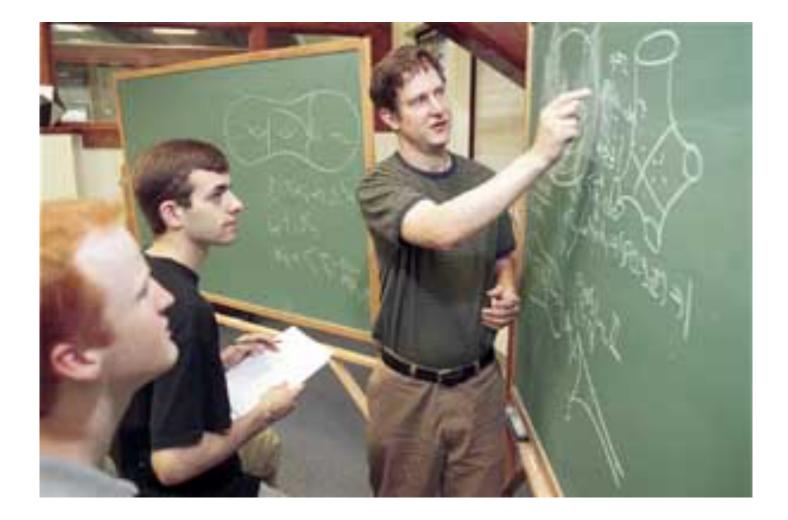
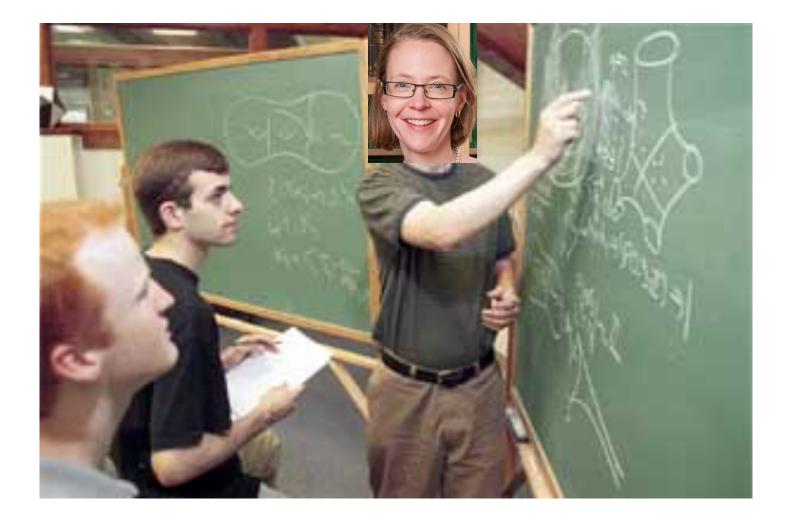


Ivanov's Metaconjecture

Tara Brendle Dan Margalit

No Boundaries: Groups in Algebra, Geometry, and Topology University of Chicago October 27, 2017



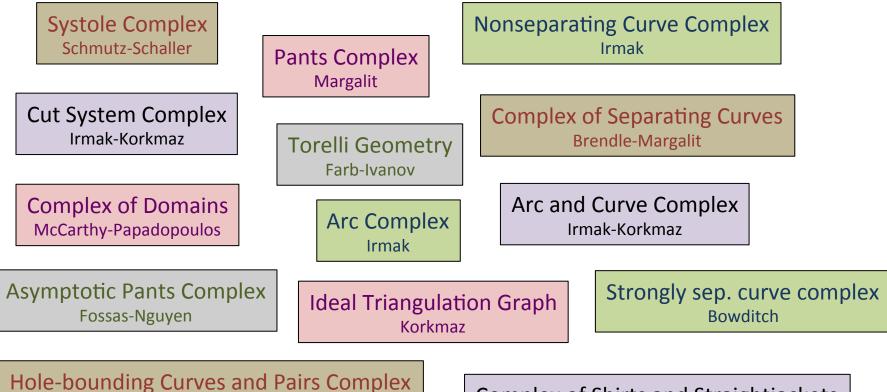


Automorphisms of the Curve Complex

Theorem (Ivanov). Aut $C(S_g) = MCG(S_g)$

Application. Aut $MCG(S_g) = MCG(S_g)$

Rigidity for Complexes



Irmak-Ivanov-McCarthy

Complex of Shirts and Straightjackets Bridson-Pettet-Souto

Rigidity for Groups

Mapping Class Group Ivanov

> Torelli Group Farb-Ivanov

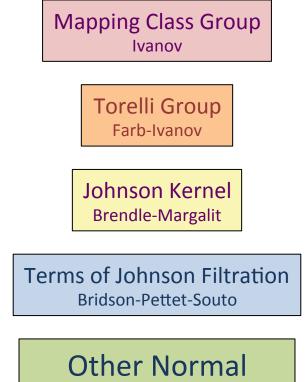
Johnson Kernel Brendle-Margalit

Terms of Johnson Filtration Bridson-Pettet-Souto

Ivanov's Metaconjecture

Any object naturally associated to a surface *S* and having a sufficiently rich structure has MCG(*S*) as its group of automorphisms.

Rigidity for Groups



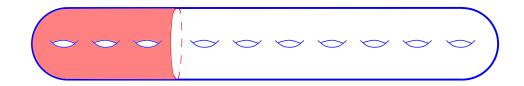
Subgroups?

Dahmani-Guirardel-Osin examples

Main Theorem

If $N \triangleleft MCG(S_g)$ has an element with small support then:

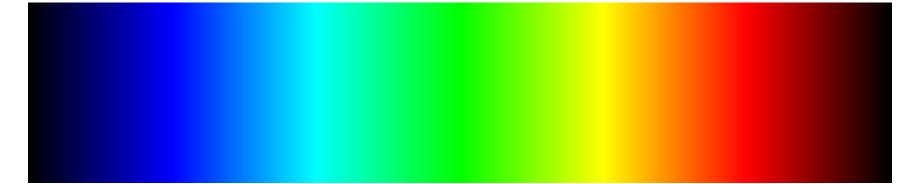
Aut
$$N = MCG(S_g)$$
.



Normal Subgroups of MCG

Aut >> MCG

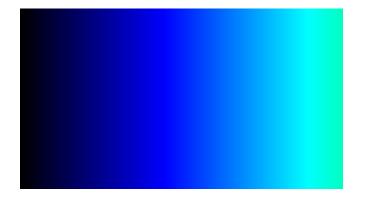
Aut = MCG



Infinitely generated RAAGs Terms of Johnson filtration, Magnus filtration, etc.

