rest of length 2.

Figure 9: A picture of the different circles achieved by gluing intervals parallel
to the z–axis. The gluings of the vertical faces are the same as in Figure 8 and
are omitted.
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All of the singular fibres in Figure 9 have length one, while all other
vertical circles have length two. All other vertical circles have length 2.
So B ∼= S2(2, 2, 2, 2) is the base orbifold, double covered by double covered
by any horizontal surface, all of which are tori. See Figure 10.

Figure 10: The base orbifold is a copy of the square pillow case: B ∼= M/S1 ∼=
S2(2, 2, 2, 2), and double covered by T .

2. If M − n(S) has two components then each is a twisted I–bundle over F
and these glue to N(S) ∼= S×I giving a semibundle (also called a fibroid).
See Figure 11.

Figure 11: A picture of the two twisted I–bundles over F .

So letting T1 and T2 be the two I–bundles, we obtain M by gluing T1 and
T2 to N(S) and find involutions τi : S −→ S such that Ti = S× I/(x, 0) ∼
(τi(x), 0). Here the homeomorphism ϕ = τ1 ◦ τ2 is again periodic.

Example 23.10. As an exercise, we showed that P 3− int(B3) = P 2 ∼× I.
Here ∂hT ∼= S2 and the involution τ is the antipodal map. So if we con-
sider T1 ∪S T2 where Ti ∼= P 2 ∼× I, we find that P 3 # P 3 is Seifert fibred.
Check that τ1 ◦ τ2 = τ2 = ϕ = IdS and so it is periodic.

Figure 12: A picture of the gluing of T1 ∪S T2.
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Example 23.11. Consider the cube with face pairings given in Figure 3. Notice
that the intervals parallel to the x–axis also define a Seifert fibring with B = K2,
the Klein bottle, and all fibres are generic, as in Figure 13(a). The planes
y = 1/4 and y = 3/4 define a 2–torus S ⊂M and M−n(S) has two components,
both homeomorphic to K ∼× I.

Figure 13: (a) Intervals parallel to the x–axis give a fibring with B = K2. (b)
Both components of M − n(S) are homeomorphic to K2 ∼× I.

Exercise 23.7. Check that these planes give a 2–torus with the claimed prop-
erties. Find the involutions τ1, τ2.

Lecture 24

Recall that every essential arc in A2 ∼= S1 × I is isotopic to {pt} × I, as in
Figure 14.

Figure 14: An essential arc in an annulus.

Exercise 24.8. Classify up to isotopy the essential arcs and loops in #3D
2,

the pair of pants.

Figure 15: Two diagrams of the Pair of Pants.
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Recall that if X = XK where K = Kp,q is the (p, q)–torus knot then B =
X/S1 is the orbifold D2(p, q).

Exercise 24.9. Classify essential arcs and loops in D(p, q). Deduce that the
only essential vertical annulus in X is A = VK ∩WK . (Care is required if p or
q is equal to 2, as then X contains a vertical Mobius band.)

Figure 16: A diagram of D2(p, q). Note that the A here is the projection of the
annulus into the orbifold.

Exercise 24.10. Use orbifold Euler characteristic to show that any horiontal
surface S ⊂ X has χ(X) ≤ p + q − pq < 0 as p, q ≥ 2 and p 6= q. Deduce that
X is atoroidal and A is the unique essential annulus in X, up to isotopy.

Exercise 24.11 (Harder). Use Exercise 24.10 to prove that

g(Kp,q) =
(p− 1)(q − 1)

2

where g(K) is the minimal genus of a spanning surface for K.

Furthermore, X is a surface bundle over S1 with monodromy of order pq.
To show this, let S be the minimal spanning surface and consider X − n(S).

Aside. To answer the question of a student, we define the Euler characteristic
of an n–manifold.

Definition 24.6. We define χ(Mn) by taking a finite triangulation of M
and setting χ(M) =

∑n
k=0(−1)k|T (k)| where |T (k)| denotes the number of k-

simplices in the image ‖T‖.

Proposition 24.2 (1.12 in Hatcher). Suppose (M,F) is compact, connected
and Seifert fibred. Then M is irreducible or M is homeomorphic to one of
S2 × S1, S2 ∼× S1 or P 3 # P 3.

Proof. Suppose S ⊂ M is an essential 2–sphere. Following the proof of Propo-
sition 23.1 (1.11 in Hatcher) with surgery of essential surfaces replacing isotopy
of essential spheres, we find an essential 2–sphere S′ such that S′ is vertical or
horizontal. Since S′ is not A2, T 2,M2 or K2, we find S′ must be horizontal.

1. If S′ is non-separating, then M − n(S′) is homeomorphic to S2 × I. So
M ∼= S2 × S1 or S2 ∼× S1.

2. If S′ separates, then it is an exercise to show that M ∼= P 3 # P 3.
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Proposition 24.3 (1.13 in Hatcher). Let (M,F) be as above. Then

1. every horizontal 2–sided surface is essential and

2. every vertical 2–sided surface is essential except for tori bounding fibred
solid tori and boundary parallel annuli cutting off fibred solid tori.

