Large-scale geometry of right-angled Coxeter groups

Pallavi Dani

Louisiana State University

joint with Anne Thomas (U. Sydney), and Emily Stark (Technion) and Christopher Cashen (U. Vienna)

No boundaries – Groups in algebra, geometry and topology In honor of Benson Farb

October 28, 2017

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □

590

 Γ = defining graph

Then $W_{\Gamma} =$ RACG based on Γ is the group with the presentation:

- one generator for each vertex
- each generator has order 2
- one commuting relation for each edge

Examples

イロト 不得 とくき とくき とうき

<ロト < 回 > < 回 > < 回 >

= group generated by reflections in the sides of a square in \mathbb{R}^2

イロト イポト イヨト イヨト

590

 W_{Γ} = group generated by reflections in sides of a right-angled pentagon in \mathbb{H}^2

More generally, W_{Γ} acts properly and cocompactly on its *Davis complex* Σ_{Γ} .

- Σ_{Γ} is a CAT(0) cube complex.
- The generators of W_{Γ} act by reflections.

When Γ is triangle-free, Σ_{Γ} is 2-dim'l. (Fill in squares in Cayley graph)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Many properties of RACGs can be seen in the graph. For example:

• W_{Γ} hyperbolic $\iff \Gamma$ has no induced squares (Moussong)

Many properties of RACGs can be seen in the graph. For example:

• W_{Γ} hyperbolic $\iff \Gamma$ has no induced squares (Moussong)

• W_{Γ} splits over a finite group, i.e. $W_{\Gamma} = A *_{C} B$ with *C* finite $\iff \Gamma$ has a separating clique (Mihalik–Tschantz)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

General question (Gromov): Classify finitely generated groups up to quasi-isometry (QI)

General question (Gromov): Classify finitely generated groups up to quasi-isometry (QI)

- lattices in semi-simple Lie groups (Farb and friends)
- Baumslag–Solitar, abelian-by-cyclic groups (Farb–Mosher)

General question (Gromov): Classify finitely generated groups up to quasi-isometry (QI)

- lattices in semi-simple Lie groups (Farb and friends)
- Baumslag–Solitar, abelian-by-cyclic groups (Farb–Mosher)

Goal: Classify RACGs up to quasi-isometry in terms of Γ .

æ 8/25 Oct 28, 2017

イロト イポト イヨト イヨト

590

- A f.g. group has 0, 1 2 or ∞ ends. (Hopf)
- G has ∞ ends \iff G splits over a finite group. (Stallings)
- (Papasoglu–Whyte) ∞ ends case $\rightarrow 1$ end case.
- Focus on 1-ended RACGs.

QI invariant: divergence

The divergence Div of G measures the "spread" of geodesics in G

QI invariant: divergence

The divergence Div of G measures the "spread" of geodesics in G

For one-ended RACGs:

- (D.-Thomas) $\forall d \in \mathbb{N}, \exists W_{\Gamma} \text{ with Div } \simeq x^d$
- (Behrstock-Hagen-Sisto)
 W_Γ is
 - rel. hyp. (\implies Div $\simeq e^x$) or - thick (\implies Div $\preceq x^d$, some d)
- (D.-Thomas, Levcovitz) Div $\simeq x^2 \iff$
 - Γ is \mathcal{CFS} and not a join

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	oly)
Rel. hyp. (Div c	$\simeq e^{x}$)

► < Ξ > <</p>

One-ended hyperbolic RACGs

Suppose G is

- one-ended hyperbolic
- not cocompact Fuchsian
- admits splittings over 2-ended subgroups

 \rightsquigarrow Bowditch's JSJ tree \mathcal{T}_G

- \mathcal{T}_G is defined using the local cut point structure of the boundary ∂G .
- quasi-isometry invariant.

(1)

One-ended hyperbolic RACGs

Suppose G is

- one-ended hyperbolic
- not cocompact Fuchsian
- admits splittings over 2-ended subgroups

 \rightsquigarrow Bowditch's JSJ tree \mathcal{T}_G

- \mathcal{T}_G is defined using the local cut point structure of the boundary ∂G .
- quasi-isometry invariant.

Theorem (D.–Thomas)

For W_{Γ} as above, with Γ triangle free, the JSJ tree \mathcal{T}_{Γ} can be constructed visually. The vertices and edges of \mathcal{T}_{Γ} are defined in terms of subsets of vertices of Γ .

P. Dani (LSU)

Large-scale geometry of RACGs

-Finite valence vertices: (valence $k \ge 3$) $\leftrightarrow \{x, y\} \subset \partial G$ s.t. $\partial G \setminus \{x, y\}$ has k cpts.

-Quadratically hanging vertices (valence ∞) \leftrightarrow maximal $S \subset \partial G$ s.t. $\partial G \setminus \{x, y\}$ has 2 components. $\forall x, y \in S$

-Edges: inclusion of sets.

Large-scale geometry of RACGs

-Finite valence vertices: (valence $k \ge 3$) $\leftrightarrow \{x, y\} \subset \partial G$ s.t. $\partial G \setminus \{x, y\}$ has k cpts.

