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Automorphisms of the Curve Complex

Theorem (lvanov). Aut C(S,) = MCG(S,)

Application. Aut MCG(S,) = MCG(S,)
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lvanov’'s Metaconjecture

Any object naturally associated to a surface S
and having a sufficiently rich structure has
MCG(S) as its group of automorphisms.



Rigidity for Groups

Mapping Class Group

Ilvanov

Torelli Group
Farb-lvanov

Johnson Kernel
Brendle-Margalit

Terms of Johnson Filtration
Bridson-Pettet-Souto

Other Normal
Subgroups?

A Dahmani-Guirardel-Osin examples



Main Theorem

If N I MCG(S,) has an element with small support
then:

Aut N = MCG(S,).
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Normal Subgroups of MCG

Aut >> MCG Aut = MCG

Infinitely generated Terms of Johnson filtration,
RAAGS Magnus filtration, etc.
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Aut >> MCG Aut = MCG

Infinitely generated Terms of Johnson filtration,
RAAGS Magnus filtration, etc.
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The Primitive Torsion Problem

e Let F,. be the free group of rank r. A primitive element is an element
that is part of a basis for F,..

e Let P, be the group generated by kth powers of all primitive
elementsin E,..

* The Primitive Torsion Problem: When is F,. /P;, finite? Finitely
presented? Solvable? Nilpotent?

e Similar questions for other groups may be asked...



Known results

 Theorem (Thomas Koberda and Ramanujan Santharoubane, 2015) For some
k = 10, the group E./P; is infinite.

e Theorem (Andrew Putman and Justin Malestein, 2017) Same result.
Different proof.

e Theorem (Patrick W. Hooper and Bou-Rabee, 2017) The group F, /P,
is finite if and only if k = 1,2,3. Moreover, F, /P, is virtually nilpotent

(we construct an explicit integral representation), and F, /P, is finitely
presented for k = 1,2,3,4,5.
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Normal generators for F, /P,

Vertex Generator of P
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Normal generators for F, /P,

Vertex Generator of P4
00 a4

0 b*

1 (ab)*

—1 (ab=1)*

2 (a’b)*
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Normal generators for F, /P
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New notion

e A representation of F, is characteristic if for any automorphism 1y of
F,, there is an automorphism W of GL(n,C) sothat Wo p o

Y~1(g) = p(g) forallg € F,.

* We say p: F, —» GL(n,C) is an oriented characteristic representation
if:
* For each ¢y € Aut, (F,) thereisan M € GL(n,C) sothat M p o
Y~ (@M~ = p(g) forall g € F,.
* For each ¢y € Aut_(F,) thereisan M € GL(n,C) so that M -
popi(g)- M~'=p(g)forall g € F,.




Improvement scheme

e Assume p: F, = GL(n,C) is an oriented characteristic representation
factoring through G,. We produce an oriented characteristic
representation p: F, = GL(n + m, C) factoring through G, (hopefully
with m > 0) so that there is a short exact sequence of the form 1 —

Z* — p(F,) — p(F,) » 1 where d = 0 is the rank of the abelian
image p(ker p) (hopefully d > 0).

e Using this scheme we get an explicit faithful representation for F, /P,
and infinite representations for F, /P; for k = 4.

e What will this scheme give us for F, /P:? We are working on it.
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Algebraic Characterizations in the
Mapping Class Group

Victoria Akin



An Example

The Point-Pushing Subgroup
1 — P(Sg) — Mod(S;z.) — Mod(S,) — 1



An Example

Algebraic Characterization

o Abstractly isomorphic to 71(S,)

o Normal in Mod(S;)



An Example

(Ivanov-McCarthy) Out(Mod*(S,..) = 1



An Example

(Ivanov-McCarthy) Out(Mod*(S,..) = 1

o Burnside:
If a centerless group G is charcteristic in Aut(G), then
Aut(Aut(G)) = Aut(G). That is, Out(Aut(G)) = 1.



An Example

(Ivanov-McCarthy) Out(Mod*(S,..) = 1

o Burnside:
If a centerless group G is charcteristic in Aut(G), then
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An Example

(Ivanov-McCarthy) Out(Mod*(S,..) = 1

o Burnside:
If a centerless group G is charcteristic in Aut(G), then
Aut(Aut(G)) = Aut(G). That is, Out(Aut(G)) = 1.

o Dehn-Nielsen-Baer:
Aut(m1(S;)) = Mod*(S;..).

o Uniqueness of Point-Pushing:
Out(Aut(m1(S,))) = Out(Mod*=(S,..))

12
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In General

For H < G geometrically/topologically defined, can we find a
purely algebraic characterization?



In General

For H < G geometrically/topologically defined, can we find a
purely algebraic characterization?

o Braid group?
1 — m(Conf,(S;)) — Mod(S;,,) = Mod(X,) — 1

o Disk pushing?
o Handle pushing?



In General

What other normal /non-normal subgroups are unique?



In General

What other normal/non-normal subgroups are unique?

o (with D. Margalit) Torelli? Johnson Kernel? Higher terms
in the Johnson Series?



Thank you
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Representation stability for Finitely
Generate Arrangements

No Boundaries
Oct 2017

Nir Gadish
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Linear subspace arrangements

A collection U L, c C?

1=1 ,
L linear subspaces

Determines M4 = C¢\ U L,

1=1
Fundamental problem: compute H*(My4) .

Arno'ld, Orlik-Solomon, Goresky-MacPherson...
(and Farb!)
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Examples

S, X S,

2) Rational maps:  C” ><Q/C”f\ | =z = ij
' pi 2,]

(D S, x Z/27"

3) TypeB:  C"\ | J{z = +2;}

Notice: (a) group actions!

i

il i,

\“\\\\‘\;; \ B L0 '

S
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i

(b) come in families!

