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Right-angled Coxeter groups (RACGs)

I'= defining graph

Then Wr = RACG based on I is the group with the presentation:
@ one generator for each vertex
@ cach generator has order 2

@ one commuting relation for each edge

Examples
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Examples of RACGs

Wr = Do X Do

= group generated by reflections in the sides of a square in R?
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Examples of RACGs

I =

Wr = group generated by reflections in sides of a right-angled pentagon in H?

Picture by Jon McCammond
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Davis complex

More generally, Wr acts properly and cocompactly on its Davis complex Y.

@ X is a CAT(0) cube complex.

@ The generators of Wt act by reflections.

When I is triangle-free, > is 2-dim’l. (Fill in squares in Cayley graph)
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Visual properties of RACGs

Many properties of RACGs can be seen in the graph. For example:

@ Wr hyperbolic <= I has no induced squares (Moussong)

ry
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Visual properties of RACGs

Many properties of RACGs can be seen in the graph. For example:

@ Wr hyperbolic <= I has no induced squares (Moussong)

ry

© Wr splits over a finite group, i.e. W = A ¢ B with C finite <= I has
a separating clique (Mihalik—Tschantz)

T wem
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Quasi-isometry classification

General question (Gromov):
Classify finitely generated groups up to quasi-isometry (QI)
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Quasi-isometry classification

General question (Gromov):
Classify finitely generated groups up to quasi-isometry (QI)

@ lattices in semi-simple Lie groups (Farb and friends)

@ Baumslag—Solitar, abelian-by-cyclic groups (Farb—Mosher)
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Quasi-isometry classification

General question (Gromov):
Classify finitely generated groups up to quasi-isometry (QI)

@ lattices in semi-simple Lie groups (Farb and friends)

@ Baumslag—Solitar, abelian-by-cyclic groups (Farb—Mosher)

Goal: Classify RACGs up to quasi-isometry in terms of I
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QI invariant: ends

o
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0 ends 1 end 2 ends oo ends

o Af.g. group has 0, 1 2 or co ends. (Hopf)
@ G has co ends <= G splits over a finite group. (Stallings)
o (Papasoglu—Whyte) oo ends case ~ 1 end case.

@ Focus on 1-ended RACGs.
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QI invariant: divergence

The divergence Div of G measures the “spread” of geodesics in G
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QI invariant: divergence

The divergence Div of G measures the “spread” of geodesics in G

=

R? H?

For one-ended RACGs:
@ (D.-Thomas)

Vd € N, 3Wr with Div ~ x?

@ (Behrstock-Hagen-Sisto) Thick (Div = poly)

Wr is
-rel. hyp. (= Div ~¢") or
- thick ( == Div < x“, some d)

Rel. hyp. (Div ~ ¢¥)

@ (D.-Thomas, Levcovitz)

Div ~ x? «—
I' is CFS and not a join
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Further information: divergence in 1-ended RACGs

Thick = Div < polynomial

Some families can be distinguished using Rel. hyp —> Div ~ ¢'

e contracting boundaries
(Charney—Sultan)
(Behrstock)

@ ... e divergence spectra
(Tran)
@ @ @ e work of Drutu—Sapir
(Hruska—Stark—Tran)
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Further information: divergence in 1-ended RACGs

? @ @ @ Thick = Div < polynomial

e contracting boundaries
(Charney—Sultan)
(Behrstock)

@ @ @ e work of Drutu—Sapir
(Hruska—Stark—Tran)

Some families can be distinguished using Rel. hyp —> Div ~ ¢'

cocpet

Fuchsian
(cycles)

Hyperbolic
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One-ended hyperbolic RACGs

Suppose G is
@ one-ended hyperbolic

@ not cocompact Fuchsian
@ admits splittings over 2-ended subgroups

~» Bowditch’s JSJ tree T

T¢ is defined using the local cut point structure of the boundary 0G.

@ quasi-isometry invariant.
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One-ended hyperbolic RACGs

Suppose G is

@ one-ended hyperbolic
@ not cocompact Fuchsian
@ admits splittings over 2-ended subgroups

~» Bowditch’s JSJ tree T

@ 7 is defined using the local cut point structure of the boundary 0G.

@ quasi-isometry invariant.

Theorem (D.—Thomas)

For Wr as above, with I triangle free, the JSJ tree ‘Tt can be constructed
visually. The vertices and edges of ‘Tt are defined in terms of subsets of
vertices of I.
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Description and example of Bowditch’s JSJ tree T

—Finite valence vertices:
(valence k > 3) «» {x,y} C 9G
s.t. 9G \ {x,y} has k cpts.