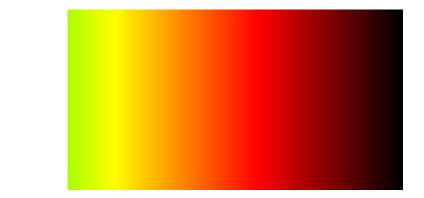
Normal Subgroups of MCG

Aut >> MCG

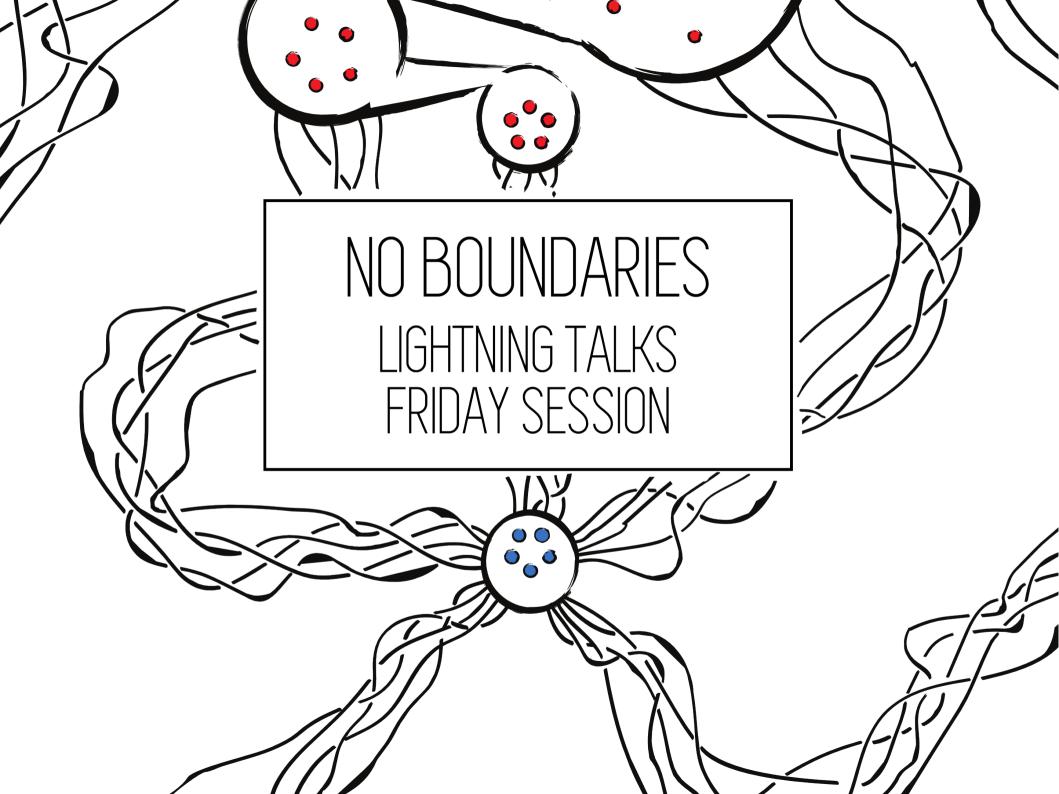


Infinitely generated RAAGs

Aut = MCG



Terms of Johnson filtration, Magnus filtration, etc.



The Primitive Torsion Problem

Khalid Bou-Rabee

Joint with Patrick W. Hooper

The City College of New York

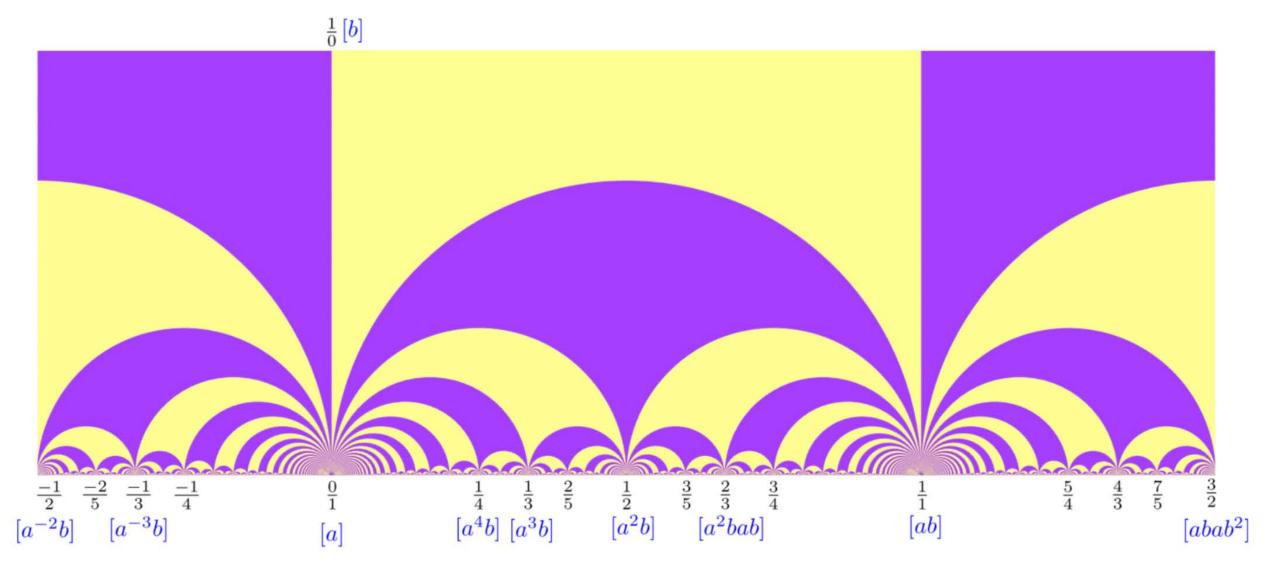
The Primitive Torsion Problem

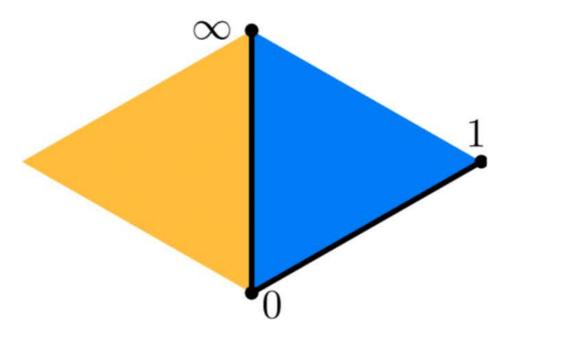
- Let F_r be the free group of rank r. A *primitive element* is an element that is part of a basis for F_r .
- Let P_k be the group generated by kth powers of all primitive elements in F_r .
- The Primitive Torsion Problem: When is F_r/P_k finite? Finitely presented? Solvable? Nilpotent?
- Similar questions for other groups may be asked...

Known results

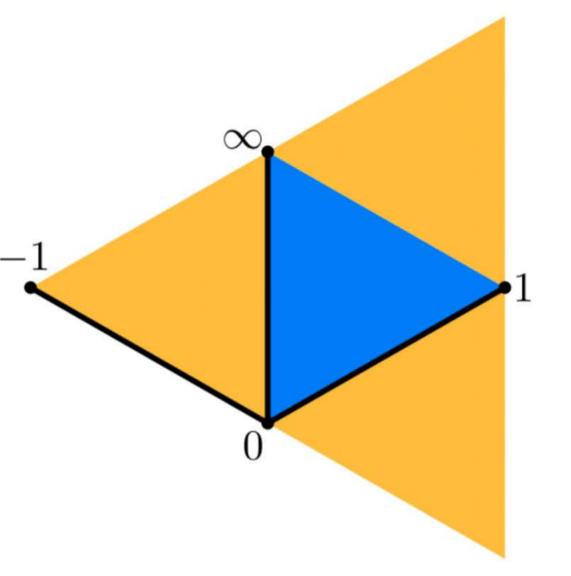
- <u>Theorem</u> (Thomas Koberda and Ramanujan Santharoubane, 2015) For some $k \ge 10$, the group F_r/P_k is infinite.
- <u>Theorem</u> (Andrew Putman and Justin Malestein, 2017) Same result. Different proof.
- <u>Theorem</u> (Patrick W. Hooper and Bou-Rabee, 2017) The group F_2/P_k is finite if and only if k = 1,2,3. **Moreover,** F_2/P_4 is virtually nilpotent (we construct an explicit integral representation), and F_2/P_k is finitely presented for k = 1,2,3,4,5.

