
  



Ivanov’s	Metaconjecture	

Tara	Brendle	
Dan	Margalit	

	
No	Boundaries:	Groups	in	Algebra,	Geometry,	and	Topology	

University	of	Chicago	
October	27,	2017	







Theorem	(Ivanov).	The	natural	map	
MCG(Sg)									Aut	C(Sg)	

is	an	isomorphism	for	g	>	2.	
	
ApplicaLon.		Aut	MCG(Sg)	=	MCG(Sg)	
	

Automorphisms	of	the	Curve	Complex	

Theorem	(Ivanov).		Aut	C(Sg)	=	MCG(Sg)	



Rigidity	for	Complexes	
Systole	Complex	
Schmutz-Schaller	 Pants	Complex	

Margalit	

NonseparaLng	Curve	Complex	
Irmak	

Cut	System	Complex	
Irmak-Korkmaz	 Torelli	Geometry	

Farb-Ivanov	

Complex	of	SeparaLng	Curves	
Brendle-Margalit	

Complex	of	Domains	
McCarthy-Papadopoulos	 Arc	Complex	

Irmak	

Arc	and	Curve	Complex	
Irmak-Korkmaz	

AsymptoLc	Pants	Complex	
Fossas-Nguyen	

Hole-bounding	Curves	and	Pairs	Complex	
Irmak-Ivanov-McCarthy	

Ideal	TriangulaLon	Graph	
Korkmaz	

Strongly	sep.	curve	complex	
Bowditch	

Complex	of	Shirts	and	Straightjackets	
Bridson-PeYet-Souto	



Rigidity	for	Groups	

Torelli	Group	
Farb-Ivanov	

Johnson	Kernel	
Brendle-Margalit	

Terms	of	Johnson	FiltraLon	
Bridson-PeYet-Souto	

Mapping	Class	Group	
Ivanov	



Ivanov’s	Metaconjecture	

				Any	object	naturally	associated	to	a	surface	S	
and	having	a	sufficiently	rich	structure	has	
MCG(S)	as	its	group	of	automorphisms.			



Rigidity	for	Groups	

Torelli	Group	
Farb-Ivanov	

Johnson	Kernel	
Brendle-Margalit	

Terms	of	Johnson	FiltraLon	
Bridson-PeYet-Souto	

Mapping	Class	Group	
Ivanov	

Other	Normal	
Subgroups?	

Dahmani-Guirardel-Osin	examples	



Main	Theorem	
If	N					MCG(Sg)	has	an	element	with	small	support	
then:	

Aut	N	=	MCG(Sg).	
	

◃



Normal	Subgroups	of	MCG	

Terms	of	Johnson	filtraLon,	
Magnus	filtraLon,	etc.	

Aut	=	MCG	Aut	>>	MCG	

Infinitely	generated	
RAAGs	
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The Primitive Torsion Problem

• Let 𝐹𝐹𝑟𝑟 be the free group of rank 𝑟𝑟. A primitive element is an element 
that is part of a basis for 𝐹𝐹𝑟𝑟.

• Let 𝑃𝑃𝑘𝑘 be the group generated by 𝑘𝑘th powers of all primitive 
elements in 𝐹𝐹𝑟𝑟.

• The Primitive Torsion Problem: When is 𝐹𝐹𝑟𝑟/𝑃𝑃𝑘𝑘 finite? Finitely 
presented? Solvable? Nilpotent?

• Similar questions for other groups may be asked…



Known results

• Theorem (Thomas Koberda and Ramanujan Santharoubane, 2015) For 
𝑘𝑘 ≥ 10, the group 𝐹𝐹𝑟𝑟/𝑃𝑃𝑘𝑘 is infinite.

• Theorem (Andrew Putman and Justin Malestein, 2017) Same result. 
Different proof.