-Quadratically hanging vertices (valence ∞) \leftrightarrow maximal $S \subset \partial G$ s.t. $\partial G \setminus \{x, y\}$ has 2 components. $\forall x, y \in S$

-Edges: inclusion of sets.

-*Rigid vertices* (valence ∞). These "fill in the gaps"

JSJ tree for RACGs: example

The Davis complex for W_G looks like space from prev. example

- orbit of branching geodesics \leftrightarrow {*a*, *b*} (separating)

– orbits of complementary regions \leftrightarrow branches of Γ

JSJ tree for RACGs: another example

Red= rigid vertex of \mathcal{T}_{Γ}

P.	Dani	(L	SU
		· · · ·	

Oct 28, 2017 16 / 25

∃ >

Theorem (D.–Thomas)

The JSJ tree \mathcal{T}_{Γ} *has no rigid vertices* $\iff \Gamma$ *has no* K_4 *minors.*

Theorem (D.–Thomas)

The JSJ tree \mathcal{T}_{Γ} has no rigid vertices $\iff \Gamma$ has no K_4 minors.

Combining this with work of Malone:

Corollary

If Γ, Γ' have no K_4 minors, and W_{Γ} , $W_{\Gamma'}$ as before, then the following are equivalent

- **1** W_{Γ} and $W_{\Gamma'}$ are quasi-isometric
- **2** There is a type-preserving isomorphism $\mathcal{T}_{\Gamma} \to \mathcal{T}_{\Gamma'}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Cashen–D.–Thomas)

For $n \ge 4$, let \hat{K}_n be a sufficiently subdivided copy of the complete graph on n vertices. Then

- For all m, n, we have $\mathcal{T}_{\hat{K}_n} \cong \mathcal{T}_{\hat{K}_m}$.
- $W_{\hat{K}_n} q.i. W_{\hat{K}_m}$ if and only if m = n.

Two groups G_1 and G_2 are (*abstractly*) commensurable if there exist finite-index subgroups $H_1 < G_1$ and $H_2 < G_2$ such that $H_1 \cong H_2$.

Commensurable \implies quasi-isometric.

Question: To what extent is the converse true?

Commensurability in RACGs

 $\Gamma_n = n$ -gon, with $n \ge 3$. Commensurability classes in $\{W_{\Gamma_n}\}$:

• $\{W_{\Gamma_3}\}$ (finite)

2 $\{W_{\Gamma_4}\}$ (infinite, not hyperbolic)

•
$$\{W_{\Gamma_n} | n \ge 5\}$$
 (hyperbolic)

Crisp-Paoluzzi examples

Consider $W_{m,n}$ defined by:

 $\Gamma_{m,n} = an (m+3)$ -gon + an (n+3)-gon, identified along a pair of edges

Theorem (Crisp–Paoluzzi)

The groups W_{p_1,p_2} and W_{q_1,q_2} are abstractly commensurable if and only if

$$\frac{\chi_1}{\chi_2} = \frac{\chi_1'}{\chi_2'}$$

< ロ > < 同 > < 回 > < 回 > < 回

Crisp-Paoluzzi examples

Consider $W_{m,n}$ defined by:

 $\Gamma_{m,n} = an (m+3)$ -gon + an (n+3)-gon, identified along a pair of edges

Theorem (Crisp–Paoluzzi)

The groups W_{p_1,p_2} and W_{q_1,q_2} are abstractly commensurable if and only if

$$\frac{\chi_1}{\chi_2} = \frac{\chi_1'}{\chi_2'}$$

 $\iff (\chi_1, \chi_2) \text{ and } (\chi'_1, \chi'_2) \text{ are commensurable.}$

Vectors v_1, v_2 commensurable $\iff \exists M, N \in \mathbb{Z}$ such that $Mv_1 = Nv_2$

Generalized theta graphs

Theorem (D.–Stark–Thomas)

Let $\Theta = \Theta(n_1, \ldots, n_k)$ and $\Theta' = \Theta(m_1, \ldots, m_{k'})$. Then W_{Θ} and $W_{\Theta'}$ are commensurable if and only if

• k = k', and

2 $\chi(\Theta)$ and $\chi(\Theta')$ are commensurable.

Consider $W(\Theta)$ and $W(\Theta')$ with k = k', and $q\chi(\Theta) = p\chi(\Theta')$, with $p, q \in \mathbb{Z}$

Construct common covers!

Unfold one p times and the other q times.

So $W(\Theta)$ and $W(\Theta')$ are commensurable.

Cycles of generalized theta graphs

Examples

Theorem (D.–Stark–Thomas)

We give a complete commensurability classification of the RACGs defined by cycles of generalized theta graphs.

- conditions for commensurability: equations of Euler characteristic vectors.
- There are infinitely many commensurability classes in each q.i. class

P. Dani (LSU)

Proof outline: Sufficient conditions

• Construct degree 16 surface amalgam covers with a cyclic structure:

• Use the cyclic structure, the conditions on χ vectors and well-known results on covers of surfaces with boundary to construct common covers.