Rigidity implies geometricity for surface group representations

Kathryn Mann Brown University

&

Maxime Wolff Inst. Math. Jussieu

Rigidity

 Γ discrete group (e.g. $\pi_1(\Sigma_g) = \Gamma_g$), G topological group Study representations $\rho: \Gamma \to G$.

think: G linear (rep. theory) or G = Homeo(M), Diff(M) (dynamics)

Definition: $\rho: \Gamma \to G$ is *rigid* if "only trivial deformations" $\rho \in \operatorname{\mathsf{Hom}}(\Gamma,G)/G$ is an isolated point.

Problem: quotient space typically not Hausdorff e.g. $\operatorname{\mathsf{Hom}}(\mathbb{Z},\operatorname{\mathsf{SL}}(2,\mathbb{C}))/\operatorname{\mathsf{SL}}(2,\mathbb{C}) \leftrightarrow \operatorname{\mathsf{trace}} \ \operatorname{\mathsf{except}} \left(\begin{smallmatrix} 1 & t \\ 0 & 1 \end{smallmatrix}\right) \neq \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix}\right).$

Solution: Define "character space" $X(\Gamma, G) := \text{largest Hausdorff quotient of Hom}(\Gamma, G)/G$ for $SL(n, \mathbb{C})$ this *is* characters; for G complex, reductive Lie group, it is GIT quotient

Change definition: Rigid means isolated point in $X(\Gamma, G)$.

Rigidity from geometry

Mostow rigidity (Calabi): $\Gamma = \pi_1(M^n)$ hyperbolic manifold $\Gamma \to SO(n,1)$ embedding as cocompact lattice is rigid in $X(\Gamma,SO(n,1))$

Analog in non-linear setting?

Definition: $\rho: \Gamma \to \mathsf{Homeo}(M)$ is *geometric* if factors through $\Gamma \hookrightarrow G \hookrightarrow \mathsf{Homeo}(M)$

cocompact transitive lattice Lie group

Example 1. $\pi_1(\Sigma_g) \to \mathsf{PSL}(2,\mathbb{R}) \to \mathsf{Homeo}(S^1)$

Theorem (Matsumoto '87)

The example above is *rigid* in $X(\pi_1(\Sigma_g), \text{Homeo}(S^1))$.

Geometric reps to $Homeo(S^1)$

Fact: Connected, transitive Lie groups in Homeo(S^1) are

- SO(2)
- ullet finite cyclic extensions of $\mathsf{PSL}(2,\mathbb{R})$

$$\mathbb{Z}/k\mathbb{Z} \to G \to \mathsf{PSL}(2,\mathbb{R})$$

Cor.: can describe all geometric actions of $\pi_1(\Sigma_g) = \Gamma_g$ on S^1 .

(lifts of Fuchsian actions)

Theorem (Mann, 2014)

If $\rho: \Gamma_g \to \mathsf{Homeo}(S^1)$ is geometric, then it is rigid.

Theorem (Mann-Wolff, 2017)

Converse: if $\rho \in X(\Gamma_g, \mathsf{Homeo}_+(S^1))$ is rigid, then it is *geometric*.

Plan:

- 1. What is $X(\Gamma_g, \text{Homeo}_+(S^1))$?
- 2. Idea of proof for rigid \Rightarrow geometric.

What is $X(\Gamma_g, \text{Homeo}_+(S^1))$?

- Space of flat (foliated), topological S^1 bundles over Σ_g
- Points are semi-conjugacy classes of actions
- Parametrized by *rotation numbers* of elements.

analog of trace coordinates for $X(\Gamma, SL(2, \mathbb{R}))$

• Topologically... complicated

Not known:

- Finitely many connected components?
- How different from $X(\Gamma_g, \mathsf{Diff}_+(S^1))$? (see work of J. Bowden)

Calegari–Walker
Ziggurats and Rotation numbers

Proof ideas for "Rigid ⇒ Geometric"

Dynamical lemma: ρ rigid $\Rightarrow \rho(\gamma)$ has rational rotation number for every simple closed curve γ .

Key tool: Bending deformations

works in $Hom(\Gamma_g, G)$ for any G

Bending ρ along c: take c_t commuting with $\rho(c)$. Define $\rho_t = c_t \rho c_t^{-1}$ on B, $\rho_t = \rho$ on A.

Bending ρ along a: similar, define $\rho_t(b) = a_t \rho(b)$. if $a_1 = \rho(a)$, like Dehn twist

Headaches: • based curves. • centralizers. • 1-parameter subgroups.

Proof ideas for "Rigid ⇒ Geometric"

Main idea: $\rho(\gamma)$ has periodic points (lemma), so take bending ρ_t and study movement of periodic points of $\rho_t(\gamma)$.

```
ho rigid \Rightarrow combinatorial structure of \operatorname{Per}(\rho_t(a)), \operatorname{Per}(\rho_t(b)) "won't change" e.g. having common point, cyclic order of points From this, "reconstruct" the structure of geom. rep.
```

Baby version of main idea

Suppose $\rho(a)$ and $\rho(b)$ have hyperbolic dynamics:

Baby version of main idea

Suppose $\rho(a)$ and $\rho(b)$ have hyperbolic dynamics:

:

Claim: ρ rigid \Rightarrow axes cross.

Baby version of main idea

Suppose $\rho(a)$ and $\rho(b)$ have hyperbolic dynamics:

Claim: ρ rigid \Rightarrow axes cross. "reconstruct topology of Σ_{σ} "

Proof: Suppose

Bending: $\rho_t(b) = a_t \rho(b)$ $\rho_t(a) = a$

Picture: axis of $a^{-N}\rho(b)$ for N>>0: repelling point near $\rho(b)^{-1}(a_+)$

deformation gives non-conjugate picture, contradiction \square

In real life...

This line of argument "works" if $|\operatorname{Per}(\rho(a))| < \infty$.

- "axes" of SCC's "intersect" only when (based) curves do.
- w/ combinatorial technique of Matsumoto (2015), get geometricity.

Much work to arrive at deformation so that $|\operatorname{Per}(\rho(a))| < \infty$, build machinery to modify and track combinatorics of periodic sets.

Many open questions remain...

Thanks!