Proof. Suppose that D is a surgery disk or bigon for S ⊂M .

1. Suppose S is horizontal. By the previous discussion, M − n(S) is an
I–bundle and D gives a surgery for ∂h(M − n(S)). But the horizontal
boundary of an I–bundle is always essential.

Exercise 24.12. The horizontal boundary of an I–bundle is always es-
sential.

2. Suppose S is vertical. So D gives a surgery in M ′ ⊂M − n(S) where M ′

is the component of M−n(S) containing D. Suppose D is essential. Since
D ⊂ M ′ is essential, D must be vertical or horizontal, hence horizontal.
Let B = M ′/S1.

Exercise 24.13. Show that B is a disk with at most one orbifold point.
Hint: use that d · χorb(B) = χ(D) = 1.

Thus M ′ is a solid torus. If D was a bigon, then, as D ∩ ∂M = D ∩ ∂M ′
is a single arc, the fibring of M ′ is the trivial fibring, so M ′ ∼= V1,0.
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MA4J2 Exercise sheet 8.

Please let me know if any of the problems are unclear or have typos.

Exercise 8.1. Let P ∼× I be the orientation I–bundle over the projective plane. Show
that P ∼× I is homeomorphic to P 3 #B3, a punctured projective space.

Exercise 8.2. Suppose that S ⊂ V is a surface properly embedded in a handlebody V .
Show that S is compressible, is boundary compressible, is a disk or is a sphere.

Exercise 8.3. [Easy] Suppose that S ⊂M is a connected incompressible surface (not a
disk). Show that if ∂S 6= ∅ then every component of ∂S is essential in ∂M .

Exercise 8.4. Suppose that F ⊂ M is incompressible. Suppose that the bigon D is
a boundary compression for F . Show that FD, the surgery of F along D, is again
incompresible.

Exercise 8.5. Suppose that ρ : T → F is an I–bundle. Show that ∂hT and ∂vT are
boundary incompressible. [If ∂F 6= ∅ and if ∂hT is not connected then the components
are, individually, boundary compressible. Likewise, the “1/2–section” (zero-section) is
boundary compressible in T .]

Exercise 8.6. [Hard] Suppose that ρ : T → F is an I–bundle. Show that any essential
surface S ⊂ T , that is not a disk, may be isotoped to be either vertical or horizontal.
[Hint: there is a proof modelled on the proof of Proposition 1.11 from Hatcher.]
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Lecture 25

Lemma 25.1 (1.14 in Hatcher). Let A ⊂ (M,F) be an essential annulus. Then
A can be properly isotoped to be vertical with respect to F , possibly after changing
F if M is T × I, T ∼× I, K × I or K ∼× I.

Proof. Since A is essential, it may be isotoped to be vertical or horizontal.
Suppose A is horizontal. So M −n(A) is an I–bundle with annuli as horizontal
boundary components.

(i) If M − n(A) is connected, then M − n(A) ∼= A× I. So

M = A× I/(x, 1) ∼ (ϕ(x), 0) =: Mϕ,

as in Figure 1.

Figure 1: M = (A× I)/((x, 1) ∼ (ϕ(x), 0)).

But there are only four possibilities for ϕ, up to isotopy: the identity,
reflections switching or preserving the boundary components, and the ro-
tation given by composing these reflections. See Figure 2.
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Figure 2: The three non-trivial possibilities for ϕ.

Exercise 25.1. Show that MCG(A) = Z2 ⊕ Z2. Here MCG(S) is the
mapping class group of S, the group of homeomorphisms of S, up to
isotopy.

These four maps give the four exceptions.

Exercise 25.2. Check this.

(ii) If M − n(A) has two components, as in Figure 3, then M − n(A) ∼=
M2 ∼× I tM2 ∼× I.

Figure 3: M − n(A) may have two components.

Note that M2 ∼×I is a cube with a pair of opposite faces glued by a π twist,
shown in Figure 4.

Figure 4: A picture of M2 ∼× I.

Exercise 25.3. Find the Möbius bands in this cube.

It is again an exercise to show that all four gluings give K ∼× I with base
orbifold D2(2, 2).
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Note. We have an exact sequence of groups: S1 → K ∼× I → D2(2, 2)

1 - Z - π1(K2) - D∞ - 1

1 -
¬
a2
¶

-
¬
a, b | a2 = b2

¶
-

¬
a, b | a2 = b2 = 1

¶
- 1

coming from the long exact sequence for the Seifert fibering. See Theorem 4.41
page 276 of Hatcher’s Algebraic Topology for more details.