The Farey triangulation:

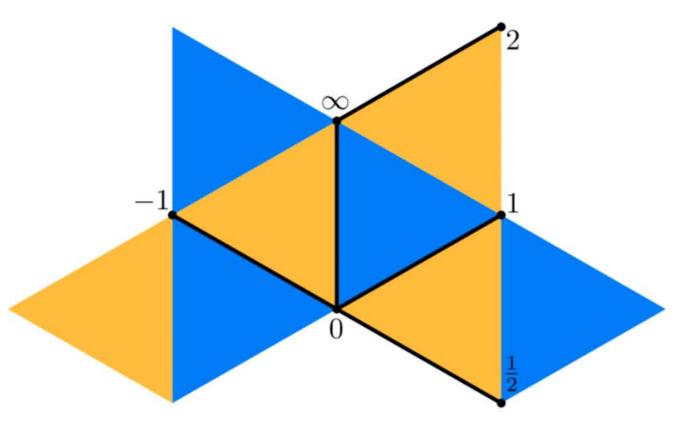




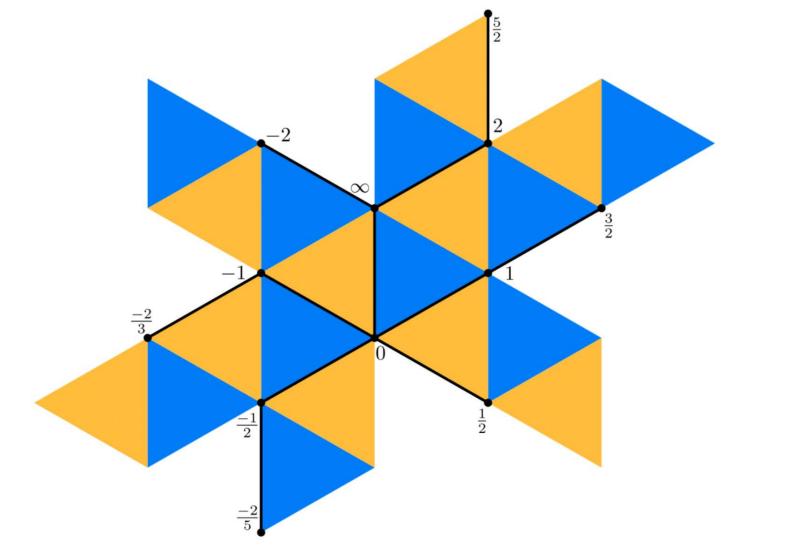
Vertex	Generator of P_2
~	a^2
0	b^2
1	$(ab)^2$

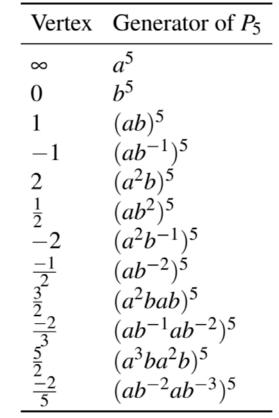


Vertex	Generator of P_3
∞	<i>a</i> ³
0	b^3
1	$(ab)^3$ $(ab^{-1})^3$
-1	$(ab^{-1})^3$



Vertex	Generator of P_4
∞	a^4
0	b^4
1	$(ab)^4$
-1	$(ab^{-1})^4$
2	$(ab^{-1})^4$ $(a^2b)^4$
$\frac{1}{2}$	$(ab^2)^4$



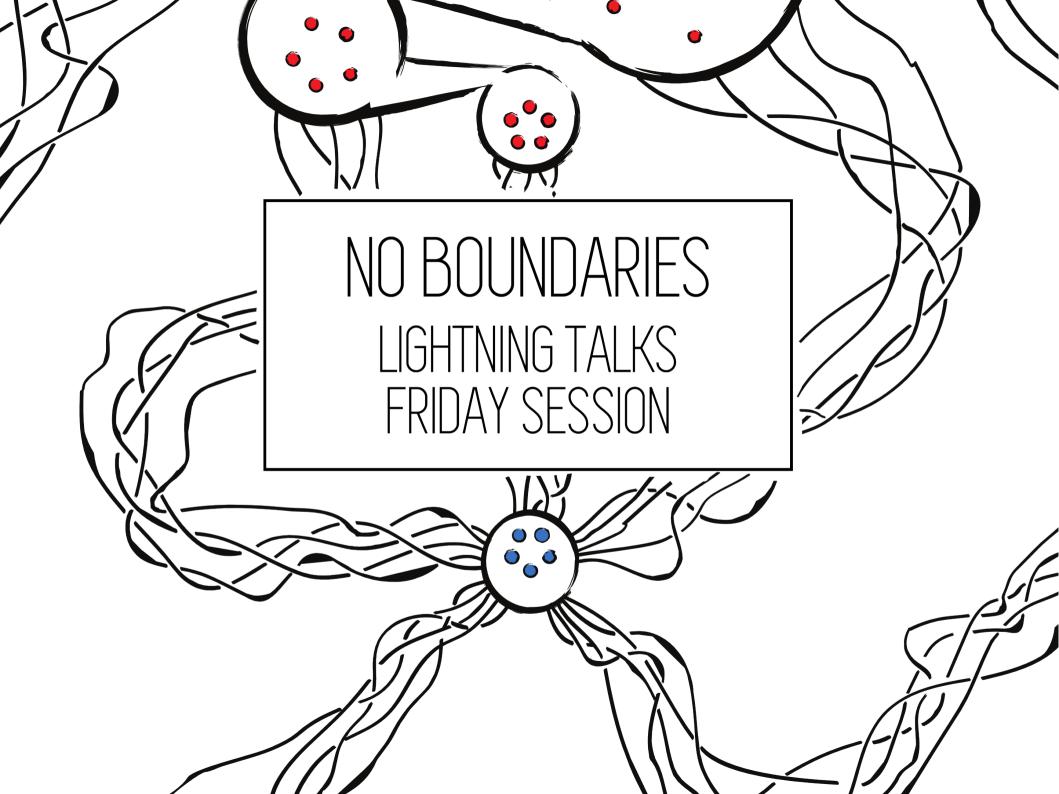


New notion

- A representation of F_2 is *characteristic* if for any automorphism ψ of F_2 , there is an automorphism Ψ of $GL(n, \mathbb{C})$ so that $\Psi \circ \rho \circ \psi^{-1}(g) = \rho(g)$ for all $g \in F_2$.
- We say $\rho: F_2 \rightarrow GL(n, \mathbb{C})$ is an oriented characteristic representation if:
 - For each $\psi \in Aut_+(F_2)$ there is an $M \in GL(n, \mathbb{C})$ so that $M \rho \circ \psi^{-1}(g)M^{-1} = \rho(g)$ for all $g \in F_2$.
 - For each $\psi \in Aut_{-}(F_{2})$ there is an $M \in GL(n, \mathbb{C})$ so that $M \cdot \rho \circ \psi^{-1}(g) \cdot M^{-1} = \rho(g)$ for all $g \in F_{2}$.

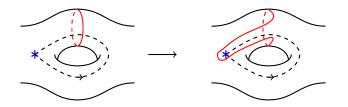
Improvement scheme

- Assume $\rho: F_2 \to GL(n, \mathbb{C})$ is an oriented characteristic representation factoring through G_k . We produce an oriented characteristic representation $\tilde{\rho}: F_2 \to GL(n + m, \mathbb{C})$ factoring through G_k (hopefully with m > 0) so that there is a short exact sequence of the form $1 \to \mathbb{Z}^d \to \tilde{\rho}(F_2) \to \rho(F_2) \to 1$ where $d \ge 0$ is the rank of the abelian image $\tilde{\rho}(\ker \rho)$ (hopefully d > 0).
- Using this scheme we get an explicit faithful representation for F_2/P_4 and infinite representations for F_2/P_k for $k \ge 4$.
- What will this scheme give us for F_2/P_5 ? We are working on it.



Algebraic Characterizations in the Mapping Class Group

Victoria Akin



The Point-Pushing Subgroup $1 ightarrow P(S_g) ightarrow \mathsf{Mod}(S_{g,*}) ightarrow \mathsf{Mod}(S_g) ightarrow 1$

Algebraic Characterization

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $_\circ$ Abstractly isomorphic to $\pi_1(S_g)$

• Normal in $Mod(S_g)$

(Ivanov-McCarthy) $\mathsf{Out}(\mathsf{Mod}^{\pm}(S_{g,*}) \cong 1$

(Ivanov-McCarthy) $\mathsf{Out}(\mathsf{Mod}^{\pm}(S_{g,*})\cong 1$

• Burnside:

If a centerless group G is charcteristic in Aut(G), then $Aut(Aut(G)) \cong Aut(G)$. That is, $Out(Aut(G)) \cong 1$.

(Ivanov-McCarthy) $\mathsf{Out}(\mathsf{Mod}^{\pm}(S_{g,*}) \cong 1$

• Burnside:

If a centerless group G is charcteristic in Aut(G), then $Aut(Aut(G)) \cong Aut(G)$. That is, $Out(Aut(G)) \cong 1$.

