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Right-angled Coxeter groups (RACGs)

Γ= defining graph

Then WΓ = RACG based on Γ is the group with the presentation:

one generator for each vertex

each generator has order 2

one commuting relation for each edge

Examples

Γ = Γ =

WΓ = D∞ := Z2 ∗ Z2 WΓ = Z2 × Z2
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Examples of RACGs

WΓ = D∞ × D∞

= group generated by reflections in the sides of a square in R2
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Examples of RACGs

Γ =

WΓ = group generated by reflections in sides of a right-angled pentagon in H2

Picture by Jon McCammond
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Davis complex

More generally, WΓ acts properly and cocompactly on its Davis complex ΣΓ.

ΣΓ is a CAT(0) cube complex.

The generators of WΓ act by reflections.

When Γ is triangle-free, ΣΓ is 2-dim’l. (Fill in squares in Cayley graph)
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Visual properties of RACGs

Many properties of RACGs can be seen in the graph. For example:

1 WΓ hyperbolic ⇐⇒ Γ has no induced squares (Moussong)

Γ1

2 WΓ splits over a finite group, i.e. WΓ = A ∗C B with C finite ⇐⇒ Γ has
a separating clique (Mihalik–Tschantz)

WΓ = WΓ1 ∗Z2×Z2 WΓ2
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Quasi-isometry classification

General question (Gromov):
Classify finitely generated groups up to quasi-isometry (QI)

lattices in semi-simple Lie groups (Farb and friends)

Baumslag–Solitar, abelian-by-cyclic groups (Farb–Mosher)

Goal: Classify RACGs up to quasi-isometry in terms of Γ.

P. Dani (LSU) Large-scale geometry of RACGs Oct 28, 2017 7 / 25



Quasi-isometry classification

General question (Gromov):
Classify finitely generated groups up to quasi-isometry (QI)

lattices in semi-simple Lie groups (Farb and friends)

Baumslag–Solitar, abelian-by-cyclic groups (Farb–Mosher)

Goal: Classify RACGs up to quasi-isometry in terms of Γ.

P. Dani (LSU) Large-scale geometry of RACGs Oct 28, 2017 7 / 25



Quasi-isometry classification

General question (Gromov):
Classify finitely generated groups up to quasi-isometry (QI)

lattices in semi-simple Lie groups (Farb and friends)

Baumslag–Solitar, abelian-by-cyclic groups (Farb–Mosher)

Goal: Classify RACGs up to quasi-isometry in terms of Γ.

P. Dani (LSU) Large-scale geometry of RACGs Oct 28, 2017 7 / 25



QI invariant: ends

0 ends 1 end 2 ends ∞ ends

A f.g. group has 0, 1 2 or∞ ends. (Hopf)

G has∞ ends ⇐⇒ G splits over a finite group. (Stallings)

(Papasoglu–Whyte)∞ ends case ; 1 end case.

Focus on 1-ended RACGs.
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QI invariant: divergence

The divergence Div of G measures the “spread” of geodesics in G

R2 H2

For one-ended RACGs:
(D.-Thomas)

∀d ∈ N, ∃WΓ with Div ' xd

(Behrstock-Hagen-Sisto)

WΓ is

- rel. hyp. ( =⇒ Div ' ex) or
- thick ( =⇒ Div � xd, some d)

(D.-Thomas, Levcovitz)
Div ' x2 ⇐⇒
Γ is CFS and not a join

Thick (Div � poly)

Rel. hyp. (Div ' ex)

x x2 x3 x4
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Further information: divergence in 1-ended RACGs

Thick =⇒ Div � polynomial

Rel. hyp =⇒ Div ' ex

x
x2

CFS x3 x4

Some families can be distinguished using

• contracting boundaries
(Charney–Sultan)
(Behrstock)

• divergence spectra
(Tran)

• work of Drutu–Sapir
(Hruska–Stark–Tran)

?
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Further information: divergence in 1-ended RACGs

Thick =⇒ Div � polynomial

Rel. hyp =⇒ Div ' ex

x
x2

CFS x3 x4

Hyperbolic

cocpct
Fuchsian
(cycles)

Some families can be distinguished using

• contracting boundaries
(Charney–Sultan)
(Behrstock)

• divergence spectra
(Tran)

• work of Drutu–Sapir
(Hruska–Stark–Tran)

?
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One-ended hyperbolic RACGs

Suppose G is

one-ended hyperbolic

not cocompact Fuchsian

admits splittings over 2-ended subgroups

; Bowditch’s JSJ tree TG

TG is defined using the local cut point structure of the boundary ∂G.

quasi-isometry invariant.