Lemma 25.2 (1.15 in Hatcher). Let (M,F) be as above. Then the slopes of
F|∂M are determined by M only, unless M is Vp,q or one of the four exceptions
above.

Proof. If ∂M = ∅ then we have nothing to prove. If B = M/S1 has no essential
arcs, then B = D2(p).

Exercise 25.4. Check this.

Then M ∼= D × S1 and we are done. So let α ⊂ B be an essential arc. See
Figure 5.

Figure 5: Two examples of essential arcs in (a) where B = D2(p, q, r) with
p, q, r > 1, and (b) where B = T 2#D2(p).

Let A ⊂M be the vertical annulus above α. In this case:

(i) A is essential by Lemma 1.13 in Hatcher.

(ii) A is vertical in any fibering of M , with exceptions as above, by Lemma
1.14 in Hatcher.

So ∂A is determined by M alone, and we are done.

Remark. Note that in the above we used the fact that solid Klein bottles are
not Seifert fibered spaces.

Exercise 25.5. Show that the solid Klein bottle can be partitioned as a disjoint
union of circles. Show, nonetheless, that the solid Klein bottle cannot be Seifert
fibered.

Exercise 25.6. Show that K × I contains a solid Klein bottle, yet is still a
Seifert fibered space.
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Lemma 25.3 (1.16 in Hatcher). Suppose M is connected, compact, orientable,
irreducible and atoroidal. Suppose A ⊂ M is an essential annulus with ∂A
contained in torus components of ∂M . Then M admits a Seifert fibering.

Proof. Let M,A be as above. Let T be the components of ∂M meeting A. Let
N = N(A ∪ T ). So there are three cases:

(i) A meets two boundary components, T1 and T2, as in Figure 6.

Figure 6: A meets two boundary components.

(ii) A meets a single boundary component without twisting, as shown in Fig-
ure 7.

Figure 7: A meets a single boundary component without twisting.

(iii) A meets a single boundary component with a twist, as shown in Figure 8.

Figure 8: A meets a single boundary component with a twist.

Note. Note that Figures 6, 7 and 8 give a cross section of N . For example in
Figure 6, the entirety ofN is shown in Figure 9. Unfortunately the neighborhood
N , in the third situation, does not embed in R3.
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Figure 9: The whole of N in case (i), of which Figure 6 is a cross section. The
front and back faces and edges are identifed.

Note that N(A) and N(T ) are Seifert fibered, and we may glue these fibrings
to get a fibering of N . Fix F , a component of ∂N − ∂M . In other words, a
component of the frontier of N in M . Note that F ∼= T2.

(i) Suppose that F compresses in M via a disk (D, ∂D) ⊂ (M,F ). Since A
is essential we may arrange via an isotopy to have A ∩ D = ∅. So we
may assume that D ∩ N = ∂D; thus F compresses to the “outside” of
N . So FD is a 2–sphere bounding a ball B ⊂ M . Note that N ⊂ B is
a contradiction as ∂M ∩ ∂N 6= ∅. So X = B ∪ N(D) is a solid torus
attached to F .

(ii) Suppose F is boundary parallel. Say M−n(F ) contains X, with X ∼= F×I
the parallelism. Since A is essential, we find that X ∩N = F , as N ⊂ F
leads to a contradiction.

So the fibering on N extends to a fibering on N ∪ X. We do the same for all
components of ∂N − ∂M .

Exercise 25.7. Read the proof of Theorem 1.9 in Hatcher.

Lecture 26

We now state the Poincaré conjecture, proved by Perelman, following a program
of Hamilton.

Poincaré Conjecture. Suppose M3 is closed and simply connected. Then M
is homeomorphic to S3.

Recall that closed means that M is compact and ∂M = ∅. Simply con-
nected means that M is connected and π1(M) = {1}. Note that the equivalent
statement in dimension two follows from the classification of surfaces and the
Seifert-van Kampen theorem. In dimensions greater than three, the conjecture
was solved previously by (among others) Smale, Stallings, and for dimension
four, Freedman.
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Remark. Poincaré originally conjectured that if H1(M,Z) = 0 then M = S3.
He then gave a counterexample to this, called the Poincaré homology sphere.
Let D be the dodecahedron and let P = D/∼, where we glue opposite faces
with a 1/10 right-handed twist, as in Figure 10.

Figure 10: The Poincaré homology sphere. This diagram is adpated from one
in The Shape of Space by J. Weeks.

Exercise 26.8. Let Γ = π1(P ). Give a presentation of Γ and check that
Γab = 0.

Exercise 26.9. What if we use a 5/10 twist?

Remark. If we use a 3/10 twist we get the Seifert-Weber dodecahedron space.
See Figure 11.

Figure 11: The Seifert-Weber dodecahedron space. This diagram is adapted
from one in The Shape of Space by J. Weeks.