• Dehn-Nielsen-Baer: Aut $(\pi_1(S_g)) \cong Mod^{\pm}(S_{g,*}).$

(Ivanov-McCarthy) $\mathsf{Out}(\mathsf{Mod}^{\pm}(S_{g,*}) \cong 1$

• Burnside:

If a centerless group G is charcteristic in Aut(G), then $Aut(Aut(G)) \cong Aut(G)$. That is, $Out(Aut(G)) \cong 1$.

- Dehn-Nielsen-Baer: Aut $(\pi_1(S_g)) \cong Mod^{\pm}(S_{g,*}).$
- Uniqueness of Point-Pushing: $Out(Aut(\pi_1(S_g))) \cong Out(Mod^{\pm}(S_{g,*})) \cong 1.$

For H < G geometrically/topologically defined, can we find a purely algebraic characterization?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For H < G geometrically/topologically defined, can we find a purely algebraic characterization?

• Braid group?

 $1 \to \pi_1(\mathsf{Conf}_n(S_g)) \to \mathsf{Mod}(S_{g,n}) \to \mathsf{Mod}(\Sigma_g) \to 1$

o Disk pushing?

Handle pushing?

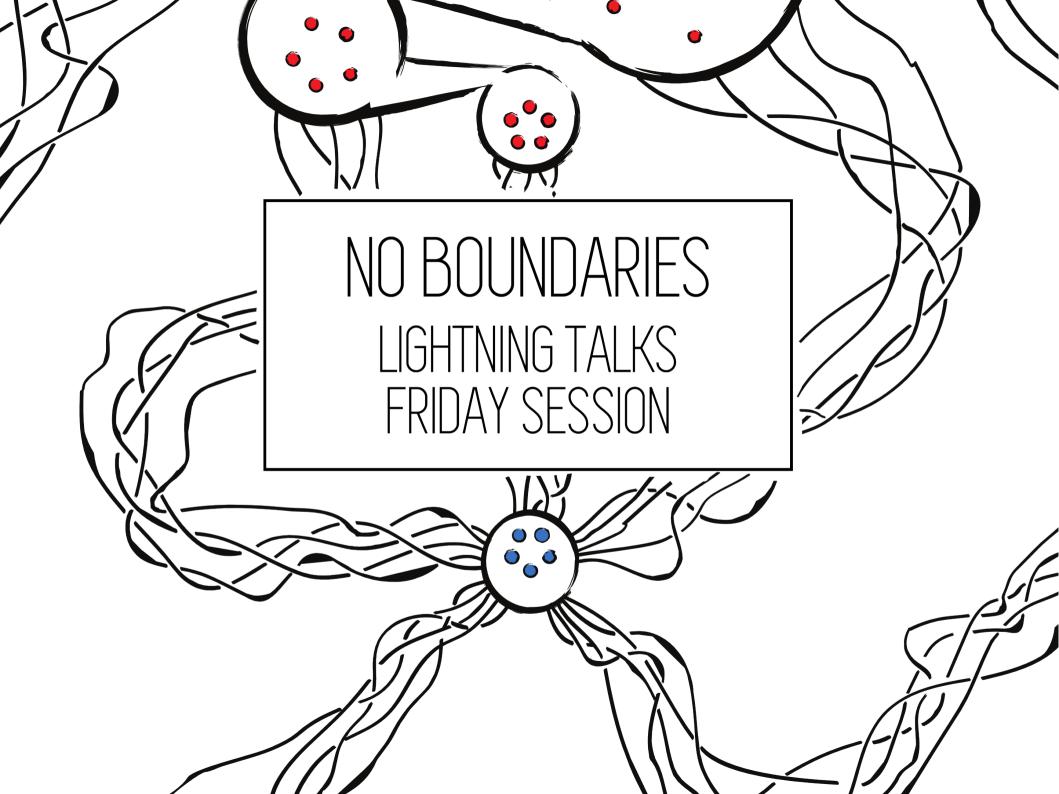
What other normal/non-normal subgroups are unique?

What other normal/non-normal subgroups are unique?

 (with D. Margalit) Torelli? Johnson Kernel? Higher terms in the Johnson Series?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

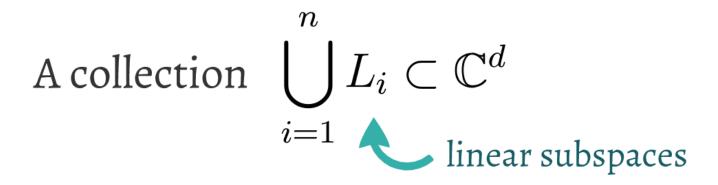
Thank you

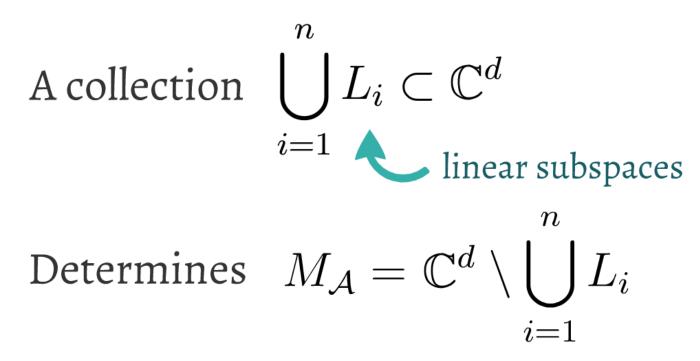


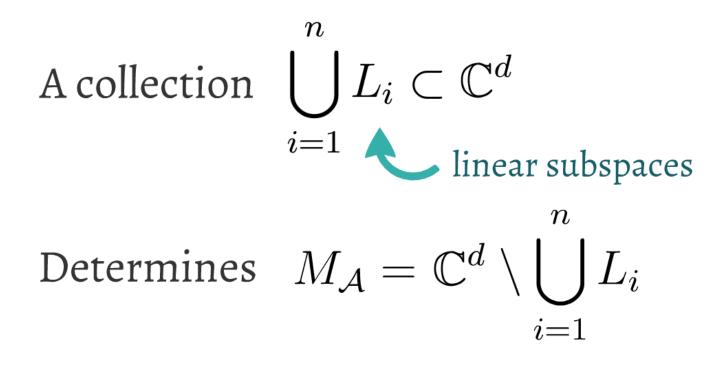
Representation stability for Finitely Generate Arrangements

No Boundaries Oct 2017

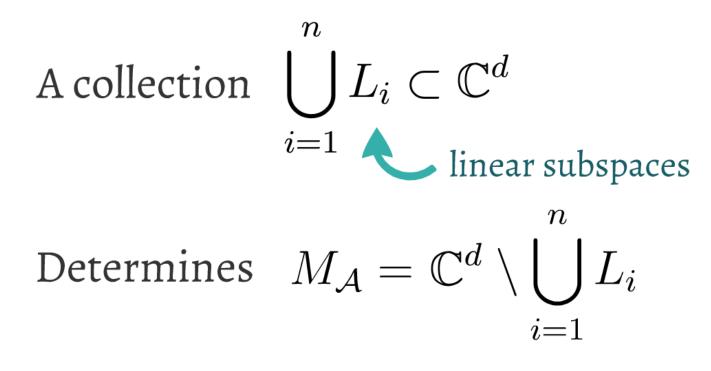
Nir Gadish





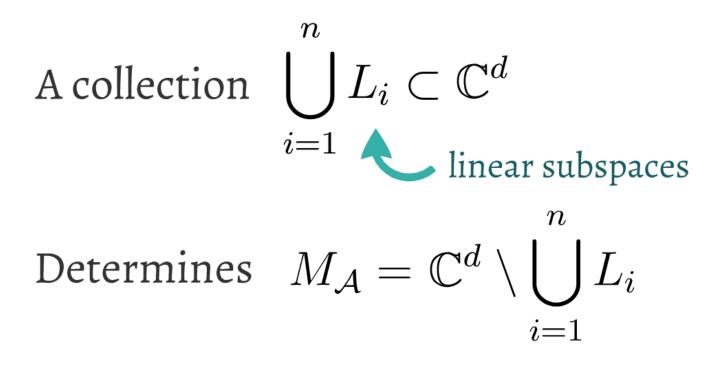


Fundamental problem: compute $H^*(M_A)$.