Goal: Understand H*(M4) in this context.
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Mechanism: C-subspace arrangements

Family = functor!
e.g. FI = Finite set and Injective functions.

{1} — {1,2} —» {1,2,3} — ... = {1,...,n} — .
O @ O O
S S5 Sy l S,
A — Ay — As - ... = A, — .
O @ O O
S1 S9 S3 Sn

One object! e.g. braid arrangements.

C*\ U{Zz = %} only "one equation” (?)
177 —
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Applying cohomology: V J i
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get an FI-module -  [n] — H'(My,).

Theorem [G]: the C-module H*(M,) of a finitely
generated C-arrangement exhibits representation
stability.




Representation stability
Arr
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Representation stability
Arr
Applying cohomology: V J "
FI —— Vect

get an FI-module -  [n] — H'(My,).

Theorem [G]: the C-module H*(M,) of a finitely
generated C-arrangement exhibits representation
stability.

(a) Polynomial dimensions.
(b) Polynomial characters.
(c) Inductive description.
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Concrete consequences

1. Configuration space

X X Xy X1
2 ~ 11 ju— — —_ 2 _ .
XH2(PConf (©)) 3(1>+(2)X2 (2) X4+ (3> X3
Xi(0) = # k-cycles in o W
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Concrete consequences

1. Configuration space

B Xl X1 X2 Xl
=5 (3)+ ()5 (5) 3 02(3)
Xi(0) = # k-cycles in o W

2. Rational maps

amie(erar(©) = 123 ) (5) +20(3) +3(3) (3)

Applications

« SET-free sets [Harmanl].

- Arithmetic statistics of rational maps.

via Etale cohomology.
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Bounding the cohomology of
cont guration spaces and
rationality of Poincare series

Kevin Casto



Configuration spaces

e PConf, (M) = {(m;) € M™ | m; # m;}
e Conf, (M) = PConf,(M)/S,

e So H'(PConf,(M);Q) is an S,,-representation, and
H{(PConf, (M))°» = H*(Conf, (M))

= COIlf4(22)




Representation stability

Recall that irreps of §,, are parameterized by
partitions: {S* | A+ n}

If m >n+ A\, can extend to
Alm]l=(m —n,A1,..., \x) Fm

Given {V,,} with V,, an S,,-rep, satisfies
representation stability [CF] if (V,,, SA™) g
is eventually constant

TL

Church [Ch] proved H*(PConf, (M)) satisfies

repr. stability for a “nice” manifold M.

Taking the trivial rep, this means H*(Conf,, (M))
satisfies homological stability



What about varying 1 ?
e In applications, need to bound (H*(PConf, (X)), S*™)
as ¢ varies

e A priori, rep stability doesn’t help, since that’s only
about each fixed 7

¢ Theorem ([Cal). For M “nice”,
[(H*(PConf,(M)), S ") < P(i)

where P(i) 1s a polynomial independent of n



Poincare series rationality

Put

Fya(z) =) (HY(PConf(M)), 5"y ¢

i>0

Basic fact: if a power series is rational and has poles
at roots of unity, its coefficients are a quasipolynomial

Means there are poly’s pg,...,pd—1 S.t. @i = Pi mod d(7),
so a; bounded by a polynomial

Question: Is F) \(x) always rational with poles
roots of unity (for M nice)?



Partial results

Question inspired by W. Chen [Che| — using work of [KL],

showed answer is “yes” for M = C (explicit formula)

Farb-Wolfson-Wood [FWW]| prove answer is yes for the
trivial rep (A = () if M is a conn. open submanifold of R2"

In this case (A = ()) we are just looking at power series
of stable Betti numbers of Conf,, (X)

Orlik-Solomon [OS] says that
H*(PCOan(C)) = A*<€gj>/(€gj8jk + €ikEik I eikeij)

If we don’t quotient by ideal, calculations suggest analogous
question for exterior algebra fails!
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Coarse geometry of expanders
from homogeneous spaces

Wouter van Limbeek

University of Michigan

27 Oct 2017

Joint work with D. Fisher and T. Nguyen
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Discretizing group actions (Vigolo, '16)

m [ f.g. group

I
m M closed Riem. manifold N Family of graphs
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Discretizing group actions (Vigolo, '16)

m [ f.g. group

I
m M closed Riem. manifold N Family of graphs
m [~ M (bi-Lipschitz) (Xt)e>0

Roe's Warped Cone

— Assembles all X;
~ E(F M),

Mesh < t—1
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Dynamics and coarse geometry

7 —————.
¢y Coarse geometry of graphs (X:)e
Or Warped Cone ¢'(I' ~ M)

Theorem (Vigolo,'16)

Spectral gap forT ~ M — (Xn)n expander.

|
Dynamics of T ~ M

Sawicki
<=

Subgroups of compact Lie groups ~~ Spectral gap

Margulis, Sullivan, Drinfeld, Gamburd—Jakobson—Sarnak, Bourgain-Gamburd (X 2), Benoist-De Saxcé, ...

From now on:

m M = G compact semisimple Lie

m [ C G dense, fin. pres.
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Theorems

Coarse geometry of cones N Dynamics of T ~ M

Theorem (De Laat-Vigolo, Sawicki, '17)

Warped cones are QI = Groups are Stably QI
%(F &% M) EQ/ (5(/\ &% N) — [ x RdimM 2(\)/ N x RdimN,

Does the QI type of the cone capture any of the action?
Theorem (Fisher-Nguyen—vL, '17)

Warped cones are QI = actions are commensurable

Similar result for graphs —
Theorem (Fisher—Nguyen—vL, '17)

There exist continua of QI disjoint expanders.
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