• Theorem (Patrick W. Hooper and Bou-Rabee, 2017) The group 𝐹𝐹2/𝑃𝑃𝑘𝑘
is finite if and only if 𝑘𝑘 = 1,2,3. Moreover, 𝐹𝐹2/𝑃𝑃4 is virtually nilpotent 
(we construct an explicit integral representation), and 𝐹𝐹2/𝑃𝑃𝑘𝑘 is finitely 
presented for 𝑘𝑘 = 1,2,3,4,5.

some



The Farey Triangulation



Normal generators for 𝐹𝐹2/𝑃𝑃2



Normal generators for 𝐹𝐹2/𝑃𝑃3



Normal generators for 𝐹𝐹2/𝑃𝑃4



Normal generators for 𝐹𝐹2/𝑃𝑃5



New notion

• A representation of 𝐹𝐹2 is characteristic if for any automorphism 𝜓𝜓 of 
𝐹𝐹2, there is an automorphism Ψ of 𝐺𝐺𝐺𝐺(𝑛𝑛,ℂ) so that Ψ ∘ 𝜌𝜌 ∘
𝜓𝜓−1 𝑔𝑔 = 𝜌𝜌(𝑔𝑔) for all 𝑔𝑔 ∈ 𝐹𝐹2.

• We say 𝜌𝜌:𝐹𝐹2 → 𝐺𝐺𝐺𝐺 𝑛𝑛,ℂ is an oriented characteristic representation
if:

• For each 𝜓𝜓 ∈ 𝐴𝐴𝐴𝐴𝑡𝑡+ 𝐹𝐹2 there is an 𝑀𝑀 ∈ 𝐺𝐺𝐺𝐺(𝑛𝑛,ℂ) so that 𝑀𝑀 𝜌𝜌 ∘
𝜓𝜓−1 𝑔𝑔 𝑀𝑀−1 = 𝜌𝜌(𝑔𝑔) for all 𝑔𝑔 ∈ 𝐹𝐹2.

• For each 𝜓𝜓 ∈ 𝐴𝐴𝐴𝐴𝑡𝑡− 𝐹𝐹2 there is an 𝑀𝑀 ∈ 𝐺𝐺𝐺𝐺(𝑛𝑛,ℂ) so that 𝑀𝑀 ⋅
𝜌𝜌 ∘ 𝜓𝜓−1(𝑔𝑔) ⋅ 𝑀𝑀−1= 𝜌𝜌 𝑔𝑔 for all 𝑔𝑔 ∈ 𝐹𝐹2.



Improvement scheme

• Assume 𝜌𝜌:𝐹𝐹2 → 𝐺𝐺𝐺𝐺(𝑛𝑛,ℂ) is an oriented characteristic representation 
factoring through 𝐺𝐺𝑘𝑘. We produce an oriented characteristic 
representation �𝜌𝜌:𝐹𝐹2 → 𝐺𝐺𝐺𝐺(𝑛𝑛 + 𝑚𝑚,ℂ) factoring through 𝐺𝐺𝑘𝑘 (hopefully 
with 𝑚𝑚 > 0) so that there is a short exact sequence of the form 1 →
ℤ𝑑𝑑 → �𝜌𝜌 𝐹𝐹2 → 𝜌𝜌 𝐹𝐹2 → 1 where 𝑑𝑑 ≥ 0 is the rank of the abelian 
image �𝜌𝜌(ker 𝜌𝜌) (hopefully 𝑑𝑑 > 0).

• Using this scheme we get an explicit faithful representation for 𝐹𝐹2/𝑃𝑃4
and infinite representations for 𝐹𝐹2/𝑃𝑃𝑘𝑘 for 𝑘𝑘 ≥ 4.

• What will this scheme give us for 𝐹𝐹2/𝑃𝑃5? We are working on it.