Fundamental problem: compute $H^*(M_A)$.

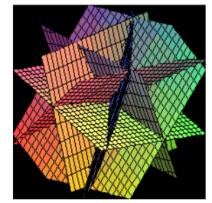
Arno'ld, Orlik-Solomon, Goresky-MacPherson...



Fundamental problem: compute $H^*(M_A)$.

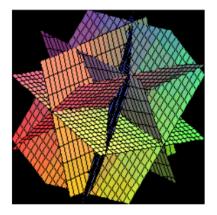
Arno'ld, Orlik-Solomon, Goresky-MacPherson... (and Farb!)

Examples



1) Configurations: $\mathbb{C}^n \setminus \bigcup_{i \neq j} \{z_i = z_j\}$

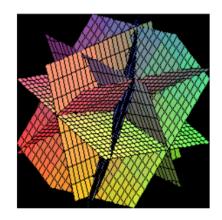
"the braid arrangement". $^{i
eq j}$



Examples

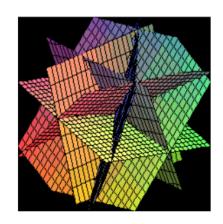
1) Configurations: $\mathbb{C}^n \setminus \bigcup \{z_i = z_j\}$ "the braid arrangement". $^{i \neq j}$

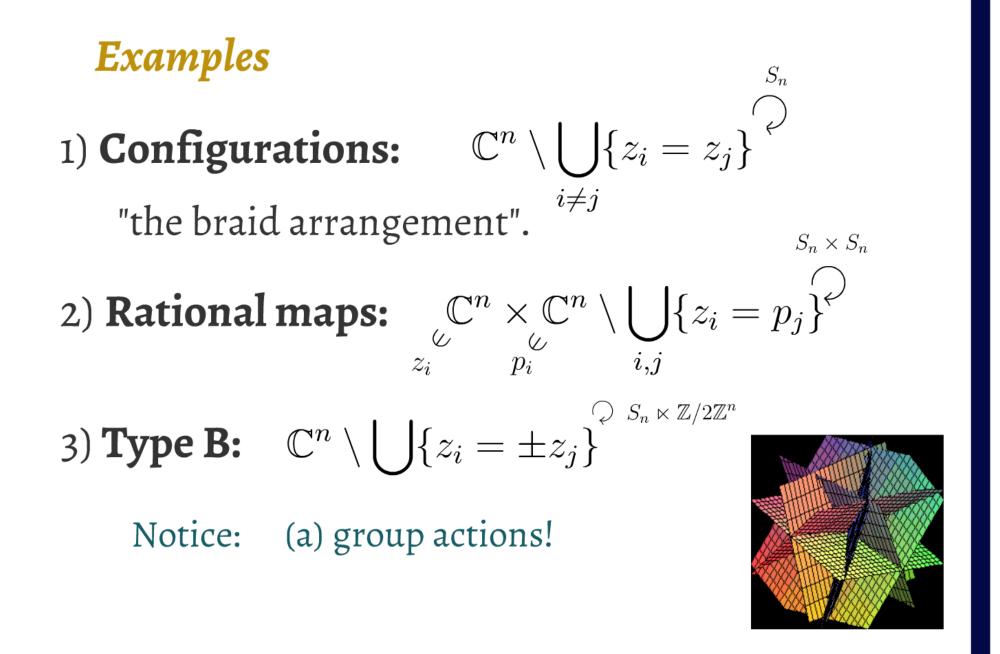
2) Rational maps: $\underset{z_i \\ c}{\mathbb{C}^n} \times \underset{p_i}{\mathbb{C}^n} \setminus \bigcup_{i,j} \{z_i = p_j\}$

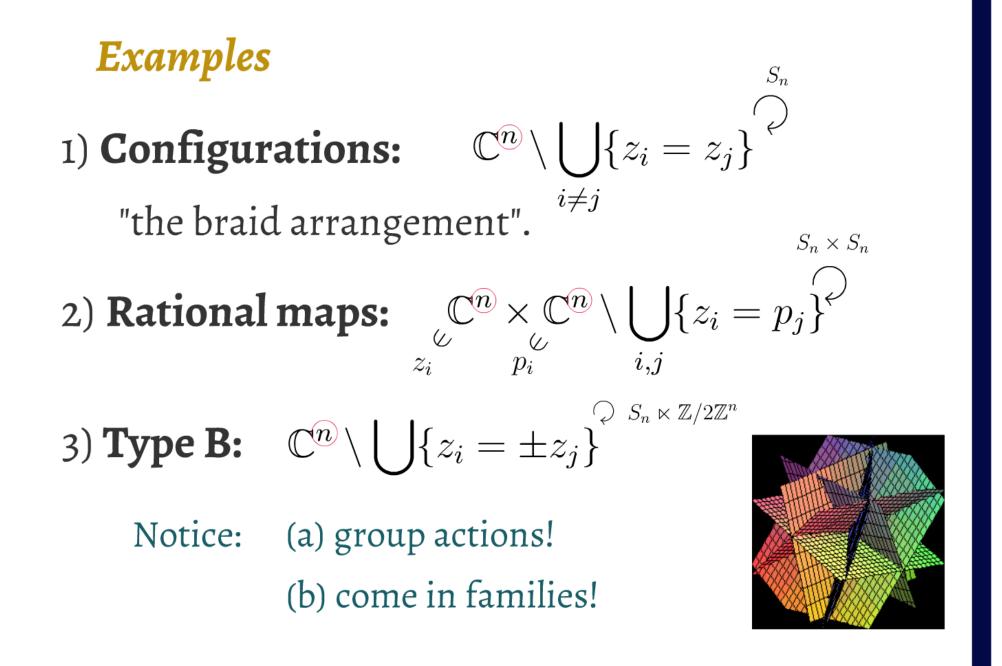


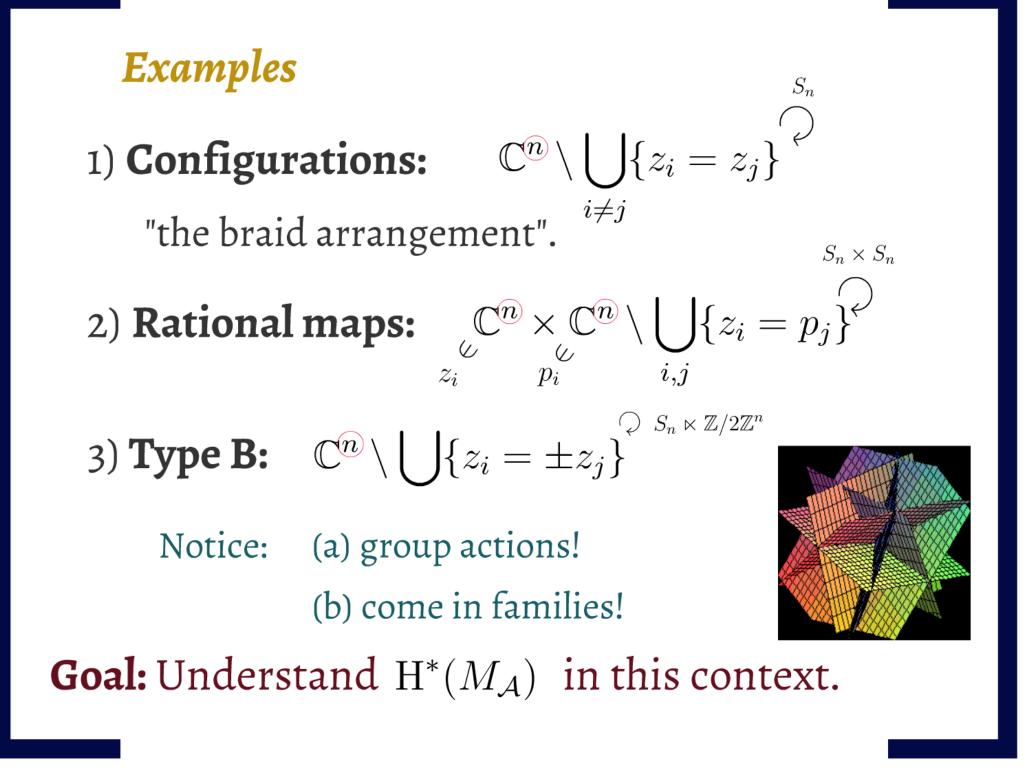
Examples

- 1) **Configurations:** $\mathbb{C}^n \setminus \bigcup_{i \neq j} \{z_i = z_j\}$ "the braid arrangement".
- 2) Rational maps: $\underset{z_i \\ z_i \\ z_$
- 3) **Type B:** $\mathbb{C}^n \setminus \bigcup \{z_i = \pm z_j\}$









Mechanism: C-subspace arrangements

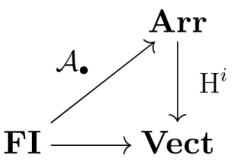
Mechanism: C-subspace arrangements Family = functor!