Definition 26.1. We say a knot K ⊂ S3 is spanned by a surface F ⊂ S3 if
F is embedded and two-sided away from ∂F , and ∂F = K. In other words,
the boundary of F wraps exactly once about K. See Figure 12a. Equivalently,
S ⊂ XK is a spanning surface for K if it is two-sided, embedded, |∂S| = 1 and
the following holds. Let N = N(K) and let (D, ∂D) ⊂ (N, ∂N) be a meridian
disk. Let µ = ∂D. Then the transverse intersection µ ∩ ∂S is a single point.
See Figure 12b.
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Figure 12: Diagrams of equivalent definitions of the spanning surface.

Recall that a knot K is the unknot if K is isotopic to a round circle.

Theorem 26.4. Suppose K ⊂ S3 is a knot. The following are equivalent:

(i) K is the unknot.

(ii) K is spanned by a disk E.

(iii) XK = S3 − n(K) is a solid torus.

(iv) π1(XK) ∼= Z.

See Figure 13.

Figure 13: Illustration of Theorem 26.4.

Proof.

(i) =⇒ (ii) Use ambient isotopy.

(ii) =⇒ (iii) Use irreducibility of XK and the fact that (∂XK)E ∼= S2. Note that
E ⊂ XK is essential as ∂E ∩ µ is a point. So if (∂XK)E bounds a 3–ball
B, we have B ∪N(E) ∼= E × S1 is a solid torus.

(iii) =⇒ (i) This follows from Exercises 2.2 and 6.6.
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(iii) =⇒ (iv) Since π1(X × Y ) = π1(X)× π1(Y ), we have π1(XK) ∼= π1(S1) = Z.

(iv) =⇒ (iii) We must show that if M is irreducible, ∂M = T2 and π1(M) ∼= Z, then
M ∼= D × S1. This requires Dehn’s Lemma.

Exercise 26.10. Deduce (iv) =⇒ (iii) from the following lemma.

Dehn’s Lemma (Papakyriakopoulos, 1957). Suppose α ⊂ ∂M is a simple
closed curve, bounding a singular disk in M . Then α bounds an embedded disk
in M .

Loop Theorem. Suppose F is a component of ∂M , and i∗ : π1(F ) → π1(M)
is not injective. Then there is an essential simple closed curve α ⊂ F such that
[α] = 1 ∈ π1(M).

This leads nicely to the following conjecture.

Simple Loop Conjecture. If i : F # M is a two-sided map, and i∗ is not
injective, then there is an essential simple loop in the kernel.

This has been proved by Gabai if M is a surface, and by Hass if M is Seifert
fibered.

Exercise 26.11. Prove the simple loop conjecture when F is two-sided and
properly embedded in M .

Lecture 27

Disk Theorem. Suppose that F ⊂ ∂M is a component, and i∗ : π1(F ) →
π1(M) is not injective. Then there is an essential disk (D, ∂D) ⊂ (M,F ).

Exercise 27.12. Show that the Disk Theorem is implied by the Loop Theorem
and Dehn’s Lemma.

The Disk Theorem is the first “promotion” theorem, among many others. For
example we have the following:

Sphere Theorem. Suppose M is an orientable 3–manifold with π2(M) non-
trivial. Then there is an embedded 2–sphere S ⊂M such that [S] 6= 1 ∈ π2(M).

In general we assume that there is an essential map (F, ∂F ) # (M,∂M).
The corresponding promotion theorem gives us an embedding. For example, F
could be a disk or sphere (due to Papakyriakopoulos), a projective plane (due
to Epstein), an annulus or torus, or indeed any F with χ(F ) ≥ 0.

We now discuss hierarchies. Suppose that M0 = M , suppose that Si ⊂Mi is a
properly embedded two-sided surface, and define:

Mi+1 := Mi − n(Si).

So we have a sequence of manifolds:

M0
S0- M1

S1- M2
S2- · · · Sn−1- Mn.
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Definition 27.2. Call a sequence {Mi, Si} a partial hierarchy if every Si is
essential in Mi.

Note. Some authors only require Si to be incompressible.

The following example demonstrates why we require the Si to be essential.

Example 27.1. Take annuli in V2, the genus 2 handlebody, as in thr right hand
side of Figure 14, and glue them to give M0

∼= V2. Let S0 be the single annulus
given by the image of the two annuli under the gluing map. Then cutting along
S0 gives M1

∼= V2, so we could continue the process indefinitely.

Figure 14: Note that S0 is inside M0, not on the boundary (although ∂S0 ⊂
∂M0).

Equivalently, one can think of V2 as
�
T 2 − n(

�
B2

��
× I, as in Figure 15.

Figure 15: Another way to look at V2.

Cut along A to get the pair of pants ×I, as in Figure 16.

9



Figure 16: Let F = T − int(D) be a once-holed torus. Let G be a pair of pants.
Cutting F × I along a vertical annulus gives a copy of G× I. As F × I ∼= G× I
this could lead to an infinite hierarchy, were we to allow non-essential surfaces.