—Quadratically hanging vertices
(valence 00)<> maximal

S C IGs.t. 9G \ {x,y} has 2
components. Vx,y € S

—Edges: inclusion of sets.

surface amalgam
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Description and example of Bowditch’s JSJ tree T

—Finite valence vertices:
(valence k > 3) «» {x,y} C 9G
s.t. 9G \ {x,y} has k cpts.

—Quadratically hanging vertices
(valence 00)<> maximal

S C IGs.t. 9G \ {x,y} has 2
components. Vx,y € S

—Edges: inclusion of sets. ]

—Rigid vertices (valence 00).
These “fill in the gaps”

surface amalgam
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JSJ tree for RACGs: example

a
oVl <Cl,b,S,’> <Cl,b, M,'>
51 (o))
r= (a.b) = o/ W
) o3
o4
b <a>b?ti> <a>b>vi>

The Davis complex for W looks like
space from prev. example

— orbit of branching geodesics <>
{a, b} (separating)

— orbits of complementary regions <>
branches of I'
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JSJ tree for RACGs: another example

Red= rigid vertex of 71
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Recognizing rigid vertices

Theorem (D.—Thomas)

The JSJ tree Tt has no rigid vertices <= I" has no K4 minors.
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Recognizing rigid vertices

Theorem (D.—Thomas)

The JSJ tree Tt has no rigid vertices <= I" has no K4 minors.

Combining this with work of Malone:

If T, T" have no K4 minors, and Wr, Wr: as before, then the following are
equivalent

@ Wr and W are quasi-isometric

@ There is a type-preserving isomorphism Tr — Trv
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“No K,” is necessary

Theorem (Cashen—D.—Thomas)

Forn > 4, let K, be a sufficiently subdivided copy of the complete graph on n
vertices. Then

@ For all m,n, we have 7;6, = 7;<m

o Wi q.i. Wy if and only if m = n.
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Abstract commensurability

Two groups G| and G, are (abstractly) commensurable if there exist
finite-index subgroups H; < G| and H, < G5 such that H; = H,.

Commensurable = quasi-isometric.

Question: To what extent is the converse true?
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Commensurability in RACGs

I, = n-gon, with n > 3. Commensurability classes in {Wr, }:

Q@ {Wr,} (finite)

@ {Wr,} (infinite, not hyperbolic)

@ {Wr,|n > 5} (hyperbolic)
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Crisp—Paoluzzi examples

Consider W,, , defined by:
['ynn = an (m+ 3)-gon + an (n + 3)-gon, identified along a pair of edges

X1 = _(m;C— xo = — =)

| g orbicomplex O,, ,

Theorem (Crisp—Paoluzzi)

The groups Wy, ,,, and W, 4, are abstractly commensurable if and only if

X1 _Xi
X2 X
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Crisp—Paoluzzi examples

Consider W,, , defined by:
['ynn = an (m+ 3)-gon + an (n + 3)-gon, identified along a pair of edges

X1 = _(m;C— xo = — =)

| g orbicomplex O,, ,

Theorem (Crisp—Paoluzzi)

The groups Wy, ,,, and W, 4, are abstractly commensurable if and only if

X1 _Xi
X2 X

<> (x1,x2) and (X}, x5) are commensurable.

Vectors vy, vp commensurable <= A M,N € Z such that My, = Nv,
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Generalized theta graphs

Theorem (D.—Stark—Thomas)

Let© = O(ny,...,n;) and © = O(my,...,my). Then Wg and Wer are
commensurable if and only if

Q k=K, and

@ X(O) and x(©') are commensurable.
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Proof of sufficient conditions

Consider W(0) and W(©') with
k=K, and gx(©) = px(©'), withp,q € Z

Construct common covers!

Unfold one p times and the other g times.

So W(©) and W(O') are commensurable.
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Cycles of generalized theta graphs

Examples
O 1 S) 1

O4 0,

O3

Theorem (D.—Stark—Thomas)

We give a complete commensurability classification of the RACGs defined by
cycles of generalized theta graphs.

@ conditions for commensurability: equations of Euler characteristic
vectors.

@ There are infinitely many commensurability classes in each q.i. class
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Proof outline: Sufficient conditions

@ Construct degree 16 surface amalgam covers with a cyclic structure:

X
i

© Use the cyclic structure, the conditions on y vectors and well-known
results on covers of surfaces with boundary to construct common covers.
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