Theorem (D.–Thomas)
For WΓ as above, with Γ triangle free, the JSJ tree TΓ can be constructed
visually. The vertices and edges of TΓ are defined in terms of subsets of
vertices of Γ.
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Description and example of Bowditch’s JSJ tree T

–Finite valence vertices:
(valence k ≥ 3)↔ {x, y} ⊂ ∂G
s.t. ∂G \ {x, y} has k cpts.

–Quadratically hanging vertices
(valence∞)↔ maximal
S ⊂ ∂G s.t. ∂G \ {x, y} has 2
components. ∀x, y ∈ S

–Edges: inclusion of sets.

–Rigid vertices (valence∞).
These “fill in the gaps”

↓

surface amalgam
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JSJ tree for RACGs: example

Γ = = TΓ/WΓ

a

b

s1

s2

t1

t2

u1

u2

u3

v1
v2

v3

v4

〈a, b〉

〈a, b, si〉

〈a, b, ti〉

〈a, b, ui〉

〈a, b, vi〉

The Davis complex for WG looks like
space from prev. example

– orbit of branching geodesics↔
{a, b} (separating)

– orbits of complementary regions↔
branches of Γ
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JSJ tree for RACGs: another example

Γ = = TΓ/WΓ

Red= rigid vertex of TΓ
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Recognizing rigid vertices

Theorem (D.–Thomas)
The JSJ tree TΓ has no rigid vertices ⇐⇒ Γ has no K4 minors.

Combining this with work of Malone:

Corollary
If Γ,Γ′ have no K4 minors, and WΓ, WΓ′ as before, then the following are
equivalent

1 WΓ and WΓ′ are quasi-isometric
2 There is a type-preserving isomorphism TΓ → TΓ′
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“No K4” is necessary

Theorem (Cashen–D.–Thomas)

For n ≥ 4, let K̂n be a sufficiently subdivided copy of the complete graph on n
vertices. Then

For all m, n, we have TK̂n
∼= TK̂m

.

WK̂n
q.i. WK̂m

if and only if m = n.
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Abstract commensurability

Two groups G1 and G2 are (abstractly) commensurable if there exist
finite-index subgroups H1 < G1 and H2 < G2 such that H1 ∼= H2.

Commensurable =⇒ quasi-isometric.

Question: To what extent is the converse true?

P. Dani (LSU) Large-scale geometry of RACGs Oct 28, 2017 19 / 25



Commensurability in RACGs

Γn = n-gon, with n ≥ 3. Commensurability classes in {WΓn}:

1 {WΓ3} (finite)

2 {WΓ4} (infinite, not hyperbolic)

3 {WΓn |n ≥ 5} (hyperbolic)
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Crisp–Paoluzzi examples

Consider Wm,n defined by:
Γm,n = an (m + 3)-gon + an (n + 3)-gon, identified along a pair of edges

Γm,n orbicomplex Om,n

χ1 = − (m−1)
4 χ2 = − (n−1)

4

Theorem (Crisp–Paoluzzi)
The groups Wp1,p2 and Wq1,q2 are abstractly commensurable if and only if

χ1

χ2
=
χ′1
χ′2

⇐⇒ (χ1, χ2) and (χ′1, χ
′
2) are commensurable.

Vectors v1, v2 commensurable ⇐⇒ ∃ M,N ∈ Z such that Mv1 = Nv2
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Generalized theta graphs

Θ(n1, . . . , nk) O(n1, . . . , nk)

χ(Θ) = (χ1, . . . , χk)

χ1

χ2 χ3

χ4

Theorem (D.–Stark–Thomas)
Let Θ = Θ(n1, . . . , nk) and Θ′ = Θ(m1, . . . ,mk′). Then WΘ and WΘ′ are
commensurable if and only if

1 k = k′, and

2 χ(Θ) and χ(Θ′) are commensurable.
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Proof of sufficient conditions

Consider W(Θ) and W(Θ′) with

k = k′, and qχ(Θ) = pχ(Θ′), with p, q ∈ Z

Construct common covers!

Unfold one p times and the other q times.

So W(Θ) and W(Θ′) are commensurable.
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Cycles of generalized theta graphs

Examples
Θ1

Θ2Θ3

Θ1

Θ2

Θ3

Θ4

Theorem (D.–Stark–Thomas)
We give a complete commensurability classification of the RACGs defined by
cycles of generalized theta graphs.

conditions for commensurability: equations of Euler characteristic
vectors.

There are infinitely many commensurability classes in each q.i. class
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Proof outline: Sufficient conditions

1 Construct degree 16 surface amalgam covers with a cyclic structure:

16

2 Use the cyclic structure, the conditions on χ vectors and well-known
results on covers of surfaces with boundary to construct common covers.
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