Definition 27.3. If Mn is a collection of 3–balls, then the partial hierarchy is
simply called a hierarchy.

Example 27.2. Let M0 = T3, thought of as the unit cube in R3 with face
pairings. Let S0 ⊂ M0 be the image of the xy–plane, so S0

∼= T 2. Then
M1
∼= T×I. Let S1 be the image of the yz–plane, so S1

∼= A2, and M2
∼= D×S1.

Let S2 be the image of the zx–plane, a disk. Then M3
∼= B3. See Figure 17.

Figure 17: A hierarchy of length three for the three-torus.

Example 27.3. Let M0 = XK , where K is the (p, q)–torus knot, as shown

in Figure 18, and let S0 = A, the unique essential annulus. Then XK
A→

VK tWK = M1. Now letting S1 be a pair of meridian disks, one in each of VK
and WK , we find that M2

∼= B3
1 tB3

2 . See Figures 19 and 20.
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Figure 18: The (p, q)–torus knot complement, M0.

Figure 19: Compressing disks for VK and WK .

Figure 20: The final stage of the heirarchy.

Definition 27.4. If M is compact, orientable and irreducible, and S ⊂ M is
properly embedded, two-sided and essential, then M is called Haken.

Theorem 27.5. If M is compact, orientable, irreducible and ∂M 6= ∅, then
either M is a 3–ball or M is Haken.

This theorem is implied by the following:

Theorem 27.6. If M is compact, orientable and irreducible, and if

rank(H1(M,Z)) ≥ 1

then M is Haken.
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MA4J2 Exercise sheet 9.

Please let me know if any of the problems are unclear or have typos.

Exercise 9.1. Suppose that ρ : X → F is an I–bundle. Show that X is atoroidal if it is
not homeomorphic to T 2 ∼× I.

Exercise 9.2. List all compact, connected 2–orbifolds B with χorb(B) = 0. Challenge:
can you do the same when the orbifold Euler characteristic is positive?

Exercise 9.3. Find all orbifold double covers of D2(2, 2) and of S2(2, 2, 2, 2).

Exercise 9.4. Suppose that S is a horizontal surface in a Seifert fibered space M . Let α
be any generic fiber and set d = |S ∩ α|. Let B = M/S1. Prove that χ(S) = d · χorb(B).

Exercise 9.5. Show that lens spaces are atoroidal.

Exercise 9.6. Let P = #3D
2 be a pair of pants. Classify, up to proper isotopy, all

essential loops and arcs in P .

Exercise 9.7. Define the solid Klein bottle to be V = D ∼× S1 = D × I/(z, 1) ∼ (z̄, 0);
that is, we glue by a reflection. Show that V admits a partition into circles yet is not a
Seifert fibered space, according to Hatcher’s definition.

Exercise 9.8. Suppose that K = Kp,q is a (p, q)–torus knot, with |p|, |q| > 1. Let
X = XK be the knot exterior. Using the Seifert fibering prove the following statements.

• Any horizontal surface has negative Euler characteristic.

• There are only two essential vertical 2–sided surfaces in X: the boundary parallel
torus and a separating annulus A so that X − n(A) is a pair of solid tori.

Deduce that ∂X is incompressible, X is atoroidal, and A ⊂ X is the unique essential
annulus as stated in Lecture 17. It follows that the numbers |p|, |q| are invariants of the
homeomorphism type of X.

Exercise 9.9. Take K,X as in Exercise 9.8. Show that there is a horizontal surface
F ⊂ X with the following properties.

• The surface F spans K. That is, the boundary ∂F is a single curve, meeting the
meridian of N(K) is a single point.

• The surface F has genus g(F ) = (p− 1)(q − 1)/2.

• There is no orientable spanning surface for K with lower genus.

Since F is non-separating and horizontal it follows that X is an F–bundle over the circle,
with periodic monodromy.
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Lecture 28

Definition 28.1. Suppose M,N are 3–manifolds and D ⊂ ∂M and E ⊂ ∂N
are disks. Let ϕ : D −→ E be an orientation reversing homeomorphism. Then
we define the boundary connect sum of M and N to be M #∂ N := M tN/ϕ.
See Figure 1.

Figure 1: An example of the boundary connect sum.

Recall that ϕ only matters up to isotopy.

Definition 28.2. Suppose V is a handlebody and F = tFi is a collection of
closed orientable surfaces, none of which is a two-sphere. Then C := V #∂

(#∂Fi × I) is a compression body. We define the inner boundary ∂−C =
tFi×{0}C and the outer boundary ∂+C = ∂C − ∂−C.

Example 28.1. See Figure 2.
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Figure 2: Another example of the boundary connect sum. Note that the third
grey surface is a disk while the others are all annuli.

Exercise 28.1. Show that #∂ is associative, commutative and B3 is the unit.