  



Algebraic Characterizations in the
Mapping Class Group

Victoria Akin



An Example

* *

The Point-Pushing Subgroup

1→ P(Sg)→ Mod(Sg ,∗)→ Mod(Sg)→ 1



An Example

Algebraic Characterization

o Abstractly isomorphic to π1(Sg)

o Normal in Mod(Sg)



An Example

(Ivanov-McCarthy) Out(Mod±(Sg ,∗) ∼= 1

o Burnside:
If a centerless group G is charcteristic in Aut(G ), then
Aut(Aut(G )) ∼= Aut(G ). That is, Out(Aut(G )) ∼= 1.

o Dehn-Nielsen-Baer:
Aut(π1(Sg )) ∼= Mod±(Sg ,∗).

o Uniqueness of Point-Pushing:
Out(Aut(π1(Sg ))) ∼= Out(Mod±(Sg ,∗)) ∼= 1.
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In General

For H < G geometrically/topologically defined, can we find a
purely algebraic characterization?

o Braid group?

1→ π1(Confn(Sg ))→ Mod(Sg ,n)→ Mod(Σg )→ 1

o Disk pushing?

o Handle pushing?
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In General

What other normal/non-normal subgroups are unique?

o (with D. Margalit) Torelli? Johnson Kernel? Higher terms
in the Johnson Series?
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What other normal/non-normal subgroups are unique?
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Bounding the cohomology of 
confi guration spaces and 

rationality of Poincaré series

Kevin Casto



  

Configuration spaces



  

Representation stability



  

What about varying i ?



  

Poincaré series rationality



  

Partial results
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Discretizing group actions (Vigolo, ’16)

Γ f.g. group

M closed Riem. manifold

Γ y M (bi-Lipschitz)

 Family of graphs
(Xt)t>0

Action Γ y M

Mesh < t−1

 Roe’s Warped Cone

Assembles all Xt

 C (Γ y M).

SL(2,Z) y T2  Margulis expanders (1973).



Discretizing group actions (Vigolo, ’16)

Γ f.g. group

M closed Riem. manifold

Γ y M (bi-Lipschitz)

 Family of graphs
(Xt)t>0

Action Γ y M

Mesh < t−1

 

Graphs Xt

Vertices: Regions Ri

Edges: sRi ∩ Rj 6= ∅.

SL(2,Z) y T2  Margulis expanders (1973).
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 C (Γ y M).

SL(2,Z) y T2  Margulis expanders (1973).



Discretizing group actions (Vigolo, ’16)

Γ f.g. group

M closed Riem. manifold

Γ y M (bi-Lipschitz)

 Family of graphs
(Xt)t>0

Action Γ y M

Mesh < t−1

 Roe’s Warped Cone

Assembles all Xt

 C (Γ y M).

SL(2,Z) y T2  Margulis expanders (1973).



Dynamics and coarse geometry

Dynamics of Γ y M
?
! Coarse geometry of graphs (Xt)t

Or Warped Cone C (Γ y M)

Theorem (Vigolo,’16)

Spectral gap for Γ y M =⇒ (Xn)n expander.

Sawicki⇐=

Subgroups of compact Lie groups  Spectral gap
Margulis, Sullivan, Drinfeld, Gamburd–Jakobson–Sarnak, Bourgain–Gamburd (×2), Benoist-De Saxcé, ...

From now on:

M = G compact semisimple Lie

Γ ⊆ G dense, fin. pres.
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Theorems

Coarse geometry of cones
?
! Dynamics of Γ y M

Theorem (De Laat–Vigolo, Sawicki, ’17)

Warped cones are QI =⇒ Groups are Stably QI

C (Γ y M) 'QI C (Λ y N) =⇒ Γ× RdimM 'QI Λ× RdimN .

Does the QI type of the cone capture any of the action?

Theorem (Fisher–Nguyen–vL, ’17)

Warped cones are QI =⇒ actions are commensurable

Similar result for graphs =⇒

Theorem (Fisher–Nguyen–vL, ’17)

There exist continua of QI disjoint expanders.
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