Mechanism: C-subspace arrangements **Family = functor!** e.g. **FI** = **F**inite set and **I**njective functions. $\{1\} \rightarrow \{1,2\} \rightarrow \{1,2,3\} \rightarrow \ldots \rightarrow \{1,\ldots,n\} \rightarrow \ldots$ \bigcirc S_n S_1 S_3 S_2

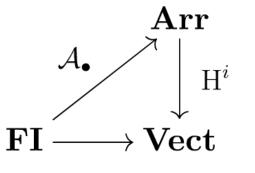
Mechanism: C-subspace arrangements **Family = functor!** e.g. **FI** = **F**inite set and **I**njective functions. $\{1\} \rightarrow \{1,2\} \rightarrow \{1,2,3\} \rightarrow \ldots \rightarrow \{1,\ldots,n\} \rightarrow \ldots$ \bigcirc S_n S_3 S_1 S_2 Q S_1 S_2 S_n S_3 **One object!** e.g. braid arrangements. $\mathbb{C}^{\bullet} \setminus \bigcup \{ z_i = z_j \}$ $i \neq j$

Mechanism: C-subspace arrangements **Family = functor!** e.g. **FI** = **F**inite set and **I**njective functions. $\{1\} \rightarrow \{1,2\} \rightarrow \{1,2,3\} \rightarrow \ldots \rightarrow \{1,\ldots,n\} \rightarrow \ldots$ S_n S_1 S_3 S_2 S_1 S_n S_2 S_3 **One object!** e.g. braid arrangements. $\mathbb{C}^{\bullet} \setminus \bigcup \{z_i = z_j\}$ only "one equation" (?) $i \neq i$

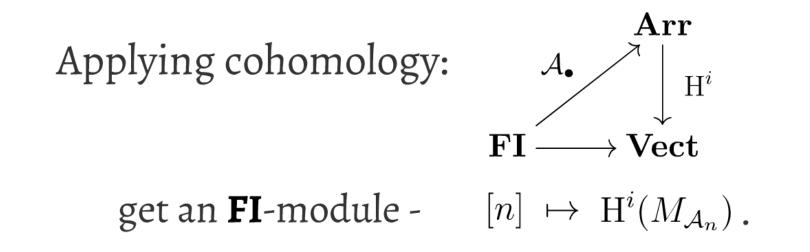
Applying cohomology:



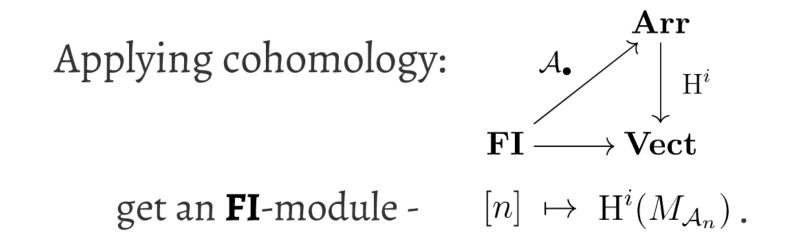
Applying cohomology:



get an **FI**-module - $[n] \mapsto \mathrm{H}^{i}(M_{\mathcal{A}_{n}})$.

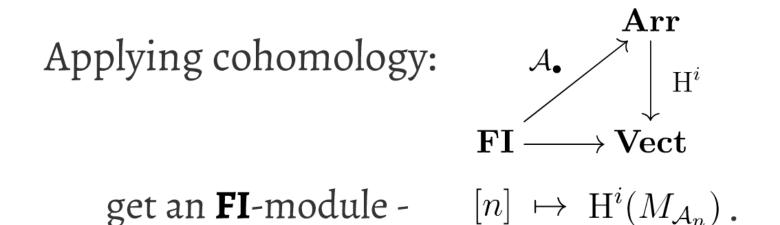


Theorem [G]: the **C**-module H*(*M*_A) of a finitely generated **C**-arrangement exhibits representation stability.



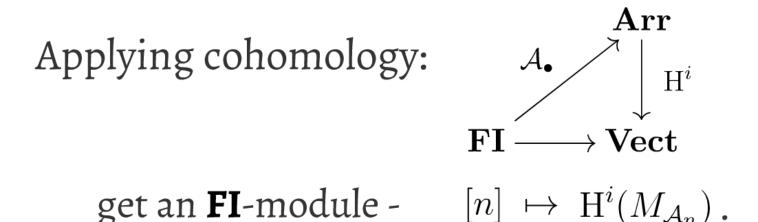
Theorem [G]: the **C**-module H*(*M*_A) of a finitely generated **C**-arrangement exhibits representation stability.

(a) Polynomial dimensions.



Theorem [G]: the **C**-module H*(*M*_A) of a finitely generated **C**-arrangement exhibits representation stability.

(a) Polynomial dimensions.
(b) Polynomial characters.



Theorem [G]: the **C**-module H*(*M*_A) of a finitely generated **C**-arrangement exhibits representation stability.

(a) Polynomial dimensions.
(b) Polynomial characters.
(c) Inductive description.

1. Configuration space

$$\chi_{\mathrm{H}^{2}(\mathrm{PConf}^{n}(\mathbb{C}))} = 3\binom{X_{1}}{1} + \binom{X_{1}}{2}X_{2} - \binom{X_{2}}{2} - X_{4} + 2\binom{X_{1}}{3} - X_{3}$$

1. Configuration space

$$\chi_{\mathrm{H}^{2}(\mathrm{PConf}^{n}(\mathbb{C}))} = 3\binom{X_{1}}{1} + \binom{X_{1}}{2}X_{2} - \binom{X_{2}}{2} - X_{4} + 2\binom{X_{1}}{3} - X_{3}$$
$$X_{k}(\sigma) = \# k \text{-cycles in } \sigma$$

1. Configuration space

$$\chi_{\mathrm{H}^{2}(\mathrm{PConf}^{n}(\mathbb{C}))} = 3\binom{X_{1}}{1} + \binom{X_{1}}{2}X_{2} - \binom{X_{2}}{2} - X_{4} + 2\binom{X_{1}}{3} - X_{3}$$
$$X_{k}(\sigma) = \# k \text{-cycles in } \sigma$$

2. Rational maps

$$\dim \mathrm{H}^{3}(\mathrm{PRat}^{n}(\mathbb{C})) = 12\binom{n}{2}\binom{n}{3} + 2n\binom{n}{3} + 3\binom{n}{2}\binom{n}{2}$$

1. Configuration space

$$\chi_{\mathrm{H}^{2}(\mathrm{PConf}^{n}(\mathbb{C}))} = 3\binom{X_{1}}{1} + \binom{X_{1}}{2}X_{2} - \binom{X_{2}}{2} - X_{4} + 2\binom{X_{1}}{3} - X_{3}$$
$$X_{k}(\sigma) = \# k \text{-cycles in } \sigma$$

2. Rational maps

$$\dim \mathrm{H}^{3}(\mathrm{PRat}^{n}(\mathbb{C})) = 12\binom{n}{2}\binom{n}{3} + 2n\binom{n}{3} + 3\binom{n}{2}\binom{n}{2}$$

Applications

• SET-free sets [Harman].