Exercise 28.2. Show that the essential surfaces in C are

• essential disks compressing ∂+C,

• components of ∂−C and

• annuli meeting both ∂+C and ∂−C.

Example 28.2. See Figure 3.

Figure 3: An example of the boundary connect sum.
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Now we demonstrate the existence of short hierarchies, following Jaco. Sup-
pose that M0 is Haken and additionally that ∂M0 is incompressible. Let
S0 ⊂ M0 be a maximal collection of disjoint, non-parallel, closed, incompress-
ible, two-sided surfaces in M0 none of which are spheres. Since M0 is Haken,
S0 is non-empty and it is finite by Haken-Kneser finiteness. See Figure 4.

Figure 4: S0 ⊂M0 is non-empty and finite. It is convenient to take ∂M0 = ∅.

Aside. Note that closed incompressible surfaces, which are not spheres, are
essential.

Note that every component N ⊂M1 := M−n(S0) has boundary with genus
≥ 1. So N contains some essential surface by Theorem 27.5. Let S1 ⊂M1 be a
maximal collection of disjoint, nonparallel, two-sided, essential surfaces in M1:
these are the green lines in Figure 5. Again, S1 cuts every component of M1 and
S1 is finite by Haken-Kneser finiteness in the bounded case. See the addedum
to Exercise 5.5. Define M2 := M1 − n(S1) and let C be any component of M2.

Figure 5: The component C contains an essential surface.

Proposition 28.1. The component C is a compression body.

Proof. Suppose that some component G ⊂ ∂C is compressible into C. So let
Gi, Di be a sequence where G0 = G and Di compresses Gi in the same direction
as D0, into C. Define Gi+1 = (Gi)Di

. So we get a sequence

G0
D0−→ G1

D1−→ · · · Dn−1−→ Gn.

See Figure 6.
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Figure 6: The first few terms in the sequence (Gi, Di).

Note that Gi+1 may be disconnected, as in Figure 7.

Figure 7: Gi+1 may be disconnected.

Claim. If some component of Gn is a 2–sphere then it bounds a 3–ball in C.

Proof sketch. M is irreducible, thus C is irreducible as well.

So cap off such 2–spheres, deleting them from Gn.

Claim. The closed surface Gn is incompressible in M .

Proof. As Gn is last in the sequence, Gn cannot compress into C. So suppose
E is a surgery disk for Gn in the other direction. See Figure 8.

Figure 8: E is a compressing disk for Gn in the other direction. C is all of the
grey area.

4



Then we can do the following: Isotope E off of S0, then off of S1 and then
off of {Di}. It follows that E is a surgery disk for Gn in the compression body
cobounded by G0 and Gn. Thus Gn is the inner boundary of this compression
body and so is essential. Thus E is trivial, as desired.

To finish the proposition, deduce that the components of Gn are parallel to
components H ⊂ S0 since Gn is essential, closed and disjoint from S0 (as it lies
in C). Again see Figure 8.

Now let S2 ⊂ M2 be a collection of essential disks, cutting all compression
bodies into products. Let S3 ⊂ M3 be a collection of vertical annuli (one per
product). Finally S4 ⊂M4 is a collection of disks cutting all handlebodies into
3–balls, as in Figure 9. This proves the existence of short hierarchies.

Figure 9: S3 is a collection of vertical annuli; cut along these annuli to get a
collection of handlebodies. Then cutting along S4 gives a collection of 3-balls.

Lecture 29

In this lecture, we again follow Lackenby.

Definition 29.3. A boundary pattern P for M3 is a trivalent graph embedded
in ∂M . We allow P to be the empty set, to be disconnected and to have simple
closed curves as components.

Example 29.3. Trivalent graphs in S2 = ∂B3 are patterns for B3. See Fig-
ure 10.
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Figure 10: Six examples of trivalent graphs in S2. Note that (e) is a disconnected
pattern.

Suppose (M,P ) is a manifold equipped with a boundary pattern. Suppose
S ⊂ M is properly embedded and ∂S is transverse to P . So ∂S misses the
vertices of P and intersects the edges of P transversely. Let N = M −n(S) and
let

Q = (P − n(S)) ∪ ∂S+ ∪ ∂S−.

So Q is a pattern for N and we write (M,P )
S−→ (N,Q). See Figure 11.

Figure 11: A picture of the cutting.

Definition 29.4. Let P be a boundary pattern for M . Then we call P essential
if for any (D, ∂D) ⊂ (M,∂M) with ∂D transverse to P and |∂D ∩ P | ≤ 3 we
have

• a disk E ⊂ ∂M such that ∂E = ∂D and

• the intersection E ∩ P contains at most one vertex of P and contains no
cycles of P .

Exercise 29.3. Verify that if P is essential then we get the implications shown
in Figures 12 to 15:
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Figure 12: The case ∂D ∩ P = ∅.

Figure 13: The case |∂D ∩ P | = 1 is not possible.