1. Configuration space

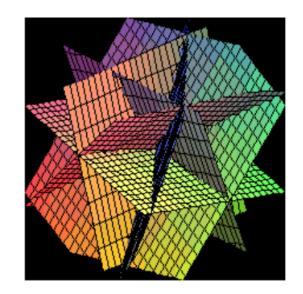
$$\chi_{\mathrm{H}^{2}(\mathrm{PConf}^{n}(\mathbb{C}))} = 3\binom{X_{1}}{1} + \binom{X_{1}}{2}X_{2} - \binom{X_{2}}{2} - X_{4} + 2\binom{X_{1}}{3} - X_{3}$$
$$X_{k}(\sigma) = \# k \text{-cycles in } \sigma$$

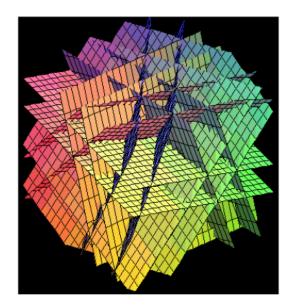
2. Rational maps

$$\dim \mathrm{H}^{3}(\mathrm{PRat}^{n}(\mathbb{C})) = 12\binom{n}{2}\binom{n}{3} + 2n\binom{n}{3} + 3\binom{n}{2}\binom{n}{2}$$

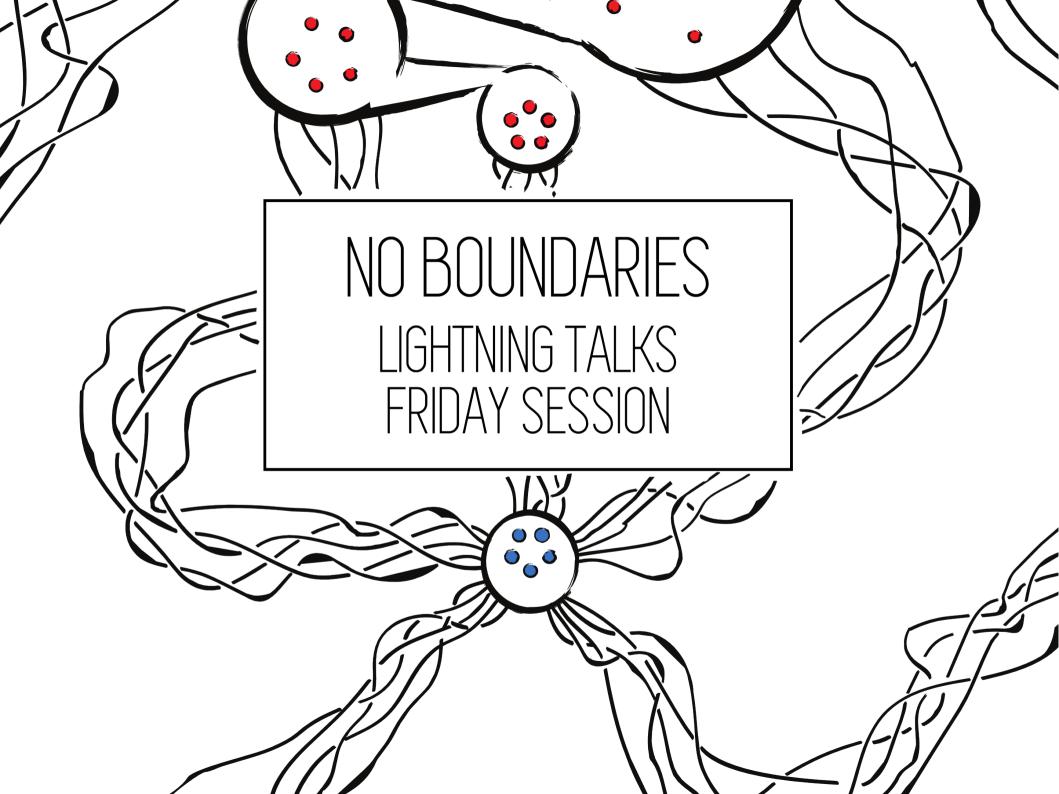
Applications

- SET-free sets [Harman].
- Arithmetic statistics of rational maps.
 via Étale cohomology.





Any questions?

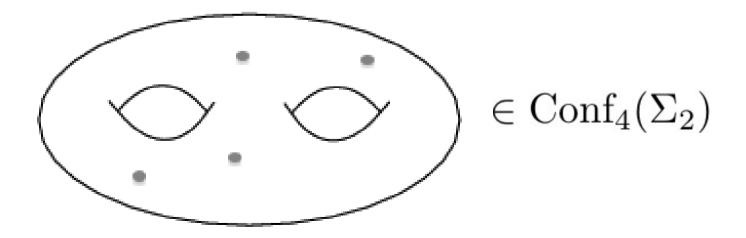


Bounding the cohomology of conf guration spaces and rationality of Poincaré series

Kevin Casto

Configuration spaces

- $\operatorname{PConf}_n(M) = \{(m_i) \in M^n \mid m_i \neq m_j\}$
- $\operatorname{Conf}_n(M) = \operatorname{PConf}_n(M)/S_n$
- So $H^i(\operatorname{PConf}_n(M); \mathbb{Q})$ is an S_n -representation, and $H^i(\operatorname{PConf}_n(M))^{S_n} = H^i(\operatorname{Conf}_n(M))$



Representation stability

- Recall that irreps of S_n are parameterized by partitions: $\{S^{\lambda} \mid \lambda \vdash n\}$
- If $m \ge n + \lambda_1$, can extend to $\lambda[m] = (m - n, \lambda_1, \dots, \lambda_k) \vdash m$
- Given $\{V_n\}$ with V_n an S_n -rep, satisfies representation stability [CF] if $\langle V_n, S^{\lambda[n]} \rangle_{S_n}$ is eventually constant
- Church [Ch] proved $H^i(\operatorname{PConf}_n(M))$ satisfies repr. stability for a "nice" manifold M.
- Taking the trivial rep, this means $H^i(\operatorname{Conf}_n(M))$ satisfies homological stability

What about varying *i* ?

- In applications, need to bound $\langle H^i(\operatorname{PConf}_n(X)), S^{\lambda[n]} \rangle$ as *i* varies
- A priori, rep stability doesn't help, since that's only about each fixed i
- Theorem ([Ca]). For M "nice",

 $|\langle H^i(\operatorname{PConf}_n(M)), S^{\lambda[n]} \rangle| \le P(i)$

where P(i) is a polynomial independent of n

Poincaré series rationality

• Put

$$F_{M,\lambda}(x) = \sum_{i \ge 0} \langle H^i(\operatorname{PConf}(M)), S^{\lambda[n]} \rangle t^i$$

- Basic fact: if a power series is rational and has poles at roots of unity, its coefficients are a *quasipolynomial*
- Means there are poly's p_0, \ldots, p_{d-1} s.t. $a_i = p_{i \mod d}(i)$, so a_i bounded by a polynomial
- Question: Is $F_{M,\lambda}(x)$ always rational with poles roots of unity (for M nice)?