Figure 14: The case |∂D ∩ P | = 2.

Figure 15: The case |∂D ∩ P | = 3.

Exercise 29.4. Analyse the examples of (B3, P ) given above. Which are, and
which are not, essential?

Exercise 29.5. Give necessary and sufficient conditions for P to be an essential
pattern for B3.

Example 29.4. If M0 = T3 = I3/∼ then S0 = {z = 0} is an essential torus,
S1 = {x = 0} ⊂ M1 is an essential annulus and S2 = {y = 0} ⊂ M2 is an
essential disk. We can see this in Figure 16.
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Figure 16: Pictures of these cuttings with boundary patterns. For M3, P3 is
the 1–skeleton of the cube.

Definition 29.5. Let P ⊂ ∂M be a pattern. We say P is homotopically
essential if the following condition hold. For any map f : (D, ∂D) −→ (M,∂M)
(which need not be an embedding) transverse to P , we define Z = Zf = ∂D ∩
f−1(P ). If |Z| ≤ 3 then there is a homotopy H : D × I −→M such that

• for all t: Ht|Z = f |Z,

• H0 = f ,

• H1(D) ⊂ ∂M and finally

• H1(D) contains at most one vertex of P and contains no cycles of P .

Exercise 29.6. If P is homotopically essential, then P is essential.

Theorem 29.1 (9.1 in Lackenby). If P is essential, then it is homotopically
essential.

We will indicate a proof, using special hierarchies, in the next lecture.

Exercise 29.7. Theorem 29.1 implies the Disk Theorem. As a hint, recall that
we allow P = ∅.

Lecture 30

We pause to give another example of a hierarchy.

Example 30.5. Consider the knot K ⊂ S3 shown in Figure 17: the (1, 1,−3)–
pretzel knot. The surface shown is a spanning surface for K. This is one of the
two so-called checkerboard surfaces for this diagram of K.
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Figure 17: A diagram of the (1, 1,−3)–pretzel and S, one of its two checkerboard
surfaces.

Near a twist we see a half-twisted band, as in Figure 18.

Figure 18: A half twisted band.

Let N = N(K) be a regular neighbourhood and write X = XK = S3−n(K).
See Figure 19. Let S0 be the remains of the spanning surface in X.

Figure 19: (a) A picture of N(K), S0 and (b) N(S0).

Let M0 = X and cut M0 along S0 to get M1. Thus, as M1 is a genus two
handlebody, we find that ∂S±0 gives a pattern to ∂M1, shown in Figure 20.
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Figure 20: A pattern to ∂M given by ∂S±. Note that M1 is the handlebody on
the outside.

The two components of P in ∂M1 cobound an annulus, the remains of ∂N .
We take S1 to be the union of a pair of disks as in Figure 21.

Figure 21: The essential surface S1 in M1, consisting of two disks which meet
∂M1 in two loops around the holes.

Now cut along S1 to get M2
∼= B3.

Exercise 30.8. Show that (M2, P2) is homeomorphic to the pattern shown in
Figure 22.

Figure 22: A 3–ball with a pattern.

Exercise 30.9. Show that P2 ⊂ ∂M2 is essential. Figure 23 may be helpful.
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Figure 23: (M2, P2) ∼= Oct× I where Oct denotes an octagon.

Claim. The surface S0 ⊂ X is essential.

Proof. Suppose (D, ∂D) ⊂ (X,S0) is a surgery disk. So consider D ∩ S1 ⊂ D.
This is a collection of simple loops and arcs.

1. Suppose α is an innermost loop. Then α bounds E in D. So (E,α) ⊂
(M2, ∂M2) and α∩P2 = ∅ which implies that we may isotope E past S1,
reducing |S1 ∩D|. See Figure 24.

Figure 24: We may isotope E past S1, reducing |S1 ∩D|.

2. Suppose α ⊂ D is an outermost arc of S1∩D. So α cuts off a bigon E. So
(E, ∂E) ⊂ (M2, ∂M2) is a bigon and ∂E ∩ P2 is exactly two points. But
(M2, P2) is essential and we continue as usual.

So we may assume that D ∩ S1 = ∅. So (D, ∂D) embeds in (M2, ∂M2) with
∂D ∩ P2 = ∅. Since M2 is a ball we find that D is parallel to a disk D′ ⊂ S0.
So S0 is incompressible. Now by Lemma 20.2 (1.10 in Hatcher) S0 is boundary
incompressible. It is also possible to directly prove that by repeating the proof
using bigons. See Figure 25.
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Figure 25: D is parallel to a disk D′ ⊂ S0.

We now give the ideas necessary to prove Theorem 29.1. We need a few
more definitions.