Partial results

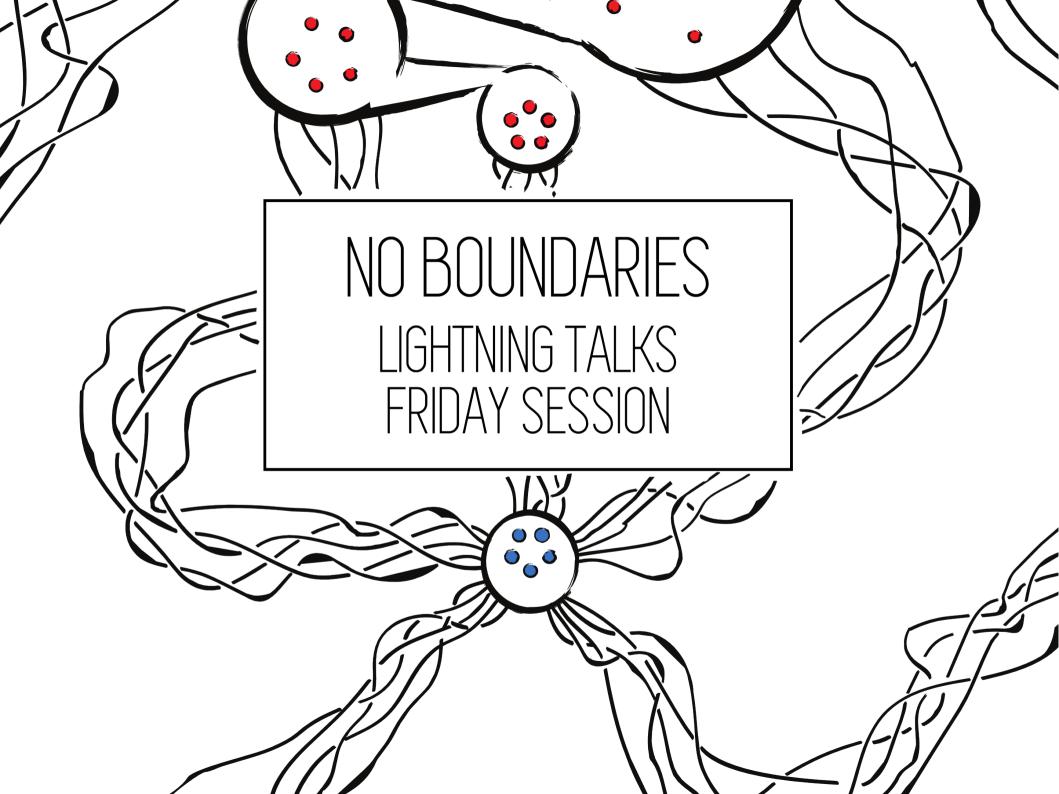
- Question inspired by W. Chen [Che] using work of [KL], showed answer is "yes" for $M = \mathbb{C}$ (explicit formula)
- Farb-Wolfson-Wood [FWW] prove answer is yes for the trivial rep $(\lambda = \emptyset)$ if M is a conn. open submanifold of \mathbb{R}^{2r}
- In this case $(\lambda = \emptyset)$ we are just looking at power series of stable Betti numbers of $Conf_n(X)$
- Orlik-Solomon [OS] says that

$$H^*(\operatorname{PConf}_n(\mathbb{C})) = \Lambda^* \langle e_{ij} \rangle / (e_{ij}e_{jk} + e_{jk}e_{ik} + e_{ik}e_{ij})$$

If we don't quotient by ideal, calculations suggest analogous question for exterior algebra *fails*!

References

- [Cas] K. Casto. Representation stability and arithmetic statistics of spaces of 0-cycles. arXiv:1710.06850.
- [CF13] T. Church and B. Farb. Representation theory and homological stability. Advances in Mathematics, 245:250– 314, 2013.
- [Che] W. Chen. Twisted cohomology of configuration spaces and spaces of maximal tori via point-counting. arXiv:1603.03931.
- [Chu12] T. Church. Homological stability for configuration spaces of manifolds. Invent. Math., 188(2):465–504, 2012.
- [KL02] M. Kisin and G. Lehrer. Equivariant Poincaré polynomials and counting points over finite fields. J. Algebra, 247(2):435451, 2002.
- [OS80] P. Orlik and L. Solomon. Combinatorics and topology of complements of hyperplanes. Invent. Math., 56(2):167–189, 1980.



Coarse geometry of expanders from homogeneous spaces

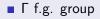
Wouter van Limbeek

University of Michigan

27 Oct 2017

Joint work with D. Fisher and T. Nguyen

Discretizing group actions (Vigolo, '16)



■ *M* closed Riem. manifold

• $\Gamma \curvearrowright M$ (bi-Lipschitz)

 \longrightarrow

Family of graphs $(X_t)_{t>0}$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Discretizing group actions (Vigolo, '16)

Γ f.g. group

■ *M* closed Riem. manifold

Γ ¬ M (bi-Lipschitz)

Action $\Gamma \curvearrowright M$

 $\mathsf{Mesh} < t^{-1}$

 \sim

Family of graphs $(X_t)_{t>0}$

Graphs X_t

Vertices: Regions R_i

Edges: $sR_i \cap R_j \neq \emptyset$.

Discretizing group actions (Vigolo, '16)

Γ f.g. group

• *M* closed Riem. manifold

Γ へ M (bi-Lipschitz)

 \sim

Family of graphs $(X_t)_{t>0}$

Action $\Gamma \curvearrowright M$

Mesh $< t^{-1}$

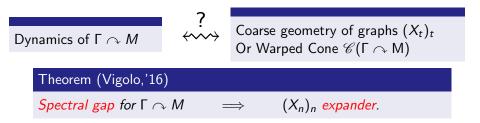
Roe's Warped Cone

Assembles all X_t $\rightsquigarrow \mathscr{C}(\Gamma \curvearrowright M)$.

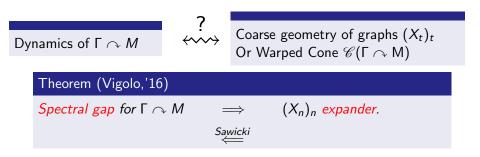
・ロト・雪ト・雪ト・雪・ 今日・

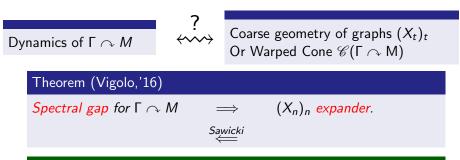
Dynamics of $\Gamma \curvearrowright M$

Coarse geometry of graphs $(X_t)_t$ Or Warped Cone $\mathscr{C}(\Gamma \curvearrowright M)$



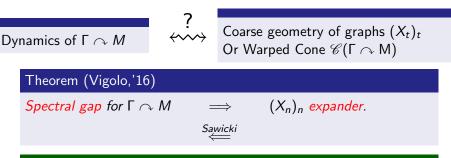
<ロ> (四) (四) (三) (三) (三) (三)





Subgroups of compact Lie groups ~> Spectral gap

Margulis, Sullivan, Drinfeld, Gamburd-Jakobson-Sarnak, Bourgain-Gamburd (×2), Benoist-De Saxcé, ...



Subgroups of compact Lie groups ~> Spectral gap

Margulis, Sullivan, Drinfeld, Gamburd-Jakobson-Sarnak, Bourgain-Gamburd (×2), Benoist-De Saxcé, ...

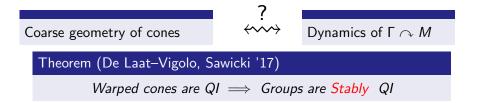
From now on:

- *M* = *G* compact semisimple Lie
- $\Gamma \subseteq G$ dense, fin. pres.

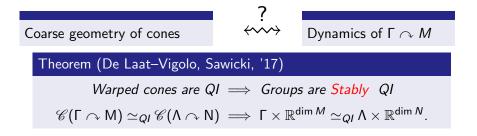
Coarse geometry of cones

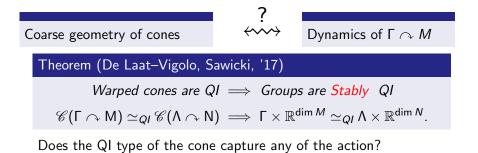
Dynamics of $\Gamma \curvearrowright M$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

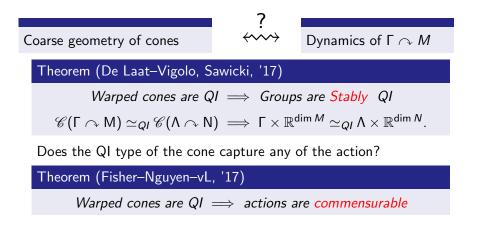


◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣





・ロト・西ト・西ト・日・ 日・ シック



◆□ → ◆昼 → ◆臣 → ◆臣 → ◆□ →