Definition 30.6. Suppose S ⊂ (M,P ) is properly embedded and suppose P ⊂
∂M is an essential pattern. A surgery bigon D for S is a pattern surgery if
|β ∩ P | ≤ 1 where ∂D = α ∪ β and α = ∂D ∩ S. Say D is trivial if α cuts a
bigon E out of S with ∂E = α ∪ γ and |γ ∩ P | ≤ 1. Otherwise call D a pattern
compression.

Definition 30.7. If S is essential and all pattern surgeries are trivial, we call
S pattern essential. See Figure 26.

Figure 26: A picture of what it means to be pattern essential.

Definition 30.8. A special hierarchy is a sequence (Mi, Pi)
Si−→ (Mi+1, Pi+1)

where all Pi are essential and all Si are pattern essential. We do not allow Si

to be a sphere.

Proposition 30.2. If S ⊂ (M,P ) is essential we may isotope S to be pattern
essential.

Proof. Exercise.
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Using the above one can show the following two propositions which imply
Theorem 29.1.

Proposition 30.3. If P is a pattern for M ∼= B3 and is essential, then P is
homotopically essential.

Proposition 30.4. If (M,P )
S−→ (N,Q) are all essential and Q ⊂ ∂N is

homotopically essential, then P is homotopically essential in M .
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MA4J2 Exercise sheet 10.

Please let me know if any of the problems are unclear or have typos.

Exercise 10.1. Classify the Seifert fiberings of T × I, up to isotopy. (The classification
up to homeomorphism is much simpler.)

Exercise 10.2. [Hard] Show that the Pachner moves (also called bisteller flips) do not
change the quantity

∑n
k=0(−1)k|T (k)|.

Exercise 10.3. [Part of the proof of Proposition 1.13] Suppose that (M,F) is a Seifert
fibered space and T ⊂ ∂M is a torus. Suppose that (D, ∂D) ⊂ (M,T ) is a compressing
disk. Deduce that the orbifold B = M/S1 is a disk with at most one cone point. Deduce
M ∼= D × S1.

Exercise 10.4. Suppose that Ti, for i = 0, 1, are copies of M2 ∼× I. Let Ai = ∂hTi.
Show that for any homeomorphism φ : A0 → A1 the manifold T0 ∪φ T1 is homeomorphic
to K2 ∼× I. Classify Seifert fiberings on K ∼× I, up to isotopy.

Exercise 10.5. [Reading exercise] Read the proof of the uniqueness statement in
Theorem 1.9 in Hatcher’s notes.

Exercise 10.6. Let D be the dodecahedron. Let P = D/∼ be the space obtained
by gluing opposite faces via 1/10th right-handed rotation. Show that the result is a
three-manifold. Give a presentation of π1(P ). Check that H1(P,Z) is trivial. [What
manifold do you obtain if you instead use rotation by 1/2? The manifold obtained via
3/10th rotation is harder to understand.]

Exercise 10.7. Suppose that M is irreducible, connected, T ⊂ ∂M is a torus, and
π1(M) ∼= Z. Prove that M ∼= D × S1.

Exercise 10.8. Suppose that F is a properly embedded 2–sided surface in M3. Suppose
that Γ = ker(π1(F )→ π1(M)) is nontrivial. Then there is an essential, simple loop in Γ.

Exercise 10.9. Show that Exercise 10.8 is false if we remove the two-sided hypothesis.
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MA4J2 Exercise sheet 11.

Please let me know if any of the problems are unclear or have typos.

Exercise 11.1. Suppose that F is a closed connected orientable surface other than the
two-sphere. Give a hierarchy for F × I. Give two distinct hierarchies for F × S1.

Exercise 11.2. Suppose that C is a compression body. Show that any essential surface
in C is either

• a compressing disk for ∂+C,

• a component of ∂−C, or

• an annulus that meets both ∂±C.

Exercise 11.3. Suppose that S is essential in M , a Haken three-manifold. Let N =
M − n(S). Let F ⊂ ∂N be an component and let G be the result of maximally
compressing F into N , always in the same direction, and then discarding two-sphere
components. Show that G is incompressible in M .

Exercise 11.4. Suppose that Q is a regular n–gon in the plane. Let V be the vertices of
Q. Let B = Q× I be a three-ball, with boundary pattern P = (∂Qcross{0, 1})∪ (V × I).
Show that, if n > 3, that P is an essential boundary pattern. Next, classify pattern-
essential surfaces in (B, P ).

Exercise 11.5. Deduce the Disk Theorem from Theorem 9.1 in Lackenby’s notes.

Exercise 11.6. Let K ⊂ S3 be the 52 knot, as shown in Figure 1. Let S ⊂ X = XK be
the shaded surface shown in the figure. Check that S is orientable. As done in class,
let M1 = X − n(S). Check that M1 is a handlebody, and carefully draw the boundary
pattern P1. Now cut along disks to get M2. Check that M2 is a three-ball, and carefully
draw the resulting pattern P2. Using the above or otherwise prove that that S is essential.

Figure 1: The 52 knot, with Seifert surface shaded.
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